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Problem Set-Up
O V E R V I E W ,  M O D E L I N G ,  
A N D  P A T I E N T - S P E C I F I C  

P R O B L E M S



Cardiovascular Disease
• Cardiovascular disease is the

leading case of death 
worldwide (~17 million annual 
deaths).

• About 610,000 people die of 
heart disease in the United States 
every year (1 in every 4 
deaths).1

• Heart disease is the leading 
cause of death for both men and 
women in the United States.

• Heart disease costs the United 
States about $500 billion each 
year.1

1Centers for Disease Control and Prevention AHA 2014 Statistics Report, Circulation

Direct Health 
Expenditures (Billions)

Heart Disease Death Rates, 2008-2010 
Adults, Ages 35+ by County



Patient-Specific Modeling via

• Patient Specific data (CT scans, 4D-MRI, Angio data)
• Prescribe input flow or pressure waveform
• Prescribe boundary conditions (R, RCR, coupled LPN)
• Simulation (FSI and Rigid)



Uncertainty 
Quantification Overview
M O T I V A T I O N  A N D  M E T H O D S
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Clinical Motivation
• Goal: Hemodynamic models for 

diagnosis and treatment of 
cardiovascular disease and surgical 
planning in clinical setting. 

• Issue: inability to account for 
uncertainties hinder clinical adoptions 
of computational methods

• Solution: transition to a stochastic 
framework 
• Modeling parameters defined as 

probability distributions
• Employ varying-fidelity models to 

maintain reasonable computational 
cost

Sampling of models from OSMSC model repository 



Sources of Uncertainty
Uncertain Inputs
• Noise in image 

data
• Clinical data
• Boundary 

conditions
• Physiologic 

assumptions
• Material properties

Uncertain Outputs
• Wall shear stress
• Oscillatory shear 

index
• Cardiac work
• Oxygen delivery
• Pressure levels
• Flow rates
• Residence Time

Sankaran and Marsden, “A stochastic collocation method for uncertainty quantification and propagation in 
cardiovascular simulations,” J. Biomech. Eng., 2011.

Input parameter 
uncertainty

Output QoI
distribution



Approaches for Uncertainty Quantification
1. Monte Carlo

› Random sample of input values (𝒙 ∈ 	ℝ% ) with sample 
statistics as the moments for quantity of interest f(x)

2. Stratified Monte Carlo (Latin Hypercube)
› Random sample from a stratified sample

3. Polynomial Chaos Expansion
› Exponential convergence (in polynomial degree)
› Express the uncertain output as

𝑓(𝑥) ≅+𝛼-𝑝- 𝑥
/

-01

› Moments then given by the coefficients of expansion
𝜇3 = 𝛼1 ,      𝜎3 = ∑ 𝛼-7 𝑝- 𝑥 8

79
-0:

› Coefficients from Galerkin projections (using numerical 
quadrature)

𝑓 𝑥 , 𝑝- 𝑥 = 	 + 𝛼<𝑝< 𝑥
�

<
, 𝑝- 𝑥 = 	𝛼- 𝑝- 𝑥 7 = 𝛼-

Polynomial Chaos 
method converges much
faster than LHC or MC

Mean of	𝒇 𝒙 = 𝟓 + 𝒙 + 𝐜𝐨𝐬 𝒙
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Modeling Work To-Date
0 D ,  1 D ,  A N D  3 D  M O D E L I N G
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3D SimVascular Model
M O D E L I N G  A N D  F E M  

M E T H O D O L O G Y,  
A O R T A - I L I A C  M O D E L
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Pipeline for Model Generation
• 3D Formulation: anatomic model construction from medical image 

data, solution of the incompressible Navier-Stokes equations

SimVascular 3D formulation pipeline
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SimVascular Flow Solver
• Finite element method SUPG
• Implicit coupling to LPN BCs
• Backflow stabilization
• Fluid structure interaction with 

coupled momentum method 
(Figueroa and Taylor)1

• Variable wall material properties: 
thickness, elastic modulus

• Efficient linear solver with 
custom preconditioner

Figueroa, C., et al, A coupled momentum method for modeling blood flow in three-dimensional deformable 
arteries, Computer Methods in Applied Mechanics and Engineering, 195 (41), 2006, 5685-5706, 
http://dx.doi.org/10.1016/j.cma.2005.11.011.
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• Goal: confirm the validity 
of using 1D (generated 
from pipeline code) as a 
surrogate model

