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Aspects of Uncertainty Quantification
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Experimental data is used to calibrate models

Predictive Simulation 

Theory 

Experiments 
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UQ methods extract information from all sources to
enable predictive simulation

Predictive 
Simulation 

Theory 

Experiments 

Introduction Introduction UQ Software PCES Summary References

Formulation

du
dt
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Debusschere – SNL UQ• UQ not just about propagating uncertainties
• The term UQ covers a wide range of methods
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UQ assesses confidence in model predictions and
allows resource allocation for fidelity improvements

• Parameter inference
• Determine parameters from data
• Characterize uncertainties in inferred parameters

• Propagate input uncertainties through computational
models

• Account for uncertainty from all sources
• Resolve coupling between sources

• Analysis
• Sensitivity analysis
• Attributions

• Model calibration, validation, selection, averaging
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Types of Uncertainty

• Epistemic uncertainty
• Variable has one particular value, but it is not known
• Reducible: by taking more measurements, we can

get to know the value of the variable better
• Examples

• The mass of the planet Neptune
• Ocean temperature at a particular point and time

• Aleatory uncertainty
• Intrinsic or inherent uncertainty: variable is random;

different value each time it is observed
• Irreducible: taking more measurements will not

reduce uncertainty in the value of the variable
• Examples:

• Collision interactions in molecular systems
• Sampling noise
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Epistemic or aleatory can depend on point of view

• Epistemic versus aleatory sometimes depends on
scale level

• In fully resolved turbulent simulations, velocity field
near a wall is deterministic

• In mesoscale channel flow, near wall velocity field is
turbulent forcing term (aleatory)

• In macroscale channel flow, near wall velocity field
provides friction term (epistemic)

• These lectures follow the Bayesian view: probability
represents the degree of belief in the value of a
variable
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Polynomial Chaos Expansions represent random
variables

u =
PX

k=0

uk k(⇠)

• u: Random Variable (RV)
represented with 1D PCE

• uk : PC coefficients
(deterministic)

•  k : 1D Hermite polynomial
of order k

• ⇠: Gaussian RV u = 0.5 + 0.2 1(⇠) + 0.1 2(⇠)
Expansion in terms of functions of random variables
multiplied with deterministic coefficients

• Set of deterministic PC coefficients fully describes RV
• Separates randomness from deterministic dimensions
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PCEs are a functional map from standard RVs to the
represented RV
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One-Dimensional Hermite Polynomials

 0(⇠) = 1

 k(⇠) = (�1)ke⇠2/2 dk

d⇠k e�⇠2/2, k = 1, 2, . . .

 1(⇠) = ⇠,  2(⇠) = ⇠2 � 1,  3(⇠) = ⇠3 � 3⇠, . . .
The Hermite polynomials form an orthogonal basis over
[�1,1] with respect to the inner product

h i ji ⌘
1p
2⇡

Z 1

�1
 i(⇠) j(⇠)w(⇠)d⇠ = �ij

⌦
 2

i
↵

where w(⇠) = e�⇠2/2 is the weight function.
Note that e�⇠2/2

p
2⇡

is the density of a standard normal
random variable
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Multidimensional Hermite Polynomials

The multidimensional Hermite polynomial  i(⇠1, . . . , ⇠n) is
a tensor product of the 1D Hermite polynomials, with a
suitable multi-index ↵i = (↵i

1,↵
i
2, . . . ,↵

i
n),

 i(⇠1, . . . , ⇠n) =
nY

k=1

 ↵i
k
(⇠k)

For example, 2D Hermite polynomials:
i p  i ↵i

0 0 1 (0,0)
1 1 ⇠1 (1,0)
2 1 ⇠2 (0,1)
3 2 ⇠2

1 � 1 (2,0)
4 2 ⇠1⇠2 (1,1)
5 2 ⇠2

2 � 1 (0,2)
... ... ... ...
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Multidimensional Polynomial Chaos Expansion

u =
PX

k=0

uk k(⇠1, . . . , ⇠n)

• u: Random Variable (RV) represented with multi-D PCE
• uk : PC coefficients (deterministic)
•  k : Multi-D Hermite polynomials up to order p
• ⇠i : Gaussian RV
• n: Dimensionality of stochastic space
• P + 1: Number of PC terms: P + 1 = (n+p)!

n!p!

