
AUTOMATIC DATA PROCESSING AND DATA DISPLAY SYSTEM FOR THE
HERMES III ACCELERATOR*

Sean K Coffey, Adam Circle, Benjamin Ulmen, Chris Grabowski, Nathan Joseph,
Barbara Lewis and Victor-Harper-Slaboszewicz

Sandia National Laboratories
PO Box 5800 MS-1106

Albuquerque, NM 87185-1106

*Work sponsored by Sandia National Laboratories, a multi mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc.,
for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
 email: skcoffe@sandia.gov

Abstract

This paper describes the software changes made to
the data processing and display system for HERMES III
accelerator at the Simulation Technology Laboratory
(STL) at Sandia National Laboratories, New Mexico. The
HERMES III accelerator is a gamma ray simulator
producing 100kRad[Si] dose per shot with a full width
half max pulse duration of ~25 nanoseconds averaging six
shots per day. For each accelerator test approximately
400 probe signals are recorded over approximately 65
digitizers. The original data processing system provided
the operator a report summarizing the start of probe signal
timings for groups of probes located within the power
flow conductors. This timing information is indicative of
power flow symmetry allowing the operator to make
necessary adjustments prior to the next test. The report
also provided data overlays concerning laser trigger light
output, x-ray diode currents and x-ray source output.
Power flow in the HERMES III accelerator is comprised
of many circuit paths and detailed current and voltage
information within these paths could provide a more
thorough understanding of accelerator operation and
performance, however this information was either not
quickly available to the operators or the display of the
data was not optimum. We expanded our data processing
abilities to determine the current and voltage amplitudes
throughout the power flow conductors and improved the
data display abilities so data plots can be presented in a
more organized fashion.

We detail our efforts creating a software program
capable of processing the ~ 400 probe signals together
with an organized method for displaying the dozens of
current and voltage probes. This process is implemented
immediately after all digitizer data has been collected so
the operator is provided timing and power flow
information shortly after each accelerator shot.

I. INTRODUCTION

This paper describes a new software program for
processing and displaying the output shot data from a
HERMES III accelerator test. The HERMES III
accelerator is a gamma ray simulator at Sandia National
Laboratories, New Mexico. HERMES III performs an
average of 6 shots per day and records from 370 data
channels during each shot; the large quantity of data
produced each day necessitates an automated method for
analyzing signals quickly and accurately. Our new data
processing and display (DPAD) program will combine the
user-friendly features of LabVIEW with the data analysis
and visualization tools of the Python language. The data
processing and display routines originate from a text
based input configuration file (CF) allowing users to
uniquely process any data channel and customize its
displayed format. The Python data processing routines
will be made available for inspection, allowing users to
examine all post processing details and ensure maximum
transparency of processing algorithms employed.

This paper is divided into four sections. The second
section presents the DPAD software program
requirements followed by the section detailing the input
configuration file format and Python program functions.
The fourth section presents an example configuration file
and examines the resultant software program operations.
We close this paper with the summary, future efforts and
acknowledgements.

II. PROGRAM REQUIREMENTS

DPAD program objectives are:

 Easy to use.
 Transparent data processing code.
 Scalable.

SAND2017-8169C

 Compliable – distributable – low cost.
 Operated manually as a data viewer or automated

for batch processing and display.
 Batch code is text based and customizable.
 Allow users to create and implement code.
 Create ASCII type data files with a configurable

output structure.
 For each ASCII data file create a text file to

include probe header and processing data.
 Create Plot overlay image files with configurable

start and end times.
 Create shot report documents.
 Create file maker pro data files.
 Create setup document files detailing:

1) Scope setups for all channels
2) Processing information for all channels
3) Diagnostic information for all channels

III. INPUT CONFIGURATION FILE

The data processing and display information for all
data channels originates from a single Windows text
based configuration file. This file format structure is
associated with filenames containing the “.ini” extension.
This file is composed of unique section names containing
keywords and their keyword values. For section names
exactly matching specific DAQ data channel names we
list the keywords, corresponding to the Python programs,
we want to execute.

The Python programs perform multiple type of
operations to include mathematical signal processing,
create ASCII type spreadsheet data files (original data
format is binary), create waveform plot overlays & save
as image files and create document files.

This configuration file format allows users to easily
view, edit and create files to suit their own requirements
and its sectional format inherently separates the data
channels making it easy to understand. Presently, the last
section within our configuration file is reserved for
programs that analyze and or process groups of data
channels but the order of sections can be changed as
needed. Table I presents configuration file keywords
presently linked to Python programs.

