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Problem Set-Up

OVERVIEW, MODELING,
AND PATIENT-SPECIFIC
PROBLEMS
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Heart Disease Death Rates, 2008-2010
Adults, Ages 35+ by County

Cardiovascular Disease

« Cardiovascular disease is the
leading case of death
worldwide (~17 million annual
deaths).

 About 610,000 people die of
heart disease in the United States

every year (1 in every 4
deaths).’

* Heart disease is the leading
cause of death for both men and
women in the United States.

e Heart disease costs the United
States about $500 billion each
year.’

Direct Health
. Expenditures (Billions)

o 20 40 60 80 100 120
Billions of Dollars

Centers for Disease Control and Prevention AHA 2014 Statistics Report, Circulation Stanford University



Patient-Specific Modeling via @ SimVascular

7. Simulation

1. MRI 2. Pathlines 3. Segmentation 4. Solid

[
.
~
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« Patient Specific data (CT scans, 4D-MRI, Angio data)
* Prescribe input flow or pressure waveform

* Prescribe boundary conditions (R, RCR, coupled LPN)
« Simulation (FSI and Rigid)
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Uncertainty
Quantification Overview

MOTIVATION AND METHODS
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Clinical Motivation

Goal: Hemodynamic models for
diagnosis and treatment of
cardiovascular disease and surgical
planning in clinical setting.

Issue: inability to account for
uncertainties hinder clinical adoptions
of computational methods

Solution: transition to a stochastic
framework

* Modeling parameters defined as
probability distributions

« Employ varying-fidelity models to
maintain reasonable computational
cost

Sampling of models from OSMSC model repository

Stanford University




Sources of Uncertainty

Uncertain Inputs 4 Uncertain Outputs
* Noise in image / Velocity Profile at Inlet « Wall shear stress

data » Oscillatory shear
» Clinical data index
« Boundary » Cardiac work
conditions » Oxygen delivery
* Physiologic * Pressure levels
assumptions * Flow rates

» Material properties * Residence Time

Input parameter
uncertainty

Output Qol
distribution

1,

Lumped Parameter Model

Sankaran and Marsden, “A stochastic collocation method for uncertainty quantification and propagation in ) .
cardiovascular simulations,” J. Biomech. Eng., 2011. Stanford Unlver81ty




Approaches for Uncertainty Quantification

1. Monte Carlo

> Random sample of input values (x € R" ) with sample Mean of f(x) = 5 + x + cos(x)
statistics as the moments for quantity of interest f(x) 109 e Mean .
2. Stratified Monte Carlo (Latin Hypercube) 1 .  © Lt typeresbe
»  Random sample from a stratified sample . L. el
3. Polynomial Chaos Expansion 5 102 T e - .o
»  Exponential convergence (in polynomial degree) 5 108 ° <
» Express the uncertain output as % (o
k :‘% ’
F0) = am) 10%)
i=0 106 [ ‘ . _ ‘
> Moments then given by the coefficients of expansion 10° 10° 102 10° 104
Sample Size
Hf = o, Oof = Yie1 ai?llpi GOl
» Coefficients from Galerkin projections (using numerical Polynomial Chaos
quadrature) method converges much
(f (), pi(x)) = <Zj a;p;(x), p; (1) = aillpI? = a; faster than LHC or MC
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Modeling Work To-Date

0D, 1D, AND 3D MODELING

3D Model 1D Model 0D Model
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3D SimVascular Model

MODELING AND FEM
METHODOLOGY,

AORTA-ILIAC MODEL
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Pipeline for Model Generation

« 3D Formulation: anatomic model construction from medical image
data, solution of the incompressible Navier-Stokes equations

1. MRI 2.Pathlines 3, Segmentation 4, Solid 5.Mesh  6.Boundary Conditions 7. Simulation
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SimVascular 3D formulation pipeline
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SimVascular Flow Solver

* Finite element method SUPG
« Implicit coupling to LPN BCs
« Backflow stabilization

o}
22}

EOASQ
* Fluid structure interaction with £
coupled momentum method
(Figueroa and Taylor)? Foa
« Variable wall material properties: .
thickness, elastic modulus E
. . . . 0.00
« Efficient linear solver with
custom preconditioner
Figueroa, C., et al, A coupled momentum method for modeling blood flow in three-dimensional deformable
arteries, Computer Methods in Applied Mechanics and Engineering, 195 (41), 2006, 5685-5706, Stanford Universi ty

http://dx.doi.org/10.1016/j.cma.2005.11.011.