The number of dimensions represents the number of
independent inputs, degrees of freedom for u

• E.g. one stochastic dimension per uncertain model
parameter

• Contributions from each uncertain input can be identified
Debusschere – SNL UQ
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Obtaining PC coefficients for arbitrary random
variables is not trivial

• This is a hard problem in general
• Random Variable can be specified in a variety of

ways, but often incomplete
• Probability Density Function (PDF)
• Samples
• Expert opinion (e.g. “somewhere between 2 and 4”)

• Particular case of a random variable specified by a
PDF is generally tractable
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The PC basis functions are orthogonal with respect to
the probability measure of the associated RVs

h i ji ⌘
Z

. . .

Z
 i(⇠) j(⇠)g(⇠1)g(⇠2) · · · g(⇠n)d⇠1d⇠2 · · · d⇠n

=
nY

k=1

D
 ↵i

k
(⇠k) ↵j

k
(⇠k)

E
= �ij

⌦
 2

i
↵

where,

g(⇠) =
e�⇠2/2
p

2⇡

Debusschere – SNL UQ



Overview UQ Big Picture PCES Propagation References

Orthogonality enables a Galerkin projection to
determine the PC coefficients
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ũ

uo

 1

 o

1

u1

E

u

ũ
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Generalized Polynomial Chaos

PC Type Domain Density w(⇠) Polynomial Free parameters

Gauss-Hermite (�1,+1) 1p
2⇡

e� ⇠2
2 Hermite none

Legendre-Uniform [�1, 1] 1
2 Legendre none

Gamma-Laguerre [0,+1) ⇠↵e�⇠

�(↵+1) Laguerre ↵ > �1

Beta-Jacobi [�1, 1] (1+⇠)↵(1�⇠)�

2↵+�+1B(↵+1,�+1) Jacobi ↵ > �1, � > �1

Inner product: h i ji ⌘
R b

a  i(⇠) j(⇠)w(⇠)d⇠ = �ij
⌦
 2

i
↵

• Wiener-Askey scheme provides a hierarchy of possible
continuous PC bases [Xiu and Karniadakis, 2002]

• Legendre-Uniform is special case of Beta-Jacobi
• Input parameter domain often dictates the most

convenient choice of PC
• Polynomials can also be tailored to be orthogonal w.r.t.

chosen, arbitrary density
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How do I know my PCE is converged?

• Approximation error in PCE is topic of a lot of
research

• Rules of thumb:
• Try to use a PC basis in terms of a random variable

with a distribution similar to the uncertainties you
expect to see

• Higher order PC coefficients should decay
• Increase order until results no longer change
• Not always fail-proof ...
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Propagation of Uncertain Inputs Represented with
PCEs

Galerkin Projection
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Galerkin projection methods are either intrusive or
non-intrusive

• Use same projection but in different ways

uk =
hu k i⌦
 2

k
↵ , k = 0, . . . , P

• Intrusive methods apply Galerkin projection to governing
equations

• Results in set of equations for the PC coefficients
• Requires redesign of computer code
• PCEs for all uncertain variables in system

• Non-intrusive approaches apply Galerkin projection to
outputs of interest

• Sampling to evaluate projection operator
• Can use existing code as black box
• Only computes PCEs for quantities of interest
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Collocation approaches are non-intrusive and
minimize errors at sample points

PX

k=0

uk k (⇠i) = u(⇠i)

i = 1, . . . , Nc
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• Use functional representation point of view
• Can use interpolation, e.g. Lagrange interpolants
• Or use regression approaches: P + 1 degrees of

freedom to fit Nc points
• Can position points where most accuracy desired
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Intrusive Galerkin projection reformulates original
equations

• Assume v = f (u; a,�), with
• a deterministic parameter(s)
• � uncertain parameter(s)
• u, v variables of interest (deterministic or uncertain)

• Represent uncertain variables with PCEs

� =
PX

k=0

�k k(⇠), v =
PX

k=0

vk k(⇠)

• Apply Galerkin projection to get PC coefficients of v

vk =
hv ki⌦
 2

k

↵ =
hf (u; a,�) ki⌦

 2
k

↵ , k = 0, . . . ,P

• Results in larger, but deterministic set of equations
Debusschere – SNL UQ
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Projection of product: v = � �

• Assume v = � �, with
� =

PP
k=0 �k k , � =

PP
k=0 �k k , and v =

PP
k=0 vk k

• Galerkin projection

vk =
hv ki⌦
 2

k

↵ =
h(� �) ki⌦
 2

k

↵ , k = 0, . . . ,P

h(� �) ki =

*0

@
PX

i=0

�i i

PX

j=0

�j j

1

A k

+

=

*
PX

i=0

PX

j=0

�i�j i j k

+

=
PX

i=0

PX

j=0

�i�j h i j ki
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Projection of product: v = � �

