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uQ Big Picture

Aspects of Uncertainty Quantification |
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UQ Big Picture

Experimental data is used to calibrate models
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UQ Big Picture

UQ methods extract information from all sources to

enable predictive simulation
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e UQ not just about propagating uncertainties
e The term UQ covers a wide range of methods
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UQ Big Picture

UQ assesses confidence in model predictions and

allows resource allocation for fidelity improvements

e Parameter inference
¢ Determine parameters from data
e Characterize uncertainties in inferred parameters
e Propagate input uncertainties through computational
models
o Account for uncertainty from all sources
¢ Resolve coupling between sources
e Analysis
e Sensitivity analysis
o Attributions
e Model calibration, validation, selection, averaging
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Types of Uncertainty

o Epistemic uncertainty

¢ Variable has one particular value, but it is not known
¢ Reducible: by taking more measurements, we can
get to know the value of the variable better
o Examples
e The mass of the planet Neptune
e Ocean temperature at a particular point and time
e Aleatory uncertainty

e Intrinsic or inherent uncertainty: variable is random;
different value each time it is observed

¢ Irreducible: taking more measurements will not
reduce uncertainty in the value of the variable

e Examples:

e Collision interactions in molecular systems
e Sampling noise
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UQ Big Picture

Epistemic or aleatory can depend on point of view

e Epistemic versus aleatory sometimes depends on
scale level

¢ In fully resolved turbulent simulations, velocity field
near a wall is deterministic

¢ In mesoscale channel flow, near wall velocity field is
turbulent forcing term (aleatory)

¢ In macroscale channel flow, near wall velocity field
provides friction term (epistemic)

e These lectures follow the Bayesian view: probability

represents the degree of belief in the value of a
variable
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PCES
Polynomial Chaos Expansions represent random
variables

e u: Random Variable (RV) :
represented with 1D PCE

e u: PC coefficients
(deterministic)

e . 1D Hermite polynomial
of order k 85 o = = o

* & Gaussian RV U= 0540201 (€) + 0.105(E)
Expansion in terms of functions of random variables
multiplied with deterministic coefficients

e Set of deterministic PC coefficients fully describes RV
e Separates randomness from deterministic dimensions

~N w &

Prob. Dens. [-]

-
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PCES

PCEs are a functional map from standard RVs to the
represented RV

u=0.540.2¢1(&) + 0.012(&) o1
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PCES
One-Dimensional Hermite Polynomials

Po(§) = 1
dk

¢k(§) = (_1)ke§2/2d—€ke_§2/2, k:1,2,

vi(€) =& W) =€ -1, Ya(§) =€ -3¢ ...
The Hermite polynomials form an orthogonal basis over
[—00, 0] with respect to the inner product

(i) = ¢Lz—7r / O = 5 (o)

where w(¢) = e ¢*/2 is the weight function.

Note that e:f;Z is the density of a standard normal

random variable
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PCES
Multidimensional Hermite Polynomials

The multidimensional Hermite polynomial W;(&4, ..., &,) is
a tensor product of the 1D Hermite polynomials, W|th a
suitable multi-index o/ = (o}, ab, ..., al),

Vi1, n Hwak &)

For example, 2D Hermite ponnomlaIs.
\U,' «

1

€1

&2
&1
§182
&1

O~ WN 2O~
NN DN = 2O
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PCES

Multidimensional Polynomial Chaos Expansion

u: Random Variable (RV) represented with multi-D PCE
uk: PC coefficients (deterministic)

W,: Multi-D Hermite polynomials up to order p

&;: Gaussian RV

n: Dimensionality of stochastic space

P + 1: Number of PC terms: P+ 1 = (’};[lﬁ)!