• Output: Comparison of 
flow and pressure 
waveforms from 3D Rigid, 
3D FSI, and 1D solvers

• Method: Apply identical 
input waveforms and 
identical R and RCR 
boundary conditions. 

Pipeline Comparison with Aorta-Iliac Model (OSMSC0006)
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Modeling Parameters

• Inlet: Prescribed waveform at aorta
• Pulsatile and steady flow
• Average flow = 5 L/min
• Average blood pressure = 90 mmHg
• Cardiac cycle = 0.8 s

• R and RCR BC at 9 outlets from tuning 
to above parameters

• Resistances proportional to outlet area
• Capacitances = O(10-5) chosen to 

match target pressure waveform 
amplitude (120/80 mmHg)

• Total resistance with R BC the same 
as with RCR BC



Aorta-Iliac with Pulsatile Flow: 3D TABP

FSI Model: RCR Rigid Model: RCRFSI Model: R Rigid Model: R



17

Pulsatile Flow: Inlet and Outlet Flow plots R BC
RCR BC
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Pulsatile Flow: Inlet and Outlet Pressure plots
R BC

RCR BC



Aorto-femoral model (pulsatile flow and R boundary conditions)
Pressure Plots Flow Plots



1D Model
M E T H O D O L O G Y,  A O R T A -

I L I A C  M O D E L
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Revisiting Pipeline for Model Generation
• 1D Formulation: generated from vessel centerline paths and 

segmentations created for 3D formulation

SimVascular 3D formulation pipeline



Automatic Pipeline Overview
• Why?

• 1D solver as more computationally efficient method for UQ 
• Pipeline: uses SimVascular segmentations to generate input file to 1D 

solver
• Generates 1D geometry: centerline of the vessel, segments and joints

• 1D solver
• Takes input file [~.in] generated bythe pipeline as input
• Returns vtk or txt files (pressure, flow, resistance, area vs. time step)

MRI Image 
Data

Pathlines + 
Segmentation

Solid 
(3D Solver)

Centerline 
(1D Solver)



1D Formulation: Newtonian Method
• Start with 3D Navier-Stokes equations (conservation of mass 

and momentum) in a cylinder and integrate over a vessel cross 
section

• Use constitutive model to relate pressure to wall deformation 
(empirically derived material model) 

• Assumptions: flow in axial direction, no-slip condition at the wall, 
deformable walls, pressure uniform in cross sectional areas.



Hughes and Lubliner1 Formulation with a Linear Constitutive Equation

Mass Equation

Momentum Equation

Constitutive Equation

1T.J.R. Hughes and J. Lubliner, On the One-Dimensional Theory of Blood Flow in the Larger 
Vessels , Mathematical Biosciences , 18(1-2) (1973), 161-170.
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0D Lumped Parameter Models
M E T H O D O L O G Y,  W I N D K E S S E L

M O D E L ,  A O R T A - I L I A C  L P N



Lumped Parameter Models (Networks)
• Use as physiologic boundary 

conditions or stand-alone 0D 
models

• Circuit Analogy:
Flow         Current
Pressure Drop  Voltage

Viscous 
dissipation

Capillary

Pressure

Wall 
distensibility

Coupled to 
the 3D model

Resistor: ΔP = RQ

Capacitor: Q = CUV
UW

Inductor: ΔP = LUX
UW

Diode: Q = X YX
7
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LPN as Boundary Conditions
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LPN as Standalone Model
Aorta Inlet
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• Simplified representation of the 
aorta model
• Actual model as all 9 outlets, less 

spatial resolution 
• Model parameter values assigned 

assuming a Poiseuille profile1:
• 𝑅 = [\]