) vk =
PX

i=0

PX

j=0

�i�j
h i j ki⌦
 2

k

↵ =
PX

i=0

PX

j=0

�i�jCijk

• Cijk =
h i j ki
h 2

ki
• The Cijk tensor can be computed up front for any

given PC order and dimension and stored for use
whenever two RVs are multiplied

• This tensor is sparse, i.e. many of its elements are
zero
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Non-intrusive Galerkin Projection

uk =
hu ki⌦
 2

k

↵ =
1⌦
 2

k

↵
Z

u k(⇠)w(⇠)d⇠, k = 0, . . . ,P

Evaluate projection integrals numerically
• Pick samples of uncertain parameters, e.g.

b(⇠) =
P

bk k(⇠) by sampling ⇠
• Run deterministic forward model for each of the

sampled input parameter values bi = b(⇠ i)
• Integration using random sampling or quadrature

methods
Reconstruct uncertain model output

u(x , t ; ✓) =
PX

k=0

uk(x , t) k(⇠(✓))
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Random Sampling Approaches for Galerkin Projection

• Evaluate integral through sampling

Z
u k(⇠)w(⇠)d⇠ =

1
Ns

NsX

i=1

u(⇠ i) k(⇠
i)

• Samples are drawn according to the distribution of ⇠
• Monte-Carlo (MC)
• Latin-Hypercube-Sampling (LHS)

• Pros:
• Can be easily made fault tolerant
• Sometimes random samples is all we have

• Cons: slow convergence, but less dependent on
number of stochastic dimensions
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Quadrature Approaches for Galerkin Projection

• Use numerical quadrature rules to evaluate integrals

Z
u k(⇠)w(⇠)d⇠ =

NqX

i=1

qiu(⇠ i) k(⇠
i)

• The Nq ⇠ i are quadrature points, with corresponding
weights qi

• Choice of quadrature points important for accuracy
• Also referred to as deterministic sampling approach

• Pros:
• Can use existing codes as black box to evaluate u(⇠i)
• Embarrassingly parallel

• Cons: Tensor product rule for d dimensions requires
Nd

q samples
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Gauss quadrature rules are very efficient

Z
u k(⇠)w(⇠)d⇠ =

NqX

i=1

qiu(⇠ i) k(⇠
i)

• In one dimension, Nq quadrature points can integrate
polynomial of order 2Nq � 1 exactly

• Gauss-Hermite and Gauss-Legendre quadrature
tailored to specific choices of the weight function w(⇠)
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Further Reading

An (incomplete) list of references about the material
covered
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Sensitivity analysis gives insight into key sources of
uncertainty
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• Obtaining global sensitivity analysis from PCEs
• Identify dominant sources of uncertainty
• Attribution
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PC Postprocessing: global sensitivity information is
readily obtained from PCE

g(⇠1, . . . , ⇠d) =
PX

k=0

ck k(⇠)

• Global sensitivity analysis ⌘ Variance
decomposition

• Total variance

Var [g(⇠)] =
X

k>0

c2
k || k ||2
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PC Postprocessing: Main Effect and Joint Sensitivity
Indices

• Main effect sensitivity indices

Si =
Var [E(g(⇠|⇠i)]

Var [g(⇠)]
=

P
k2Ii

c2
k || k ||2P

k>0 c2
k || k ||2

• Ii is the set of bases with only ⇠i involved
• Si is the uncertainty contribution that is due to i-th

parameter only
• Joint sensitivity indices

Sij =
Var [E(g(⇠|⇠i , ⇠j)]

Var [g(⇠)]
� Si � Sj =

P
k2Iij

c2
k || k ||2

P
k>0 c2

k || k ||2

• Iij is the set of bases with only ⇠i and ⇠j involved
• Sij is the uncertainty contribution that is due to (i , j)

parameter pair
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PC Postprocessing: Total Effect Sensitivity Indices

• Total effect sensitivity indices

Ti = 1 � Var [E(g(⇠|⇠�i)]

Var [g(⇠)]
=

P
k2IT

i
c2

k || k ||2
P

k>0 c2
k || k ||2

• The notation ⇠�i indicates terms that do not have ⇠i in
them

• IT
i is the set of bases with ⇠i involved, including all its

interactions
• The sum of all Ti is usually > 1
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Sensitivity indices are directly computable from PC

g(⇠) =
PX

k=0

ck k (⇠)

Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d !p!) = 10.

g(⇠1, ⇠2, ⇠3) = c0 + c1 1(⇠1) + c2 1(⇠2) + c3 1(⇠3) +

+ c4 2(⇠1) + c5 1(⇠1) 1(⇠2) + c6 1(⇠1) 1(⇠3) + c7 2(⇠2) + c8 1(⇠2) 1(⇠3) + c9 2(⇠3)

Variance contributions

Var(g) = 0 + c2
1h 

2
1i + c2

2h 
2
1i + c2

3h 
2
1i +

+ c2
4h 

2
2i + c2

5h 2
1ih 

2
1i + c2

6h 
2
1ih 

2
1i + c2

7h 2
2i + c2

8h 
2
1ih 

2
1i + c2

9h 
2
2i
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PC Postprocessing: Sampling-Based Approaches

g(⇠1, . . . , ⇠d) =
PX

k=0

ck k(⇠)

• In some cases, need to resort to Monte-Carlo
estimation, e.g.
• Piecewise-PC with irregular

subdomains
• Output transformations, e.g. build PC

for log g(⇠), but inquire sensitivity with
respect to g(⇠)

• A brute-force sampling of Var [E(g(⇠|⇠i)] is
extremely inefficient.
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PC Postprocessing: Sampling-Based Approaches

• Tricks are available, given a single set of
sampled input [Saltelli, 2002]. E.g., use

E[g(⇠|⇠i)
2] = E[g(⇠|⇠i)g(⇠0|⇠i)] =

1
N � 1

NX

r=1

g(⇠(r))g(⇠̃
(r)
),

where ⇠̃ is ⇠0 with i-th element replaced by ⇠i .
• Similar formulae available for joint sensitivity

indices.

• Con: as all Monte-Carlo algorithms, converges
slowly.

• Pro: sampling is cheap.
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Heat Transfer through a Window

Glass%

T2%

T1%

Q%

Wall%

Ti% To%

hi(Ti � T1) = kw
(T1 � T2)

dw

kw
(T1 � T2)

dw
= ho(T2 � To)

6 Uncertain, Gaussian
parameters

Ti = 293K, � = 0.5%
To = 273K, � = 0.5%
dw = 0.01m, � = 1%
kw = 1W/mK, � = 5%
hi = 2W/m2K, � = 15%
ho = 6W/m2K, � = 15%
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Outputs are most sensitive to ambient temperatures
and convective heat transfer coefficients

• Main effect sensitivities
• Sum to 1 only if coupling terms do not matter

• kw has minimal contribution due to its low uncertainty
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Further Reading

An (incomplete) list of references about the material
covered
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Obtaining PC coefficients for arbitrary random
variables is not trivial

• Characterizing PCEs for uncertain inputs is a really
difficult problem

• Inputs specified in a variety of ways, and often
incomplete

• Probability density function
• Samples, e.g. from inverse problem solution
• Expert opinion (e.g. “about 3.5”)

• Particular case of a random variable specified by a
PDF is generally tractable
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Orthogonality enables a Galerkin projection to
determine the PC coefficients
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ũ

uo

�1

�o

1

u1

E

u

ũ
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Galerkin projection requires functional relationship
between random variable and germ of PCE
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Cumulative Distribution Function (CDF) maps arbitrary
random variable to a uniform random variable

• Consider u with PDF p(u)

• CDF of u is given by

F (u) =

Z
u

�1
p(s)ds

•
F (u) maps u to ⌘, uniform
on [0, 1]

0 2 4 6 80

0.2

0.4

0.6

0.8

1

0 2 4 6 80

1

2

3

4

5

⇠

p(⇠)

u(⇠)

p(u)

⌘

1

⇠

p(⇠)

u(⇠)

p(u)

⌘

u

1

⇠

p(⇠)

u(⇠)

p(u)

⌘

u

1

⇠

p(⇠)

u(⇠)

p(u)

⌘

1

Debusschere – SNL UQ



Arbitrary RVs References

Inverse CDF mapping enables Galerkin Projection

• ⌘ = F (u)

• ⌘ = �(⇠)
maps uniform
⌘ to normal
RV ⇠

•
u =
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Constructing an nD PCE for a RV with a Given PDF

• Given RV z 2 R with PDF: g(z), define:

z =
PX

i=0

z

i

 
i

(⇠1, ⇠2, . . . , ⇠n

), P + 1 =
(n + p)!

n!p!