Pipeline Comparison with Aorta-lliac Model (OSMSC0006)

« Goal: confirm the validity
of using 1D (generated
from pipeline code) as a
surrogate model

* Output: Comparison of
flow and pressure
waveforms from 3D Rigid,
3D FSI, and 1D solvers

Method: Apply identical
input waveforms and
identical R and RCR
boundary conditions.
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Modeling Parameters

Inlet: Prescribed waveform at aorta
Pulsatile and steady flow
Average flow = 5 L/min
Average blood pressure = 90 mmHg
Cardiac cycle = 0.8 s

R and RCR BC at 9 outlets from tuning

to above parameters

Resistances proportional to outlet area

Capacitances = O(10-°) chosen to
match target pressure waveform
amplitude (120/80 mmHg)

Total resistance with R BC the same
as with RCR BC

flow (L/min)
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Inlet flow for Aorta-lliac modeling

- Pulsatile
- Steady
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Aorta-lliac with Pulsatile Flow: 3D TABP
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Pulsatile Flow: Inlet and Outlet Flow plots
RCRBC

18
2Iélg)w at Right Renal outlet in Aorta-lliac model
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Pulsatile Flow: Inlet and Outlet Pressure plots
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Aorto-femoral model (pulsatile flow and R boundary conditions)

Pressure Plots Flow Plots
Flow at Celiac Trunk outlet

Pressure at Right Renal outlet
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1D Model

METHODOLOGY, AORTA-
ILIAC MODEL
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Revisiting Pipeline for Model Generation

« 1D Formulation: generated from vessel centerline paths and
segmentations created for 3D formulation

1. MRI 2.Pathlines 3, Segmentation 4, Solid 5.Mesh  6.Boundary Conditions 7. Simulation
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SimVascular 3D formulation pipeline

Stanford University



Automatic Pipeline Overview
- Why?

- 1D solver as more computationally efficient method for UQ

- Pipeline: uses SimVascular segmentations to generate input file to 1D
solver

- Generates 1D geometry: centerline of the vessel, segments and joints
- 1D solver

- Takes input file [~.in] generated bythe pipeline as input
- Returns vtk or txt files (pressure, flow, resistance, area vs. time step)

MRI Image Pathlines + Solid Centerline
Data Segmentation (3D Solver) (1D Solver) Stanford University



1D Formulation: Newtonian Method

- Start with 3D Navier-Stokes equations (conservation of mass
and momentum) in a cylinder and integrate over a vessel cross
section

- Use constitutive model to relate pressure to wall deformation
(empirically derived material model)

- Assumptions: flow in axial direction, no-slip condition at the wall,
deformable walls, pressure uniform in cross sectional areas.

Stanford University



Hughes and Lubliner’ Formulation with a Linear Constitutive Equation

o4 + 0@ _ 0 Mass Equation
dt 0z
aQ 9 [(4Q? A 0 ik _
3t + £<§7) + 1_066_2 = —0.3271% + 0'046_2(22 Momentum Equation
Eho\[ | A . |
P—Do = (r—) 1. 1 Constitutive Equation
0 0

'T.J.R. Hughes and J. Lubliner, On the One-Dimensional Theory of Blood Flow in the Larger . .
Vessels , Mathematical Biosciences , 18(1-2) (1973), 161-170. Stanford University




0D Lumped Parameter Models

METHODOLOGY, WINDKESSEL
MODEL, AORTA-ILIAC LPN
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Lumped Parameter Models (Networks)