Table 1: CF Keywords linked to Python Programs

Configuration
keyword

Python
program

Python program
information

*offset Py_offset Offset correct
baseline

*calib Py_calib Multiply Y-values
by calib-#

*delay Py_delay Add delay-# to X-
values

*integ Py_integ Integrate data
(Tstart, Tend)

*report-H3 Py_report-H3 HERMES III
report program

*asci-folder
*asci-file

Py_ascii Create ASCII data
set (requires folder
name, file name &
data set)

*mplot Py_mplot Create an X-Y
waveform plot
overlay of 1 or
more data sets

IV. EXAMPLE CONFIG FILE

We now present a 2-channel example configuration
file (CF) and “apply” this CF to a typical HERMES III
accelerator shot data acquisition (DAQ) output file. In this
example, we assume that:

1. The HERMES III DAQ data file contains two
data channels named “MARX-01” and “MARX-
02”.

2. The configuration file keywords are linked to
Python programs as shown in Table 1.

Figure 2: Screen shot of “MARX_config.ini”

The configuration file contents shown in figure 2,
contains 3 separate sections. The first two sections
pertain to specific data channels followed by the last
containing a keyword & keyword value we recognize as
linked to a Python report generation program.

The data processing and display program flow that
follows when this CF file is “applied” to the DAS data file
is as follows:

 The first step extracts all configuration file
channel section names.

 Next, check if these names exactly match the
channel names within the DAS data file.

 The first section name “MARX-01” is a match.
 The second name “MARXX-02” is misspelled

and is not a match.
 For “MARX-01” section, extract keywords and

keyword values:
1) “processing” keyword value = “*offset,

*calib, *delay” defines 3 Python data
processing programs to be executed.

2) “asci-foldername” keyword value =
“MARX_Signals” defines the ASCII sub-
folder name.

3) “asci-filename” keyword value =
“MARX_01_data” defines the ASCII file
name.

4) Create the ASCII data file.
5) “mplot-name” keyword value =

“MARX_waveforms” defines the waveform
plot image filename.

6) “mplot-Tstart” keyword value = 100.0e-9
defines the start time of the mplot waveform
graph.

7) “mplot-Tend” keyword value = 1.100e-6
defines the end time of the mplot waveform
graph.

8) Create mplot plot overlay, save the
waveform as image file in a sub-folder
labeled “Mplot-images”. Note: This type
waveform plot overlay can display 1 or more
waveforms on a single X-Y type waveform
graph.

 Finally, the last section of our example contains
the keyword “*report-H3”. This keyword is
linked to “Py_report-H3” so the DPAD program
starts the HERMES III report generation
program.

Note: In the example, if the configuration section name
“MARXX-02” had been correctly spelled then that DAS
channel would have been processed, its ASCII data file
created, its waveform data then plotted together with the
MARX-01 data and this 2-signal plot overlay saved as an
image file.

For processing all data channels in a typical HERMES
III DAQ data file, the default configuration file will
contain ~ 360 channel sections plus the last section
containing the appropriate report generation program to
execute. The DPAD will create the 360 ASCII data files
in ~ 15 sub-folders (i.e. MTG, MARX, IS, PFL, TL,
Cavity…) providing an organized layout for the data.
After post-processing, the DPAD program then plots the
data channels per the configuration file instructions. For
typical HERMES III accelerator tests the DPAD program
will create ~65 separate JPG type image files. Finally, the
DPAD will execute the HERMES III shot report Python
program creating a MS-Word type document containing
detailed timing information and timing scatter plots of the
accelerator power as it flows within the accelerator
sections.

V. SUMMARY

This data analysis program is a work in progress and
its present abilities are limited. However, we expect the
system to be operational by late August 2017. The
processing and display of the 360 probes signals will
assist the DAS and machine operators to quickly access
machine performance and guide corrective actions for the
next HERMES III accelerator test. The ability to organize
the 360 ASCII data files into sub-folders will help keep
archived data more organized. The use of Python as the
base code platform allows us access to many processing
and display tools that have been well tested by others. A
copy of the Python functions will be archived in a shared
location providing maximum transparency of the
processing details and methods.

Our method for introducing processing instructions at
the data channel name level provides users with useful
and flexible data processing and display tools using
intuitive keyword commands. This method is expandable
and as time permits more advanced Python programs will
be developed and assigned new keyword names. Users
may then run

the new Python programs simply by adding these
new keywords within their configuration file.

VI. FUTURE EFFORTS

The present Python functions built into our DPAD
system are limited but we expect many more to be
developed soon. These additional functionalities include:

 Creating “flags” to the user / operator if key
accelerator performance indicators have not
been achieved.

 Calculate and apply mathematical cable
compensation programs to correct for long
diagnostic cable path length effects.

 Examining accelerator current and voltage in
greater detail.

 Allow for multiple accelerator shot
comparisons.

 Present a demonstration of the software at
the 2018 IEEE International Power
Modulator and High Voltage Conference in
Jackson, Wyoming.

VII. ACKNOWLEDGEMENTS

Dr. Jim Degnan (AFRL) for the initial guidance for
processing data and automating the procedures. Dr. Glen
Wurden and the late Dr. Tom Intrator (LANL) for
introducing the “MDS+” data file format and its “jScope”
visualization concept, upon which the “mplot” display
tool is loosely based. Finally, Dr. Ed Ruden (AFRL) for
our talks concerning the importance of transparent data
processing