The number of dimensions represents the number of
independent inputs, degrees of freedom for u

e E.g. one stochastic dimension per uncertain model
parameter
e Contributions from each uncertain input can be identified
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PCES

Obtaining PC coefficients for arbitrary random

variables is not trivial

e This is a hard problem in general
e Random Variable can be specified in a variety of
ways, but often incomplete
o Probability Density Function (PDF)
o Samples
o Expert opinion (e.g. “somewhere between 2 and 4”)
e Particular case of a random variable specified by a
PDF is generally tractable
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PCES

The PC basis functions are orthogonal with respect to

the probability measure of the associated RVs

(ViV))

[ [vierwi©@geg) - o i

- ﬁ< Do §k)¢a/ &) > = 0; (W)

=1

=

where,
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PCES

Orthogonality enables a Galerkin projection to
determine the PC coefficients

U~ Z UV = (Viu) = Z U (WiVy) = u; <‘|’?>

= U= v
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PCES
Generalized Polynomial Chaos

[[ PC Type | Domain [[ Density w(¢) | Polynomial | Free parameters ]|
2
Gauss-Hermite (—o00, +00) % e Hermite none
Legendre-Uniform | [—1,1] % Legendre none
Gamma-Laguerre | [0, +o0) ﬁ?ae;f) Laguerre a>—1
i (1+6)>(1-¢)° i
Beta-Jacobi [-1,1] 3t P BlatT 61T) Jacobi a>-1,8> -1
— 5. /02
Inner product: (i) = f Vi€ yw(€)dg = & (v?)

e Wiener-Askey scheme provides a hierarchy of possible
continuous PC bases [Xiu and Karniadakis, 2002]
¢ Legendre-Uniform is special case of Beta-Jacobi
e Input parameter domain often dictates the most
convenient choice of PC
e Polynomials can also be tailored to be orthogonal w.r.t.
chosen, arbitrary density
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PCES

How do | know my PCE is converged?

e Approximation error in PCE is topic of a lot of
research

e Rules of thumb:

e Try to use a PC basis in terms of a random variable
with a distribution similar to the uncertainties you
expect to see

» Higher order PC coefficients should decay

¢ Increase order until results no longer change

¢ Not always fail-proof ...
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Propagation

Propagation of Uncertain Inputs Represented with

PCEs

Galerkin Projection Collocation

Ug = <<U\|\I|;k>>, k=0,...,P Match PCE to random

k variable at chosen sample
Residual orthogonal to points: interpolation or
space covered by basis regression
functions
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Propagation

Galerkin projection methods are either intrusive or

non-intrusive

e Use same projection but in different ways

v
Uy = <uwz">, k=0,... P
(VE)
e Intrusive methods apply Galerkin projection to governing

equations
¢ Results in set of equations for the PC coefficients
¢ Requires redesign of computer code
e PCEs for all uncertain variables in system
e Non-intrusive approaches apply Galerkin projection to
outputs of interest
e Sampling to evaluate projection operator
e Can use existing code as black box
¢ Only computes PCEs for quantities of interest
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Propagation

Collocation approaches are non-intrusive and

minimize errors at sample points

P
D ukVk(&) = u(&)

k=0
i:17...,NC

¢ Use functional representation point of view
e Can use interpolation, e.g. Lagrange interpolants

e Or use regression approaches: P + 1 degrees of
freedom to fit N, points

e Can position points where most accuracy desired
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Propagation

Intrusive Galerkin projection reformulates original

equations

e Assume v = f(u; a, \), with
e adeterministic parameter(s)
e ) uncertain parameter(s)
e u, v variables of interest (deterministic or uncertain)

e Represent uncertain variables with PCEs

p P
\ = Z/\k\uk(g), V= Z ik Wk (€)
k=0 k=0

e Apply Galerkin projection to get PC coefficients of v
Ve — (vWy) _ (f(u; a, \ )W)

(wg) Vi)

e Results in larger, but deterministic set of equations

k=0,... P
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Propagation

Projection of product: v =~ A

e Assume v = v )\, with

7= ko WV A= Yio MWk, and v = S0 vicWi
e Galerkin projection

Vi — (VWi) <(7)\)‘Uk>’ k=0.. . P

Vo (YR

(Y \Wk) =
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Propagation

Projection of product: v =~ A

P P
G RIS iSRRI

i=0 j=0 i=0 j=0
AL

" OK= T

e The Cj tensor can be computed up front for any
given PC order and dimension and stored for use
whenever two RVs are multiplied

e This tensor is sparse, i.e. many of its elements are
zero
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Propagation