« Use as physiologic boundary
conditions or stand-alone 0D
models

« Circuit Analogy:
Flow «—> Current
Pressure Drop «— Voltage

Resistor: AP = RQ ~VVV

o ap 1
Capamtor.Q—CE T

Pressure
Inductor: AP = Li—? 11

Capillary »\ (% .
Diode: Q = 132 ‘»l_

2

the 3D model

—e—/ \\—e ¢
Coupled to Wall i Viscous %

distensibility dissipation

- - Stanford University




LPN as Boundary Conditions

/ Vclocity Profile at Inlet

\

Upper body Left

block pulmonary
block
Right
pulmonary <
block

> Lower
body block

Heart model _ .
block

é 1 Lumped Parameter Model
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LPN as Standalone Model =
- Simplified representation of the J: GI
aorta model O B T =l
Leo E Glj?‘ faz R - Ls R
* Actual model as all 9 outlets, less B M 1
spatial resolution o 1 s T
* Model parameter values assigned gt
assuming a POiSGUi“e prOfi|e1: Rprz H Rrr Rip ‘n Rip:
— 8_Hrl Righ\;ﬁmml i I s o I o Left Renal

rt

. C= 3lmr3 ) v
B 2ER f{% (}1
_ lp = Lry Ly =
L _ ? Crz QY et C'R& J;_TLS QXY 2 (‘Lh
* Note: lengths and radii in formulas “ied w3 T S o
come from the 3D geometry

TMilisi¢ V, Quarteroni A. Analysis of lumped parameter models for blood flow simulations and their relation
with 1D models. ESAIM: Mathematical Modelling and Numerical Analysis 2004; 38(04):613—632.

Stanford University



Simplified OD LPN

Simplified model: Aorta and
external iliac branches
Physiologic input waveform Q(t)
6 BC parameters (left and right
iliac RCR circuits)

Solve a system of ODES for flows
and pressures along model:

System of ODES:

dQ, = (1/L)*(Pc— P,)

dP¢ = (1/C)*(Qn — Q)

dPgrs = (Pa — Pr1)/(Rr1"Cr1) = (Pr1 — Pro)/(Rr2"Cr1)
dPry = (Pri — Pr2)/(Rro*Cr2) — (Pr2)/(Rr3*Cro)

dPyy = (Pa = PL)/(R4™Cry) = (Puy = PR Cu)
dP, = (PLy = PLo)/(R,"Cro) — (PLa)/(Ri5*Co)

TBCr

O

Stanford University



Uncertainty
Quantification

3-D Finite
ElementModels

0D, 1D, AND 3D MODELING

1-D Wave
Propagation Models

Computational Expense

Lumped
parameter models

Global Local

Stanford University



3D Model

. g\\\g 1D Model
A

Hie

o ijﬂ‘ﬁ.
ﬂ::é‘ "+ 0D Model

Aorta-Femoral Model

9 Uncertain Resistance BC Parameters
(Units [dynes/cm?]):

Celiac Trunk[11137.98, 20 684.83]
Celiac Branch [17453.689, 32413.99]
SMA [8258.12, 15336.52]

Right Renal [17453.76, 32414.13]

Left Renal [14407.74, 26 757 .23]

Right Internal lliac [14 407.04, 26 755.93]
Left Internal lliac [11 137.80, 20 684.49]
Right lliac [4925.42, 9147.22]

Left lliac [4240.97, 7876.08]

© ®NOOR WD =

Steady inlet flow (5 L/min = 83.33 mL/s)

20 Quantity of Interests

(Steady state values)

1-18. Flows and Pressures at:
*Celiac Branch Outlet
*Celiac Trunk Outlet
*SMA Outlet
Left Renal Outlet
*Right Renal Outlet
Left lliac Outlet
*Right lliac Outlet
Left Internal lliac Outlet
*Right Internal lliac Outlet

19-20. Min and Max WSS

Stanford University



Simulation and Cost Distribution of Fidelity Levels

Solver | No. Simulations Cost Effective Cost
Solver | (1 simulation) | (No. 3D Simulations)
3D 100 3D 96 hr 1
1D 2000 1D 11.67 min 2F-3
0D 10000 0D 5 sec 1.45E-5