^_`

• 𝐶 = b]^_c

7de

• 𝐿 = ]g
^_h

• Note: lengths and radii in formulas 
come from the 3D geometry

1Milišić V, Quarteroni A. Analysis of lumped parameter models for blood flow simulations and their relation 
with 1D models. ESAIM: Mathematical Modelling and Numerical Analysis 2004; 38(04):613–632.
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System of ODES:

dQa = (1/L)*(PC – Pa)
dPC = (1/C)*(Qin – Qa)
dPR1 = (Pa – PR1)/(RR1*CR1) – (PR1 – PR2)/(RR2*CR1)
dPR2 = (PR1 – PR2)/(RR2*CR2) – (PR2)/(RR3*CR2)
dPL1 = (Pa – PL1)/(RL1*CL1) – (PL1 – PL2)/(RL2*CL1)
dPL2 = (PL1 – PL2)/(RL2*CL2) – (PL2)/(RL3*CL2)

Simplified 0D LPN
• Simplified model: Aorta and 

external iliac branches
• Physiologic input waveform Q(t)
• 6 BC parameters (left and right 

iliac RCR circuits)
• Solve a system of ODES for flows 

and pressures along model:
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Uncertainty 
Quantification

0 D ,  1 D ,  A N D  3 D  M O D E L I N G
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Aorta-Femoral Model
9 Uncertain Resistance BC Parameters

(Units [dyn•s/cm5]):
1. Celiac Trunk[11137.98, 20 684.83]
2. Celiac Branch [17 453.689, 32 413.99]
3. SMA [8258.12, 15 336.52]
4. Right Renal [17 453.76, 32 414.13]
5. Left Renal [14 407.74, 26 757.23]
6. Right Internal Iliac [14 407.04, 26 755.93]
7. Left Internal Iliac [11 137.80, 20 684.49]
8. Right Iliac [4925.42, 9147.22]
9. Left Iliac [4240.97, 7876.08]

Steady inlet flow (5 L/min = 83.33 mL/s)
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20 Quantity of Interests
(Steady state values)
1-18. Flows and Pressures at:

•Celiac Branch Outlet
•Celiac Trunk Outlet
•SMA Outlet
•Left Renal Outlet
•Right Renal Outlet
•Left Iliac Outlet
•Right Iliac Outlet
•Left Internal Iliac Outlet
•Right Internal Iliac Outlet

19-20. Min and Max WSS
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Cost E↵ective Cost

Solver (1 simulation) (No. 3D Simulations)

3D 96 hr 1

1D 11.67 min 2E-3

0D 5 sec 1.45E-5

Table 2: Cost of each varying fidelity solver

1

Solver No. Simulations

3D 100

1D 2000

0D 10 000

Table 1: Simulations of each fidelity

1

Simulation and Cost Distribution of Fidelity Levels
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Comparison of UQ on each fidelity level individually



34

Multi-Level Multi-Fidelity Approach
• Monte Carlo approaches 

reliably converge to the true 
value for any quantity of 
interest
• ISSUE: Large number of 

simulations è untenable for 
our application

• Multi-level and multi-fidelity 
approaches aim to  reduce 
variance as obtained when 
using the same number of 
simulations with Monte Carlo 

Seven methods compared: 
1. Monte Carlo (MC)
2. Multi-Fidelity: 3D and 1D 

models (MFA) 
3. Multi-Fidelity: 3D and 0D 

models (MFB)
4. Multi-Level: 3D and 1D models 

(MLA) 
5. Multi-Level: 3D and 0D models 

(MLB)
6. Multi-Level: 3D, 1D, and 0D 

models (MLC)
7. Multi-Level Multi-Fidelity 

approach (MLMF)



Multi-Level Multi-Fidelity Overview
• Multi-Fidelity

• Control Variate approach utilizing two models
• Relies on correlation between the models