Non-intrusive Galerkin Projection

<<“u‘j">> _ <\Ji> [uviemeds, k=o....P

Evaluate projection integrals numerically
¢ Pick samples of uncertain parameters, e.g.
b(€) = X betu(€) by sampling ¢
e Run deterministic forward model for each of the
sampled input parameter values b’ = b(¢')
e Integration using random sampling or quadrature
methods
Reconstruct uncertain model output

Uk =

u(x, t,0) Zukxtwk 0))
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Propagation

Random Sampling Approaches for Galerkin Projection

e Evaluate integral through sampling

ENW(E)

||Mz

/U\Uk(f)w

e Samples are drawn according to the distribution of £
¢ Monte-Carlo (MC)
e Latin-Hypercube-Sampling (LHS)
e Pros:
o Can be easily made fault tolerant
e Sometimes random samples is all we have
e Cons: slow convergence, but less dependent on
number of stochastic dimensions
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Quadrature Approaches for Galerkin Projection

e Use numerical quadrature rules to evaluate integrals

[ wwemieroe - > qule)ui(e)

The N, ¢ are quadrature points, with corresponding
weights g’
Choice of quadrature points important for accuracy
o Also referred to as deterministic sampling approach
Pros:
« Can use existing codes as black box to evaluate u(¢')
e Embarrassingly parallel
Cons: Tensor product rule for d dimensions requires
Ng samples
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Propagation

Gauss quadrature rules are very efficient

/ NAGIIGESS SN

e In one dimension, N, quadrature points can integrate
polynomial of order 2N, — 1 exactly

e Gauss-Hermite and Gauss-Legendre quadrature
tailored to specific choices of the weight function w(¢)
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Further Reading

An (incomplete) list of references about the material
covered
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Sensitivity

Sensitivity analysis gives insight into key sources of

uncertainty

_ Inference PO
Experiments PO PO A Pred
PO DPOD) | redictive
P(AID, 1) ] P(D) Simulation
du d
— = u; A
dt (u:A) Forward C

Propagation p(,
Theory 2 0p%) + v - 09¥i8) = V- (05) + 05 + 3, pag )
>y

¢ Obtaining global sensitivity analysis from PCEs

¢ |dentify dominant sources of uncertainty
e Attribution
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Sensitivity

PC Postprocessing: global sensitivity information is

readily obtained from PCE

9(&, ... &) = Z ck V(€

¢ Global sensitivity analysis = Varlance
decomposition
e Total variance

Varlg(&)] = 3 &2l [Wil P

k>0
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Sensitivity

PC Postprocessing: Main Effect and Joint Sensitivity

Indices
e Main effect sensitivity indices

 Var[E(g(€6)] _ ke, GlIVKIP
T Varfg(€)] T EllVilP

o I; is the set of bases with only &; involved
e S;is the uncertainty contribution that is due to i-th
parameter only
¢ Joint sensitivity indices

_ VarlB(g(l6.§)) o o _ Dker CGilIVKIP
’ Var[g(€)] B SN IAE

e I is the set of bases with only &; and ¢; involved
e Sj is the uncertainty contribution that is due to (/, /)
parameter pair
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Sensitivity

PC Postprocessing: Total Effect Sensitivity Indices

o Total effect sensitivity indices

 Var[E(g(€l6_)]  Lkery Gkl [?
Var[g(€)] Doy RV 2

T, =

e The notation £_; indicates terms that do not have &; in
them

o 17 is the set of bases with &; involved, including all its
interactions

e The sum of all T; is usually > 1
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Sensitivity

Sensitivity indices are directly computable from PC

P
9(&) =) ckWk(8)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(&1,62,83) = o + c1p1(&1) + c1(&2) + cbi(€s) +
+ Cap2(&1) + Csv1(&1)Y1(€2) + Cev1(&1)vr(83) + crpa(€2) + cgvi(€2)vr(83) + coba(€3)

Variance contributions

Var(g) =0+ ¢ + Wi + E@wh +

+ EWE) + BWHWE) + BWHWE) + EWh) + W L) + us)