Table 1: Simulations of each fidelity Table 2: Cost of each varying fidelity solver

Stanford University



Comparison of UQ on each fidelity level individually

MC Statistics for Qol 14 MC Distribution for Qol 14
(Pressure at Left Renal Artey) 14- (Pressure at Left Renal Artey)
105 - | 0D Model
¥ : 12} 11D Model
- ) —_ i 3D Model
— : i i 107
£ o5 = i !
£ i | '
E i ; i
© 90
? 6l
3 :
= 85+ : ' : Al
80| i i i
; : . 2
—_— 1
75+ —_
0D Model 1D Model 3D Model % 75 8 8 9 9 100 105 110

Pressure [mmHg]
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Multi-Level Multi-Fidelity Approach

e Monte Carlo approaches Seven methods compared:
reliably converge to the true ; mon_teF%a';_'f ('\é'g) i
- . Multi-Fidelity: an
ya}[Iue f?r any quantity of models (MFA)
INteres 3. Multi-Fidelity: 3D and 0D
« ISSUE: Large number of models (MFB)
simulations = untenable for 4. Multi-Level: 3D and 1D models
our application (ML'_A‘)
_ o 5. Multi-Level: 3D and 0D models
« Multi-level and multi-fidelity (MLB)
approaches aim to reduce 6. Multi-Level: 3D, 1D, and 0D
variance as obtained when models (MLC)
using the same number of 7. Multi-Level Multi-Fidelity

simulations with Monte Carlo approach (MLMF)

Stanford University



Multi-Level Multi-Fidelity Overview

Stanford University



Multi-Level Multi-Fidelity Overview

Multi-Fidelity
* Control Variate approach utilizing two models
* Relies on correlation between the models

3D

<4 | 1D

3D

<+—p | 0D

Stanford University



Multi-Level Multi-Fidelity Overview -

. HF | 3D
) 1 LC
. 3D | HF
 Multi-Level P
 Low-Fidelity + (High Fidelity — Low Fidelity) 1
* Relies on variance decay of the difference term 1D |LF
- Can use multiple levels (> 2) MLB O
. 1 OD |LF,
LF | OD

Stanford University



Multi-Level Multi-Fidelity Overview

. MLMF
’ HF | 3D
) I Vv
* Multi-Level/Multi-Fidelity LF | 1D | ¢=—p | OD

« Combines the two approaches
* Can use multiple levels (> 2)

Stanford University



Correlation

0.995

0.99

0.985 ¢

0.98

MF: Correlation

Correlation of Qols between fidelity levels
*

»
watuy % x_x} 77

+ 3%

% 3D-0D
+ 3D-1D

=

1| 2 3456789 101112131415161718
Qol

Variance
w

ML: Variance Decay

Variance for Multi-Level Approaches
_><1o'4 Qol 6 (Flow at Right Internal lliac Artey)

==MLA
~4—MLB
==MLC

1D 3D

Model Levels

0D
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Multi-Level/Multi-Fidelity Expected Value and Variance

Method ‘ Expected Value ‘ Estimator Variance
Nsp
A 1 , Var (Q)
MC MC _ (2)
ONp N3p ; @ N3p
A AMC,3D AMC,1D MC,1D ~ T3D,1D

MFA Q%;;A = QN3D3 + azp1p (QN3D1 —-E |:QN1D1 D Var (QANﬂCD) (1 — 7p§D71D>

1+7m3p,1p
A AMC,3D AMC,0D MC,0D A 3D, 0D

MFB Q%;;A :QNSDS + a3p,oD <QN3D0 fE[QNODO D Var (QAN/[SCD) <177p§D70D>

1+7r3pop
3D,1D
MLA QMLA _ GMCAD |\ $3D.1D Var(Qx _np) N Var(Yyo'?)
Nop Nip=Nsp ' = Nsp Nip — N3p N3p
3D,0D
MLB QMLB _ QMC,OD 4 y3D,0D VGT(Q%D?NSD) I VGT(YNw )
Nap Nop=Nap == Nap Nop — Nsp Nsp

