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Outline

* BLRs: Discrete clouds vs. the clumpy wind paradigm
» Review of thermal instability
» Turbulent Tl simulations: inside a patch of a clumpy outflow

Bachall (1966):
“If one assumes that the emission lines of a QSS originate in a
collection of turbulently moving elements (gas clumps or filaments),
then the predicted widths are in agreement with observation if the
average turbulent speeds are of the order of a few thousand

kilometers per second. This idea underlies the ‘microturbulence’ parameter in
photoionization codes but highly supersonic turbulence in
the BLR is considered unrealistic (see Kraemer et al. 2012)



The broad line region: discrete clouds, continuous
winds, or something in between?
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Discrediting discrete AGN cloud models

Two strategies have been taken:

1. Show line-driven wind models can obtain
similar success fitting observations
Schurch et al. (2009)
« Sim et al. (2010)

2. Study discrete clouds in detail and
demonstrate |nfeaS|b|I|ty of this scenario
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e {ToMm Proga et al. (2014)
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Discrediting discrete AGN cloud models
Pure scattering Absorption dominated

Velocity Density Velocity Density eiocity Density Velocity Density

) 0

Ts = 0.2 Ts= 4.0 Ttot = 2x103 Ttot = 4x106 Ttor= 1_8)(108

0.00 0.00 0.00

Time [in units of sound crossing time]
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dp

5 TV (V) =0
d(pv) -(pvv + P+B?/2 - BB) = —PSy
ot
aa—f +V - [(E+ P)v+(B*/2)v - B(B-v)] = -PCSg

JB
W—VX(VXB)—O

Equations of radiation 9~

_ " L CV-F, =CSg
hydrodynamics ot

. IF,
(LTE version) —L+CV-P, = CSm
Sm~ (0, +0,)F,

Sp~o,(T* — E,)

The H/C source term that
triggers thermal instability
follows by taking the optically
thin limit of full RHD equations:

%

dp
5 Pyv. (pv) =0,

2>

200 1 9. v 451 = o

OF

o T V- [(E+p)v] = —pL + keq VT + fraq



Discrediting discrete AGN cloud models

Dynamics of the nonlinear regime of
thermal instability (TI)

dp
+ V- (pv) =0,
0 (pv
(8P ) +V - (pvv +pl) = fra4,
BruceT. Draine
OF o PHYSICS OF THE
5 TV [(E +p)v] = —pL + kegV'T + fraa - v. (3) INTERSTELLAR -
AND
The radiation force is negligible for the ISM/ I:NTi:‘EGD‘}bﬁ:ﬂC
oo IGM applications considered by Field (1965), R B
f..0= M;ﬁ but it becomes very important in the BLR where L
C the radiation field is completely anisotropic.
_ poeFx

. [(1 + fov) tox + fUVMmax]

See Proga & Waters (2015), Waters & Proga (2016)




The clumpy outflow paradigm

Line-driven disk wind

Blobs L '~2Rs
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Figure 15. Schematic picture of geometry of warm absorber outflows in NGC 4051

From Mizumoto et al. 2017 see Waters et al. (2017)

Instead of occultation, clumps can simply be evolving
(continuously reforming and evaporating) along the line of sight
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A spectral signature for cloud acceleration

PPC model I, — I
. Tvr =—1Inl, —In [—] ,
Ior = (1 - CV) + Cy (& V,1‘; —=s I’I" - I’g
27 1
I - 1 - Cu + CU (& 2 vr . v — .
=1 N g [ S E
I,— Iy =Che ™" (1—€e ™), Crenshaw, Kraemer, & George
N { Cpe ™r (near line center); ARA&A 2003
7,Cye” ™"  (in the line wings). From Waters et al. 2017:
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The clumpy outflow paradigm implies turbulent flow

Outflows are already prone to being N 4 T n
turbulent since the Reynolds number Amfp & 7.1 % 107 cm (105 K (109 cm—3)

is very large
y g Re . VL - ].02 km S_lLth 10 Lth 107
v - Cs)\mfp )\mfp

Vorticity generation always accompanies clumps
« flow is not barotropic, there’s velocity shear (KH instability), disruption from

radiation forces, etc Ow Vo xV
P P -+ Z V x f;

> +V X (w X v) p°
» Possible scenarios that further stirs up the flow. Clumpy [wind type]:

*thermal winds - self-shadowing can cause a shielded clump to not
suffer strong heating, causing relative velocity shear

*line driven winds - perturbations at the wind base propagate
downstream (Dyda & Proga 2017, 2018)

*magnetically driven winds - the higher inertia of clumps can cause
field line draping, thereby twisting the fields
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Turbulent flow in turn implies a narrow range of
cloud sizes

What is the characteristic size of a newly condensed clump?

By mass conservation:

4
Peq A~ pe gﬂRg

A
(pc/peq) 1/3

R, ~

Hypothesis: turbulence should favor clump
sizes corresponding to wavelengths with
maximum linear growth rates of TI:

Approximate scales for the parameters used in PW15
Amax simulations. Condensing clumps are about the size
Re ~ ( / )1/3 of the sun, the Field length is roughly Jupiter-sized,
Pel Peq and our grid scale is Earth-sized. (The last slide
shows how much this parameter space can vary.)




Review of Tl: the linear isobaric regime

Saturation of Tl is a cloud formation process,
but it also naturally leads to cloud acceleration (PW15).




Review of Tl: the linear isobaric regime

Saturation of Tl is a cloud formation process,
but it also naturally leads to cloud acceleration (PW15).




Review of Tl: the nonlinear isobaric regime

Saturation of Tl is a cloud formation process,
but it also naturally leads to cloud acceleration (PW15).




