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AFTERNOON

THE CONFERENCE MORNING SESSION

: %t had Thanks for atfending.

Welcome, everyone! my cotree vet.. (Awleward silence) | couldn't Find an
earlier Hight,
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Many People Have Contributed To This Effort

Sandia modelers, experimenters, and even managers!

« John Torczynski — Modeling, analysis, theory

* Andy Kraynik — Analysis, modeling (retired)

» Jon Clausen — Sierra ARIA code, flow simulation

« Tim Koehler - Sierra ARIA code, flow simulation

« Dave Johnson — Builds, runs, repairs experiments

» Robert Garcia — Builds, runs, repairs experiments

» Louis Romero — Mathematics, theory (retired)

» Christine Roberts — Liquid property measurements

« Dan Rader — Management support (retired)

» Tracie Durbin, Jeff Payne — Management support

» Alex Headley — postdoc (experiments and analysis)

» Gil Benavides — Applications (retired)

» Paul Farias — Builds, runs, repairs experiments

* Lin Zheng, Emily Stirrup, Nialah Wilson — Students
(graduated)

» Others too numerous to list

And for this talk ..

 Brian Elbing, Oklahoma State University

« Philippe Marmottant, University of Grenoble — Alpes

« John Bush, MIT
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Hawaii Bubbles Neional__

HAWAIIAN-STYLE ERUPTION
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Gas-Liquid Flows
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David Taylor Model Basin cavitating propeller



Gas-Liquid Flows
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Bubbles under Vibration

Bubble Injection into Vertically
Vibrating Liquids

Tim O’Hern
Bion Shelden
John Torczynski
Louis Romero

Sandia National Laboratories
Albuquerque, NM USA



yMotivationlBackgroundIAppIications () i
for Vibrating Bubbles -

Liquid fuel rockets

* Bleich, H. H., (1956), “Effect of Vibrations on
the Motion of Small Gas Bubbles in a Liquid,”
Jet Propulsion, 958-978.

Ultrasonic/Medical it Dimensonsof s ek e sned e Pl 2 Posiions of best bubble
Applications

« Yasui, K, et al., (2008), “Strongly interacting
bubbles under an ultrasonic horn,” Phys. Rev.
E., 77.

Bubble
ds

Sonoluminescence bubble

trapping
* Lohse, K, (2005), “Sonoluminesence:

Cavitation Hots Up,” Nature, 434, 33-34.
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Enhanced Mass Transfer in
Bubble Columns

* Upcoming slides
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Bjerknes Forces @]

I:Bjerknes = <'V(t)VP>

VP ... gradient of pressure field
V(t) ... bubble volume
<> ... time average
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L. A. Romero et al., Phys. Fluids, 053301 (2014).

Full N-S simulation
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L Matula, et al., 1997, J. Acoust. Soc. Am., 102, 1522-1527.

Primary Bjerknes force - bubble downward
motion under vibration

Secondary Bjerknes force—> attraction/repulsion 9




Rectified Bubble Motion
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20 cSt PDMS, 16) Hz, 25 g, 250 um displacement
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Time (sec) 280 Hz, 15 g, 20 cSt

Full N-S simulation
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#l Bjerknes Forces (recent) =.

. Louisnard, O., (2013), “Analytical expressions for primary Bjerknes force
on inertial cavitation bubbles,” ArXiv:1302.5838v1, physics.flu-dyn

. Inoue, K., Kaji, H., Ushijima, H., Azuma, T., Takagi, S., Matsumoto, Y.,
Yoshinaka, K., Ichiyanagi, M., (2013), “Two-dimensional Manipulation of
Microbubbles Using Primary Bjerknes Force,” Proceedings of IEEE
International Ultrasonics Symposium, July.