Debusschere — SNL ua



Sensitivity

Sensitivity indices are directly computable from PC

b
9(&) = ckWk(8)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(61,82,83) = co + 11(&1) + c1(&2) + G3v1(&3) +
+Caha(€1) |+ csv1(&1)Y1(&2) + Ce1(€1)¥1(€3) + Crba(€2) + Cathi(€2)¥1(€3) + Covba(€a)

Variance contributions
Var(g) = 0+ [ @) + S5 + c5(uf) +

HegWs) + EAWHW?) + RWHWE) + ABWl) + WY + ()

Main effect sensitivities (& & &3
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Sensitivity

Sensitivity indices are directly computable from PC

P
£ => ckVi(€)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(61,82,83) = co + c11(&1) + | @i(&2) + c3v1(&3) +
+ caha(€1) + osv1(&1)v1(&2) + Cev1(€1)v1(€3) +  Crba(Ea) | + Coth1(€2)¥1(€3) + Cova(€3)

Variance contributions

Var(g) =0+ c§(¢f) + C%"/H + 0§<w12> +

A8y + W) (W) + W) (W?) + e(a) + ca(wi)(yi) + cB(y3)

Main effect sensitivities & & &3
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Sensitivity

Sensitivity indices are directly computable from PC

P
£ => ckVi(€)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(61,82,83) = co + c11(&1) + c1(&2) + | G31(&3) | +
+ caha(€1) + osv1(&1)v1(&2) + Ce1(§1)¥1(€3) + Crba(€e) + Catpi(€2)¥1(€3) + | Cotba(€a)

Variance contributions

Var(g) =0+ cE(yf) + cE(Wf) + ca(ws)

23 + B WE) + RWAH (WD + Bl + cad) (W) + | calus)

Main effect sensitivities & & &
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Sensitivity

Sensitivity indices are directly computable from PC

b
9(&) = ckWk(8)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(61,82,83) = co + 11(&1) + c1(&2) + G3v1(&3) +
+ Catha(€1) | + [ e51(&1)¥1(&2) + [Ce1(61)P1(83) + Crba(Ee) + Cotp1(€2)¥1(€3) + Covba(€a)

Variance contributions
Var(g) = 0+ [ @) + S5 + c5(uf) +

e Ws) + @) + @) + 3yd) + W)y + ci(vd)

Total sensitivities & & &
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Sensitivity

Sensitivity indices are directly computable from PC

P
£ => ckVi(€)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(61,82,83) = co + c11(&1) + | @i(&2) + c3v1(&3) +
+ carha(&1) +[es1(&1)¥1(&2) + Cov1(€1)v1(83) +  Crba(Ea)| + [ Cathi(€2)¥1(€3) + Cova(€3)

Variance contributions

Var(g) =0+ c§(¢f) + 651/)1 + 0§<w12> +

ca(vd) + e + B (wh) + W) + @) + c(v5)

Total sensitivities & & &
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Sensitivity

Sensitivity indices are directly computable from PC

P
£ => ckVi(€)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(61,82,83) = co + c11(&1) + c1(&2) + | G31(&3) | +
+ caha(€1) + os1(&1)v1(&2) +[Ce®1(61)P1(83) + crba(E2) + | Cathi(€2)¥1(€3) + | Cotba(€3)

Variance contributions

Var(g) =0+ cE(yf) + cE(Wf) + ca(ws)

c(wB) + cBWE) (WE) + GEENT) + c5(v3) + | egNaT) + & (ws)

Total sensitivities & & (&
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Sensitivity

Sensitivity indices are directly computable from PC

P
9(&) = ckWk(9)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(61,82,&3) = co + c1¥1(&1) + c1(&2) + av1(&3) +
+ caba(&r) +[es¥i(&1)e1(E2) + cev1(E1)v1(€3) + crba(be) + cahr(€2)¥1(€3) + Cova(€s)

Variance contributions
Var(g) =0+ cE(yf) + cE@Wh) + AW +

+cGWE) + SWHWE) + Wl + Gl + GWhHwd) + dws)