• Multi-Level
• Low-Fidelity + (High Fidelity – Low Fidelity)
• Relies on variance decay of the difference term
• Can use multiple levels (> 2)

• Multi-Level/Multi-Fidelity
• Combines the two approaches
• Can use multiple levels (> 2)



Multi-Level Multi-Fidelity Overview
• Multi-Fidelity

• Control Variate approach utilizing two models
• Relies on correlation between the models

• Multi-Level
• Low-Fidelity + (High Fidelity – Low Fidelity)
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• Can use multiple levels (> 2)

• Multi-Level/Multi-Fidelity
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Multi-Level Multi-Fidelity Overview
• Multi-Fidelity

• Control Variate approach utilizing two models
• Relies on correlation between the models

• Multi-Level
• Low-Fidelity + (High Fidelity – Low Fidelity)
• Relies on variance decay of the difference term
• Can use multiple levels (> 2)

• Multi-Level/Multi-Fidelity
• Combines the two approaches
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Multi-Level Multi-Fidelity Overview
• Multi-Fidelity

• Control Variate approach utilizing two models
• Relies on correlation between the models

• Multi-Level
• Low-Fidelity + (High Fidelity – Low Fidelity)
• Relies on variance decay of the difference term
• Can use multiple levels (> 2)

• Multi-Level/Multi-Fidelity
• Combines the two approaches
• Can use multiple levels (> 2)
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MF: Correlation       ML: Variance Decay



Method Expected Value Estimator Variance
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E↵ective Cost No. 3D No. 1D No. 0D

Method (3D Simulations) Simulations Simulations Simulations

MC 100 100 – –

MFA 104.4192 100 2 000 –

MFB 100.1578 100 – 10 000

MLA 104.4192 100 2 000 –

MLB 100.1578 100 – 10 000

MLC 104.5754 100 2 000 9 900

MLMF 104.5754 100 2 000 9 900

Table 4: Cost of each method (QoI: flow at right renal artery)

1

Cost Comparison – non-optimized allocation



Accuracy for Quantities of Interest

Flow at the 
right renal 
artery is 
above 1% 
accuracy 
with all 
estimators



E↵ective Cost No. 3D No. 1D No. 0D

Method (3D Simulations) Simulations Simulations Simulations

MC 9 885 9 885 – –

MFA 56 21 15 681 –

MFB 39 36 – 154 880

MLA 305 212 41 990 –

MLB 156 150 – 342 060

MLC 165 156 1 324 351 940

MLMF 165 156 1 249 362 590

Table 5: Extrapolation for 1% Accuracy (QoI: flow at right renal artery)

1

Extrapolation – optimized allocation for 1% Accuracy



Conclusion
• In summary, the work to date has moved towards the implementation 

of multi-fidelity uncertainty quantification approach for our 
cardiovascular applications. 
• Framework to use 3D model geometry to generate 1D and 0D 

models
• UQ individually on three fidelity levels for the same aorto-femoral 

model
• UQ on three fidelity levels using multi-fidelity approach
• Extrapolation to optimize distribution of model simulations for a 

target accuracy of a given QoI
• The initial results of the MLMF exploration are promising for 

optimization of these schemes on the aorta-femoral model, as well 
as on similar cardiovascular models.
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Next Steps
• Modeling:

• Additional Geometries (more complex/diseased)
• Additional QoI (WSS, OSI) 
• Uncertain Parameters (material properties, inflow 

waveforms, boundary conditions)
• Mesh refinement/coarsening

• Uncertainty Quantification: 
• Approaches specific to the regularity, sparsity, and 

rank of the problem
• Exploit the underlying model structure and accelerate 

convergence
• Preliminary results are promising for successful 

acceleration in low-dimensional cases
• Integration with Sandia National Lab’s DAKOTA toolkit

Long-term Goal: Uncertainty quantification will ultimately 
enhance the results of our computational modeling so these 
results are increasingly clinically relevant.
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