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Social Media Modeling ) i,

We consider social media research as analogous to language
modeling research: build a model to explain the data.

= Language models are likelihood estimators that support many
tasks...
= Translation
=  Automatic summary
= Bot detection

= Social media models should support diverse tasks as well.
= Electric power load prediction
= Network traffic analysis
= Disease spread modeling & forecasting
= Market segmentation
= Bot detection
= Clustering 2




Temporal Analysis of Social Media @

= This work focused on modeling Twitter post time patterns
= Post times & post intervals
= Changing patterns throughout the day
= Diversity among users

= Temporal model presented is in the context of broader social
media analysis
= Temporal properties

= Text analysis
= Social network structure
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Developing a New Model h .

II)

= Observed phenomenon of “modal” behavior & formed

hypothesis

= |LDA suggested discrete variable chosen in a user-specific
mixture, influencing likelihood of observations.
= Topics -> Activities (Modes)
= Topic Mixture -> Mode transition function
= Words -> Intervals

= Final model structure isn’t recognizable as LDA and isn’t
trained the same way. Other point processes also could be
used.




Observation )

Many users appear to have 2 10
discrete “modes” of d
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Hypothesis ) e,

—— 00
* formalize this pattern,

« quantify our confidence in it, & normal — gamma .-
e apply this insight.

To do this we chose to construct a
Bayesian conditional probability
model relating unknowns to
observables.




Constructing the Model

Consider a hidden Markov
model, with a user that
proceeds through different
states of excitation.
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Constructing the Model

We do not expect the current
state to be sufficient.

Many people have daily habits,
and we extend the model to
account for the time of day in
the state transition probability.
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Testing

The state transition probability
is a function of the current
mode, and the relative
proportion of linear functions
of time of day.

More complex functions could
be used. This on provides for
some nonlinear behavior (once
normalized) and has a small

number of parameters to learn.
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Constructing the Model h .

The likelihood of interval @

obser.vatlons is a parameterized normal — gamma .
function of the mode.

Log-normal distributions are @

used with k unknown means &
standard deviations.
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Testing

. . B
Log-normal was chosen after observation of interval @

distributions in several domains of human activity. normal — gamma..

* Instant messenger traffic, Twitter
* Facebook
e Video attention Q
M

Mixture model fits data except...
* Very low energy modes are underrepresented
 Mode-to-mode sequence is not arbitrary
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Constructing the Model h .

JAGS worked well for this
problem.

Discrete mode precluded use
of HMC (via Stan)

Built model in pieces
Extended model to produce
posterior predictive checks
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Posterior Predictive Checks ) i,

High-energy modes were more likely to be sustained.

Lower-energy mode transition probabilities shifted throughout the day.

Posterior uncertainty reflected modes & times
of day that were underrepresented in the data.
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Posterior Predictive Checks

Probability Density
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Sensitivity to Priors

Checking a model with different priors is

important.

We found our model was somewhat sensitive

to prior mean/stddev (but not too badly).
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Sensitivity to Priors
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Conclusions )

= Model converges well

= Model uncertainty appears in reasonable places

= Model demonstrates flexibility when fit to diverse users
= Priors are stronger than we’d like

= Current model works well enough for some applications

= Multi-agent simulation for disease spread modeling
= Market segmentation
= Bot detection
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Next Steps ) =,

= Model extensions

= Better transition function representation
= Periodic instead of a fixed window

= Time zone inference

= Accounting for topic & other evidence conditioned on mode
= Estimating ‘k’

= Population parameter distributions

= Perplexity/data likelihood comparisons vs. competing models

= Application extensions

= Market segmentation (distinguishing bots, people, and organizations)
» Load forecasting (relating social media activity to power demand)
= Network security (repurposing model to handle network traffic)
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Questions? )

= Thank you for your time.

= Those interested in this work may reach me at
helink@sandia.gov
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