Joint sensitivities [(&1,&) (&1,&) (&2, &)
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Sensitivity

Sensitivity indices are directly computable from PC

P
9(&) = ckWk(9)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(61,82,&3) = co + c1¥1(&1) + c1(&2) + av1(&3) +
+ caha(&1) + osp1(&1)v1(&2) +[CP1(61)P1(83) + criba(Ee) + Cotpr(€2)¥1(€3) + Covpa(€3)

Variance contributions
Var(g) =0+ cE(yf) + cE@Wh) + AW +

+ EWE) + BWHWE) + @) + AWs) + W)Y + 5w

Joint sensitivities (&1, &) (&,&) (&2, &)
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Sensitivity

Sensitivity indices are directly computable from PC

P
9(&) = ckWk(9)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(61,82,&3) = co + c1¥1(&1) + c1(&2) + av1(&3) +
+ Cavp2(&1) + Cs1(&1)Y1(62) + Cev1(&1)1(€3) + crpa(E2) +| Capi(€2)i(€3) + Cotba(€a)

Variance contributions
Var(g) =0+ cE(yf) + cE@Wh) + AW +

+ BB + BWHWE + EWhHWE) + SWE) + @) + cy3)

Joint sensitivities (&1,&)  (&1,&) (€2, &)
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PC Postprocessing: Sampling-Based Approaches

9(&,. -, & ZCk\Uk

¢ In some cases, need to resort to Monte-Carlo
estimation, e.g.
e Piecewise-PC with irregular
subdomains
e Output transformations, e.g. build PC
for log g(£), but inquire sensitivity with
respect to g(&)
e A brute-force sampling of Var[E(g(&|&)] is
extremely inefficient.
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Sensitivity

PC Postprocessing: Sampling-Based Approaches

o Tricks are available, given a single set of
sampled input [satteli, 2002]. E.g., use

Elg(€)*] = E[g(&1€)g(€'1€)] = Z (€")g

where £ is ¢ with i-th element replaced by &;.
e Similar formulae available for joint sensitivity
indices.

e Con: as all Monte-Carlo algorithms, converges
slowly.
e Pro: sampling is cheap.
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Sensitivity

Heat Transfer through a Window

(Ty — Ty)
h(T,— Ty) = ky
Wall ( 1) d,
Glass kw% = ho(Ta—To)
T
' T, 6 Uncertain, Gaussian
parameters
T, = 293K.,o =0.5%
T, T, = 273K,0 =0.5%
dW = 001m70' = 1%
T ke = 1W/mK, o =5%
h = 2W/m’K,o = 15%
h, = 6W/mK,o = 15%
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Sensitivity

Outputs are most sensitive to ambient temperatures
and convective heat transfer coefficients

Heat Flux T, I,

l-T‘ ==, mmg 1y B I:Ih,)l

e Main effect sensitivities
e Sum to 1 only if coupling terms do not matter
¢ k, has minimal contribution due to its low uncertainty
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Further Reading

An (incomplete) list of references about the material
covered
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Arbitrary RVs

Obtaining PC coefficients for arbitrary random

variables is not trivial

e Characterizing PCEs for uncertain inputs is a really
difficult problem
e Inputs specified in a variety of ways, and often
incomplete
o Probability density function
e Samples, e.g. from inverse problem solution
o Expert opinion (e.g. “about 3.5”)

e Particular case of a random variable specified by a
PDF is generally tractable
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Arbitrary RVs

Orthogonality enables a Galerkin projection to
determine the PC coefficients

U~ Z UV = (Viu) = Z U (WiVy) = u; <‘|’?>

= U= v
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Arbitrary RVs

Galerkin projection requires functional relationship

between random variable and germ of PCE

0 2 4 6 8
, U
u= UV (€) = up =

kz_; k¥ k <\U2>
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Arbitrary RVs

Cumulative Distribution Function (CDF) maps arbitrary

random variable to a uniform random variable

o Consider u with PDF p(u) M oa

e CDF of uis given by

Fw)= [ pls)ds :

e F(u) maps u to 7, uniform p(u)s
on [0,1] 2
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Arbitrary RVs