• No general procedure
• Construct PCE as model choice to represent

what is known about RV
• Can choose {n, p} and the mode strengths by

ensuring
accurate capture of
• the PDF g(z)
• select moments of z

• some observable of interest �(z)
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Multivariate Normal Approximation (MVN)

• Many distributions are unimodal and somewhat
shaped like Gaussians

• MultiVariate Normal approximations capture mean
and correlation structure of the random variables

• Easy to extract from a set of samples
• In 1D: just compute mean and standard deviation:

u = u0 + u1⇠
• Multi-D: Cholesky factorization of covariance

C = LL

T

u = L⇠

# Compute mean parameter values

par_mean = numpy.mean(samples,axis=0)

# Compute the covariance

par_cov = numpy.cov(samples,rowvar=0)

# Compute the Cholesky Decomposition

chol_lower = numpy.linalg.cholesky(par_cov)
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MVN Approximation of Distribution from Samples

S1 = 1.351 + 0.01367⇠1

CS = 5310 � 26.25⇠1 + 20.26⇠2
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Rosenblatt Transformation for Multi-D RVs

• Assume samples of multi-D RVs are (e.g. from
MCMC sampling of posterior parameter distribution)

• Rosenblatt transformation maps any (not necessarily
independent) set of random variables (�1, . . . ,�d

) to
uniform i.i.d.’s {⌘

i

}d

i=1 (Rosenblatt, 1952).

⌘1 = F1(�1)

⌘2 = F2|1(�2|�1)
...

⌘
d

= F

d |d�1,...,1(�d

|�
d�1, . . . ,�1)

• Rosenblatt transformation is a multi-D generalization
of 1D CDF mapping.

• Conditional CDFs are harder to evaluate in high
dimensions
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Rosenblatt transformation of a given sample set
requires KDE

• Given samples {�(n)}N

n=1 of the random variable � = (�1, . . . ,�d

)

• Kernel Density Estimation (KDE) is needed to compute conditional CDFs

⌘
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Rosenblatt transformation enables Galerkin projection
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�1(⇠1, ⇠2) ensures a well-defined quadrature
integration
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Further Reading

An (incomplete) list of references about the material
covered
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Polynomial Chaos Fundamentals

• N. Wiener, “Homogeneous Chaos”, American Journal of Mathematics, 60:4, pp. 897-936, 1938.
• R. Ghanem and P. Spanos, “Stochastic Finite Elements: a Spectral Approach”, Springer, 1991.
• O.G. Ernst, A. Mugler, H.-J. Starkloff, and E. Ullmann, “On the convergence of generalized polynomial

chaos expansions,” ESAIM: M2AN, 46:2, pp. 317-339, 2011.
• D. Xiu and G.E. Karniadakis, “The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations”,

SIAM J. Sci. Comput., 24:2, 2002.
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PCE-Based Forward Uncertainty Propagation

• O. Le Maître and O. Knio, “Spectral Methods for Uncertainty Quantification with Applications to
Computational Fluid Dynamics”, Springer, 2010.

• D. Xiu, “Numerical Methods for Stochastic Computations: A Spectral Method Approach”, Princeton U.
Press, 2010.
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(Sparse) Quadrature

• P. R. Conrad and Y. M. Marzouk, “Adaptive Smolyak Pseudospectral Approximations,” SIAM J. Sci.
Comput., vol. 35, no. 6, pp. A2643–A2670, 2013.
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Sensitivity Analysis – Characterization

• A. Saltelli and S. Tarantola and F. Campolongo and M. Ratto, “Sensitivity Analysis in Practice: A Guide to
Assessing Scientific Models”. John Wiley & Sons, 2004.
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Compressed Sensing

• Sargsyan, K., Safta, C., Najm, H. N., Debusschere, B. J., Ricciuto, D., and Thornton, P., “Dimensionality
Reduction for Complex Models Via Bayesian Compressive Sensing,” International Journal for Uncertainty
Quantification, 4(1), 63–93, 2014.
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Bayesian Inference
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Polynomial Chaos Based
Uncertainty Quantification

Topic 4: Surrogate Models / Meta-models

Bert Debusschere

bjdebus@sandia.gov

Sandia National Laboratories,
Livermore, CA

Reservoirs UQ Workshop – Aug 1-3, 2017
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Surrogate Models

