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Problem

I As eyetracking data moves from laboratory to naturalistic domains,
researchers have the opportunity to develop rich ecological models of
human-information interaction.

I Doing so requires developing new data collection and analysis
frameworks that facilitate reliable integration of eyetracking data with
complementary indicators of human work behaviors, in the context of
computer-supported visual workflows.

I Uncertainty quantification for gaze events is needed to understand
quality of detection of such events. Current detection methods do not
provide uncertainty information.

I Little research has been done with probabilistic clustering models that
factor in temporal correlation between observations.

Solution

I Apply probabilistic clustering models, specifically Gaussian mixture
models (GMMs), to the analysis of eyetracking data collected during a
dynamic search task, in which participants were directed to look for
specific features in a Synthetic Aperture Radar (SAR) image.

I Parameterize the GMM so that the temporal correlation between
observations is utilized.

I Using probabilistic clustering models, such as the GMM, allows
quantification of classification uncertainty for gaze events.

I Provide an efficient way to associate gaze events with geospatial
content in dynamic, user driven workflows under uncertainty.

.

Eyetracking Dataset

I 16 human subjects
I Each subject looks at various points in an image, and the locations

that the subject looks at are tracked in a one-hour long experiment in
a constrained visual search task.

I A datapoint containing the spatial location of the subject’s eye target
is recorded every 17 milliseconds, so there are 25,000 sample points for
the one subject throughout the four trials.

I See also Divis, Chen, McNamara, Morrow, & Perkins poster

.

Approach

1. Gaussian Mixture Model
I Density:
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where µg is the mean vector and Σg is the
covariance matrix of component g .

I Complete-Data Likelihood:

LC(πg , µg ,Σg) =
n∏

i=1

G∏
g=1

[πg f (xi |µg ,Σ)]zig , (2)

where zig denotes the membership of observation i
in component g so that zig = 1 if observation i
belongs to component g and zig = 0 otherwise.

I EM algorithm estimates all parameters
I Classification MLE: {j |z∗ij = maxg z

∗
ig}

I Classification Uncertainty: (1−maxg z
∗
ig)

2. Independent and Identically
Distributed (i.i.d.) Data
I R package: mclust
I Geometric cross-cluster constraints in multivariate

normal mixtures by parameterizing covariance
matrices through eigenvalue decomposition in the
form

Σg = λgDgAgD
T
g , (3)

where Dg is the orthogonal matrix of eigenvectors,
Ag is a diagonal matrix whose elements are
proportional to the eigenvalues, and λg is an
associated constant of proportionality.

3. Longitudinal Data
I R package: longclust
I The temporal correlation between observations is

accounted by the modified Cholesky
decomposition of the inverse covariance matrix,

Σ−1 = T ′D−1T ,

where T is a unique lower triangular matrix with
diagonal elements 1 and D is a unique diagonal
matrix with strictly positive diagonal entries.

I The values of T and D have interpretations as
generalized autoregressive parameters and
innovation variances, respectively, so that the
linear least-squares predictor of Yt, based on
Yt−1, ...,Y1, can be written as

Ŷt = µt +
t−1∑
s=1

(−φts)(Ys − µs) +
√
dtεt, (4)

where εt ∼ N(0, 1), the φts are the (sub-diagonal)
elements of T and the dt are the diagonal
elements of D.

Main Finding

By factoring in the temporal correlation between observations, we
get much better clustering results, as the uncertainty ellipses
encompass the data better and the ellipses are thinner, which
indicate lower classification uncertainty and the GMM is a
reasonable fit for the data.

Future Work

I Create R package that can visualize clustering performance and
uncertainty for multivariate longitudinal data. This capability
exists for i.i.d data with the mclust package, but it does not exist
for longitudinal data with the longclust package.

I Integrate clustering and uncertainty results across tasks and
subjects.

I Factor in velocity of eyetracking points and time in between
observations into clustering models.

I Determine spatial and temporal sources of uncertainty.

Results

Mclust (i.i.d. data):

Figure: Clustering analysis of eyetracking data using a GMM fit to i.i.d. data. The spatial
locations of the subject’s eye fixation location is divided into 20 clusters, based on the BIC
values of the models tested. The ellipses represent the uncertainty of the clustering
performance.

Longclust (longitudinal data):

Figure: Clustering analysis of eyetracking data using a GMM fit to longitudinal data. The
spatial locations of the subject’s eye fixation location is divided into 12 clusters, based on the
BIC values of the models tested. The ellipses represent the uncertainty of the clustering
performance.

Benefits

I Allow us to gauge the significant improvement in clustering
performance and uncertainty that correctly factoring in the
temporal correlation between observations can bring.

I R package allows for methods to be applied to longitudinal
datasets in a wide array of application areas, such as radar and
surveillance, medicine, and finance.

I The capability to visualize clustering performance and uncertainty
greatly enhances the ability to fully exploit all of the information
available in any dataset.

I This capability can be extended to other types of probabilistic
clustering models. It is possible that alternate models are needed
to better fit other types of distributions of data.

I Lead to the development of gaze-informed foraging models to
understand how imagery analysts become efficient in navigating
and detecting key event signatures in large, noisy geospatial
datasets.
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