Inverse CDF mapping enables Galerkin Projection

0.8 08
06 08
* = F(U) n 0.4 " 04
o n=(S) 02
maps uniform 007 P e R T R
n to normal u ¢
RV ¢ :
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Arbitrary RVs

Constructing an nD PCE for a RV with a Given PDF

e Given RV z € R with PDF: g(z), define:

P I
z= Zziwi(fhfb .5 &n); Pt+i= (nnJ!rpl!)).

i=0

e No general procedure
e Construct PCE as model choice to represent
what is known about RV
e Can choose {n, p} and the mode strengths by
ensuring
accurate capture of
» the PDF g(2)
» select moments of z
e some observable of interest ¢(z)
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Arbitrary RVs

Multivariate Normal Approximation (MVN)

e Many distributions are unimodal and somewhat
shaped like Gaussians

e MultiVariate Normal approximations capture mean
and correlation structure of the random variables
e Easy to extract from a set of samples

¢ In 1D: just compute mean and standard deviation:
U= up+ g
e Multi-D: Cholesky factorization of covariance

# Compute mean parameter values

par_mean = numpy.mean (samples,axis=0)
C = LLT # Compute the covariance

par_cov = numpy.cov (samples, rowvar=0)
u = L€ # Compute the Cholesky Decomposition

chol_lower = numpy.linalg.cholesky (par_cov)
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Arbitrary RVs

MVN Approximation of Distribution from Samples

Comparison of Posterior (blue) with MVN (red)

5400
0.600 5380]-
0525

5360
0.450

5340
0375
0,300 8 53200

5300
0.225
0.150 5280
0.075 5260
0.000 s240}

131 1.32 133 134 135 136 137 138 139

S1

S, = 1.351+0.01367¢
CS = 5310 — 26.25¢; + 20.26¢
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Arbitrary RVs

Rosenblatt Transformation for Multi-D RVs

e Assume samples of multi-D RVs are (e.g. from
MCMC sampling of posterior parameter distribution)
¢ Rosenblatt transformation maps any (not necessarily

independent) set of random variables (\+,..., A\q) t0
uniform i.i.d’s {n;}9, (Rosenblatt, 1952).
m = Fi(\)

2 = F2|1()\2|>\1)

Nd = Faag-1,..1(AalAa=1,. .., A1)
¢ Rosenblatt transformation is a multi-D generalization
of 1D CDF mapping.

e Conditional CDFs are harder to evaluate in high
dimensions
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Arbitrary RVs

Rosenblatt transformation of a given sample set

requires KDE

® Given samples {A } ¢ of the random variable A = (A1, ..., \g)
® Kernel Density Estimation (KDE) is needed to compute conditional CDFs
Mk = Frk—1, 1Okl Xk—15 s N) =
Ak / / AP 1 Ak a oo Ap)
,,,,, k» Nk—1>s [Ray|
= Prik—1,... 1 (kI k=155 M)A :j aXy
./ ! oo Prk—1,... 1 (Xk—15- 5 Aq)
Zexp g =22 =2 ()2
2h2 N
~ P k
’ Zex Sl 7>‘5n))2+'”+()‘k—1 ,Aiﬂl”z
P 2h2
_y(my2 () 2 / (n)\2
K A=A+ =2 ) 1 Q=2
ZeXp <7 2h2 X s P T 2m2
= =t dx,
= 5 "

g =AM **&’21)2 )

1
o DL <— o

N _admya2, _\(m 32 ()
(A =A7 )+ = 2 L y) A=A

> 1exp <— 2 x & K

n=

(>\1—)\g”))2+-»-+(kk,1—AE(’Q1)2> ’

N
Do | - o7
n=1
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Arbitrary RVs