• Approaches:
• Polynomial Chaos Expansions
• Gaussian Process Models
• Low-rank Approximations

• Challenges:
• High-dimensionality of input space
• Computational cost of forward model
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Mitigation Approaches

• High-Dimensionality:
• Dimensionality reduction (sensitivity analysis)
• Adaptive Sparse Quadrature approaches
• Compressed Sensing
• Low-rank approximations

• Computational Cost:
• Multifidelity - Multilevel methods (see DAKOTA team)
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Bayesian Compressed Sensing

• N training data points (xn, un) and K basis terms  k (·)
• Projection matrix P

N⇥K with Pnk =  k (xn)

• Find regression weights c = (c0, . . . , cK�1) so that

u ⇡ Pc

or

un ⇡
P

k ck k (xn)

• The number of polynomial basis terms grows fast; a p-th
order, d-dimensional basis has a total of
K = (p + d)!/(p!d !) terms.

• For limited data and large basis set (N < K ) this is a
sparse signal recovery problem ) need some
regularization/constraints.

• Least-squares argmin
c

{||u � Pc||2}

• The ‘sparsest’ argmin
c

{||u � Pc||2 + ↵||c||0}

• Compressive sensing argmin
c

{||u � Pc||2 + ↵||c||1}
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Bayesian Compressed Sensing

• N training data points (xn, un) and K basis terms  k (·)
• Projection matrix P

N⇥K with Pnk =  k (xn)

• Find regression weights c = (c0, . . . , cK�1) so that

u ⇡ Pc

or

un ⇡
P

k ck k (xn)

• The number of polynomial basis terms grows fast; a p-th
order, d-dimensional basis has a total of
K = (p + d)!/(p!d !) terms.

• For limited data and large basis set (N < K ) this is a
sparse signal recovery problem ) need some
regularization/constraints.

• Least-squares argmin
c

{||u � Pc||2}
• The ‘sparsest’ argmin

c

{||u � Pc||2 + ↵||c||0}
• Compressive sensing argmin

c

{||u � Pc||2 + ↵||c||1}
Bayesian Likelihood Prior
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BCS removes unnecessary basis terms

f (x , y) = cos(x+4y) f (x , y) = cos(x2+4y)
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The square (i , j) represents the (log) spectral coefficient
for the basis term  i(x) j(y).
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Iterative Bayesian Compressive Sensing (iBCS)

• Iterative BCS: iteratively increase the order for the relevant
basis terms while maintaining the dimensionality reduction
[Sargsyan et al. 2014], [Jakeman et al. 2015].

• Combine basis growth and reweighting!

Iterative Bayesian Compressive Sensing (iBCS)

Iterative BCS: We implement an iterative procedure that allows
increasing the order for the relevant basis terms while maintaining the
dimensionality reduction [Sargsyan et al. 2014], [Jakeman et al. 2015].

Combine basis growth and reweighting!

Initial Basis

Iterations

Weighted
BCS

Model data

Sparse Basis Final Basis

Basis
Growth

Reweighting
New Basis

K. Sargsyan (ksargsy@sandia.gov) SIAM UQ 16 April 5, 2016 14 / 25Debusschere – SNL UQ
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Low-Rank Approximations

• Univariate function representation: p + 1 coefficients

u(⇠) =
PX

k=0

uk k(⇠)

• Multivariate function representation: P + 1 = (n+p)!
n!p!

u(⇠1, . . . , ⇠n) =
PX

k=0

uk

nY

i=1

 ↵k
i
(⇠i)

• Low-rank approximation: r ⇤ (p1 + p2 + . . .+ pn)

u(⇠1, . . . , ⇠n) =
rX

k=1

w (1)
k (⇠1) . . .w

(n)
k (⇠n)
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Minimization Problem for Coefficients

• Minimization problem:

min

ũ2M
ku(⇠)� ũ(⇠)k2 + �R(ũ(⇠))

where M is a suitable tensor subset (Canonical,
Tensor Train) and R is a regularization function

• Selection of optimal rank r and regularization
coefficient � using cross validation

• Pros: Linear increase in parameters with dimension
• Cons: Non-linear optimization problem. Optimal

approximation ũ(⇠) is often not known
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Low rank approximation of Genz Gaussian

• u(⇠) = exp

⇣
�
Pd

i=1 c2(⇠i � w)2
⌘
, c = 0.1,w = 0.5

• M: Canonical rank-r , R : `1
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Further Reading

An (incomplete) list of references about the material
covered
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