Cloud core

Cloud core

AF =2m Keq ];:q/(Pqueq)

Steady state configuration:
. line cooling balances conductive heating
Begelman & McKee (1990)




CLOUD DYNAMICS:
ACCELERATION, EVAPORATION, AND REGENERATION
(SPITZER CONDUCTIVITY T/5/2)

DB: 1i.0040.vik
Cycle: 40

Pseudocolor
%28 Var: density
- 3.200

2.525
1.850
- 1.175

- 0.5000
Max: 1.072
Min: 0.9453
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Review of Tl: instability criteria

ICM Example:
L=A-T [eg g1 3—1] A uniform medium with a constant
heating rate that cools by free-free
emission has

Instability criterion: [ — Cp T% _H
1
(%)p < 0 (isobaric) =C'pT 2—H
oL : : (Actual cooling prescription
(W) 5 S 0 (isochoric) used by McCourt et al. 2012)

(%) < 0 (isentropic) > Stable to isochoric perturbations
5 but unstable to isobaric ones
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Review of Tl: S-curves and instability regimes

8.0

Blondin Heating & Cooling Prescription

7.5

— = Balbus contour
— radiative equilibrium curve

Each point in this phase
space has a different
thermal length.

Blondin dispersion relation nT =103 [Kcm™3]
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1 : TI
! : = = AN
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Each point along the unstable branch has a
different dispersion relation. At any location, there
are different regimes of Tl depending on the size of
the perturbation in comparison to the thermal
length. The shattering/isochoric regimes are
currently being explored (Waters & Proga, in prep.)



Review of Tl: nonlinear outcome in AGN

x-velocity of cloud = 0.113c,,

104 '-.. P { £ 150‘
10* 102 103

0.0 . . | . € [erg cm s_l]

Simulation by Tim Waters and Daniel Proga. UNLV
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Local simulations of multiphase turbulence

Forced driving is appropriate

 Locally optically thick or globally high column density regions lead to self-
shadowing effects that tend to randomize the radiation forces

The turbulent Mach number is the only new parameter
» This parameter can be constrained by absorption line widths

These turbulence simulations are predictive!

* They have the necessary resolution to accurately capture mixing

* They include thermal conduction, which is necessary to form interfaces and
permit evaporation

« One can compute self-consistently turbulently broadened line profiles

* The computational domains can be ‘stacked’ in order to compute synthetic
absorption/emission line profiles
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Driven turbulence simulations use local periodic boxes.
What are the important questions to ask?
4+ Statistical properties?
« Differs for supersonic vs. subsonic turbulence

» Sensitivity to compressive vs. solenoidal driving?
4+ Size and slope of the inertial range?

Turbulence + Tl simulations also use local periodic boxes.
What additional questions are there?

4+ What should the box size be?

4+ Filling factor of cold gas?

4 Distribution of clump sizes and lifetimes?
4+ Sensitivity of properties to the unstable parameter space?
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Main result: clump sizes corresponding to maximum

growth rate perturbations are indeed favored

In particular, condensations don't arise in runs with with box sizes too small to capture
the fastest growing mode when the turbulent Mach number exceeds ~0.3

Blondin dispersion relation nT =103 [Kcm™3]

100 -

107! 10° 10! 102 103 104 10°

A [10cm]
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Main result: clump sizes corresponding to maximum

growth rate perturbations are indeed favored
In particular, condensations don't arise in runs with with box sizes too small to capture
the fastest growing mode when the turbulent Mach number exceeds ~0.3

Blondin dispersion relation nT =103 [Kcm™3]
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Application: turbulent Tl simulations provide a physical
interpretation of LOC-type models

» A ‘background’ global wind model can be used to inform parameter space, and local
turbulent Tl simulations apply at different distances to sample a possibly large range

of cloud properties
From Baldwin et al. (1995):

TABLE 1
OBSERVED AND PREDICTED LINE INTENSITIES

Example of LOC model selection effects —
Observed Maximum LOC
Clv abundance map. Emission Line Intensity®  Reprocessing Integration®

Tem perature [K]

07 (1) 2 ©) “4)
024 O vi A1034 + LyB A1026........ 0.1-0.3 0.28 0.16
Lya AM1216....ccvviiiinnnnnnnnnn. 1.00 1.00 1.00
o NVAI240 cueiiiiiiiiiiiinnnns 0.1-0.3 0.06 0.04
018 Siv A1397 + O 1v] A1402...... 0.08-0.24 0.08 0.06
y CIvVALS4Y.. it 0.4-0.6 0.54 0.57
18 015 3 He 11 21640 + O m] A1666...... 0.09-0.2 0.11 0.14
- C m1] + Si m] + Al 11 A1900.. 0.15-0.3 0.28 0.12
Tz Mg A2798...ccvviiiinnnnnnnnnn. 0.15-0.3 0.38 0.34
009 HB M86L.....covviiiiinninnnnn.. 0.07-0.2 0.08 0.09
ooe ® Intensity relative to Lya A1216, combining data from Baldwin et al. 1989,
003 Boyle 1990, Cristiani & Vio 1990, Francis et al. 1991, Laor et al. 1995, Netzer
et al. 1995, and Weymann et al. 1991.
0.00 ® Co-addition of emission from clouds as described in the text.
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Parameter space of Tl

Blondin Heating & Cooling Prescription
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Conclusions

* Driven (3D periodic box) turbulence simulations of TlI...
1. allow simulating a local patch of a clumpy outflow
3. properly capture mixing and evaporation
5. pick out cloud sizes corresponding to the maximum Tl growth rate

7. are a realization of LOC-type models

See Waters & Li (in preparation)
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Can spectral fitting (using say XSPEC)
that incorporates this theory of
turbulent condensations be performed?
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