Rosenblatt transformation enables Galerkin projection

20

Parameter b

0.6 0.8 1

1.2 1.4 1.6
Parameter a

Parameter 1,

e
%

o
=N

o
=

S
[

ot
i

ol

0.2

0. .6 0.8
Parameter 1,

(a,b) = R~1(&, &) ensures a well-defined quadrature

integration

a

P
= D aW(9)
k=0

P
= ) bWk(9)
k=0

ay / Ry (€) V() w(€)de

by o / Ry (€) Wi (6)w(€)de

Debusschere — SNL

uQ



Further Reading

An (incomplete) list of references about the material
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Surrogates
Surrogate Models

e Approaches:
¢ Polynomial Chaos Expansions
e Gaussian Process Models
e Low-rank Approximations
e Challenges:
¢ High-dimensionality of input space
o Computational cost of forward model
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Mitigation Approaches

¢ High-Dimensionality:
¢ Dimensionality reduction (sensitivity analysis)
¢ Adaptive Sparse Quadrature approaches
e Compressed Sensing
e Low-rank approximations
e Computational Cost:
o Multifidelity - Multilevel methods (see DAKOTA team)
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BCS

Bayesian Compressed Sensing

e N training data points (x,, u,) and K basis terms W (-)
o Projection matrix PV*¥ with Py = Wy(x,)

e Find regression weights ¢ = (¢cy, . .., Ck—1) So that

Un =~ > CkWik(Xn)

u~Pc or

e The number of polynomial basis terms grows fast; a p-th
order, d-dimensional basis has a total of
K =(p+d)!/(p'd!) terms.

e For limited data and large basis set (N < K) thisis a

sparse signal recovery problem = need some
regularization/constraints.

e Least-squares argming {||u — Pc||2}
e The ‘sparsest’ argming {||u — Pcl|2 + a||c||o}
e Compressive sensing argming {||u — Pc||> + af|c]||1}
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BCS

Bayesian Compressed Sensing

e N training data points (x,, u,) and K basis terms W (-)
o Projection matrix PN with Py = Wi (x,)

o Find regression weights ¢ = (¢, . .., Ck_1) so that

u~Pc or

e The number of polynomial basis terms grows fast; a p-th
order, d-dimensional basis has a total of
K= (p+d)!/(p'd!) terms.

e For limited data and large basis set (N < K) this is a
sparse signal recovery problem = need some
regularization/constraints.

e Least-squares argming {||u — Pc||2}
e The ‘sparsest’ argming {||u — Pel|> + a||e]|o}

e Compressive sensing argming {||u — Pc||> + a||c||1}
Bayesian Likelihood  Prior
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e

BCS Lo

BCS removes unnecessary basis

f(x,y) = cos(x+4y) f(x,y) = cos(x?+4y)

Order (dim 2) Order (dim 2)
o 1.2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 910

Order (dim 1)
Order (dim 1)

The square (i, j) represents the (log) spectral coefficient
for the basis term v;(x)y;(y).
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BCS

lterative Bayesian Compressive Sensing (iBCS)

o [terative BCS: iteratively increase the order for the relevant
basis terms while maintaining the dimensionality reduction
[Sargsyan et al. 2014], [Jakeman et al. 2015].

e Combine basis growth and reweighting!

Initial Basis

Model data

e

(&

Y

Weighted
BCS

~

|

Sparse Basis

]_

—>[ Final Basis ]

Iterations

|

Basis
Growth
Reweighting
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Low-Rank

Low-Rank Approximations

e Univariate function representation: p + 1 coefficients

&)= utk(€)
k=0

« Multivariate function representation: P + 1 = (2!

nip!
517---7 ZUKH@D fl

e Low-rank approximation: r « (py + pz + ...+ pn)

u(&s, . .. fn)—Zwk (&) .. Wi (&)
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Minimization Problem for Coefficients

Minimization problem:

min (&) = U + AR(E(E))

where M is a suitable tensor subset (Canonical,
Tensor Train) and R is a regularization function

Selection of optimal rank r and regularization
coefficient A using cross validation

Pros: Linear increase in parameters with dimension

Cons: Non-linear optimization problem. Optimal
approximation u(¢) is often not known
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Low-Rank

Low rank approximation of Genz Gaussian

e u(§) =exp (— PN (I w)2) ,c=01,w=05
e M: Canonical rank-r, R : (4

—8—d=10

—e—d=20

Relative Approx. Error
3

L
102 0°
Sample size
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Further Reading

An (incomplete) list of references about the material
covered
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