1D,0D 3D,1D

MLC QMLC _ QMC,OD L yLD0D  y3DAD Var( 9V[())D7N1D) VGT(YNlDstD) i VGT(YN;;D )

Nsp Nop=Nip = = Nip=Nsp = = Nap Nop — Nip Nip — N3p N3p
. A A . - Var(QXP ) r Var(YEP1P)
MLMF __ ALD 0D 0D 3D,1D Nip—N 1D,0D o N
MLMF | Qn,; = QN,p—Nsp T Q1D,0D (QNlD*N3D - QNOD*ng) +YN3D Nip _1DN3DSD <1 1 ¥ 10D rlD,oD> T;D

Table 3: Expected values and variances of the Monte Carlo, Multi-Fidelity, Multi-Level and Multi-Level /Multi-Fidelity estimators
: 3D,1D _ (3D 1D 3D,0D _ (13D 0D 1D,0D  _ (H1D 0D
with YNSD - ( Nzp — QNsp) YNsD - ( Nap — NSD) 7YN0D—N1D - ( Nop—Nip — QNOD*NU:))
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Cost Comparison — non-optimized allocation

Effective Cost No. 3D No. 1D No. 0D

Method | (3D Simulations) | Simulations | Simulations | Simulations
MC 100 100 - —
MFA 104.4192 100 2000 =
MFB 100.1578 100 - 10000
MLA 104.4192 100 2000 =
MLB 100.1578 100 = 10000
MLC 104.5754 100 2000 9900
MLMF 104.5754 100 2000 9900

Table 4: Cost of each method (Qol: flow at right renal artery)

Stanford University



Accuracy for Quantities of Interest

Accuracy of first 18 Qols with each method

Accuracy (percentage)

10

® owmask

. CT Flow

. CB Flow
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. RR Flow

. LR Flow
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. LIl Flow

. Rl Flow

. LI Flow

. CT Press

. CB Press

. SMA Press
. RR Press

. LR Press

. RIll Press

. LIl Press

. Rl Press

. LI Press

*

g
i

Estimators

R
&

Flow at the
right renal
artery is
above 1%
accuracy
with all
estimators
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Extrapolation — optimized allocation for 1% Accuracy

Effective Cost No. 3D No. 1D No. 0D
Method | (3D Simulations) | Simulations | Simulations | Simulations
MC 9885 9885 - -
MFA 56 21 15681 —
MFB 39 36 = 154 880
MLA 305 212 41990 =
MLB 156 150 = 342 060
MLC 165 156 1324 351 940
MLMF 165 156 1249 362 590

Table 5: Extrapolation for 1% Accuracy (Qol: flow at right renal artery)

Stanford University



Conclusion

* In summary, the work to date has moved towards the implementation
of multi-fidelity uncertainty quantification approach for our
cardiovascular applications.

* Framework to use 3D model geometry to generate 1D and 0D
models

« UQ individually on three fidelity levels for the same aorto-femoral
model

« UQ on three fidelity levels using multi-fidelity approach

« Extrapolation to optimize distribution of model simulations for a
target accuracy of a given Qol

« The initial results of the MLMF exploration are promising for
optimization of these schemes on the aorta-femoral model, as well
as on similar cardiovascular models.

Stanford University



Next Steps

* Modeling:
« Additional Geometries (more complex/diseased)
< Additional Qol (WSS, OSI)

* Uncertain Parameters (material properties, inflow
waveforms, boundary conditions)

* Mesh refinement/coarsening
* Uncertainty Quantification:

* Approaches specific to the regularity, sparsity, and
rank of the problem

* Exploit the underlying model structure and accelerate
convergence

* Preliminary results are promising for successful
acceleration in low-dimensional cases

* Integration with Sandia National Lab’s DAKOTA toolkit

Long-term Goal: Uncertainty quantification will ultimately
enhance the results of our computational modeling so these
results are increasingly clinically relevant.
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