. Lanoy, M. Derec, C., Tourin, A., Leroy, V., (2015), “Manipulating bubbles
with secondary Bjerknes forces,” ArXiv:1510.06866v1, cond-mat.soft

. Zhang, Y., Zhang, Y., Li, S., (2016), “The secondary Bjerknes force
between two gas bubbles under dual-frequency acoustic excitation,”
Ultrasonics Sonochemistry, 29, 129-145, March.

. Jiao, J., He, Y., Kentish, S. E., Ashokkumar, M., Manasseh, R., Lee, J.,
(2015), “Experimental and theoretical analysis of secondary Bjerknes
forces between two bubbles in a standing wave,” Ultrasonics, 58, 35-42,
April.
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Related Work on Bubble Vibration  [@)&=,
Effects

Bubbles and bubble clusters stabilized by J

vibration have been seen in other contexts

« Crum (1975) “Bjerknes forces on bubbles in a stationary
sound field,” J. Acoust. Soc. Am., 57(6), 1363-1370.

» Ellenberger, van Baten, and Krishna (2005) “Exploiting the
Bjerknes force in bubble column reactors,” Chem. Eng.
Sci., 60, 5962-5970.

+ Jameson and Davidson (1966) “The motion of a bubble in
a vertically oscillating liquid: theory for an inviscid liquid, i
and experimental results,” Chem. Eng. Sci., 21, 29-34. 5

» Knopf, Ma, Rice, and Nikitopoulos (2006) “Pulsing to
Improve Bubble Column Performance: |. Low Gas Rates,”

AIChE J., 52(3), 1103-1115. Ellenberger, Vandu, and Krishna;

+ Waghmare, Rice, and Knopf (2008) “Mass Transfer in a air bubble in water column
Viscous Bubble Column with Forced Oscillations,” Int. Eng.

Chem. Res., 47, 5386-5394. gﬁ:l:::&'g; 85100 Hz,1.8t0 2.5 g,

« Waghmare, Knopf, and Rice (2007) “The Bjerknes Effect: .p
Explaining Pulsed-Flow Behavior in Bubble Columns,” http://www.science.uva.nl/research/cr/
AIChE J., 53(7), 1678-1686 BubbleMotionVibration/

« Brian Elbing and the Oklahoma State University group

Bubble cluster position controlled by
sweeping vibration conditions

mzﬁ% (frequency, amplitude) 2



EXPERIMENTAL METHODS: Facility

2 Diffuser Plate N o i Temporal Response
' (f=10 Hz, A = 6 mm)
Field of View _ i
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Brian Elbing, Oklahoma State University (APS/DFD talk 2016), elbing@okstate.edu




RESULTS: Vibration Dependence

Effect of Frequency Etffect of Amplitude

Coalescence  Breakup Levitation Coalescence  Breakup Levitation

3 3 1 A |

v

Static f=7.5Hz f=10Hz f=15Hz Static A=3mm A=6mm
(4 =6 mm) (f=10 Hz)

Brian Elbing, Oklahoma State University (APS/DFD talk 2016), elbing@okstate.edu




Introduction: Motivation

Influence of Vibration . -l Measurements

%

Vibrating Void Fraction &= o
Injecting Air | . . f +V

i ) n
Static Water | Zn d3
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Bubble Velocity Up

Mass Transfer

dC
E = kLCZ(Cfk —C)

Brian Elbing, Oklahoma State University (APS/DFD talk 2016), elbing@okstate.edu




Vibration Results: Levitation Condition

]

Mathieu stability diagram adapted from Houghton
(1963) with the shaded region indicating stable
solutions to bubble equation of motion

Brian Elbing, Oklahoma State University (APS/DFD talk 2016), ering@okstate.edu




Experimental Setup

Mount test object on shaker

Vibrate at controlled single frequencies or sine sweeps over the range
« 20-300 Hz (all well below natural frequency of bubble sizes of interest)

* 0.1-30 g peak acceleration

* 0-400 um typical peak-to-peak displacement

LabWorks ET-140 electrodynamic shaker with LabVIEW control/DAQ

Phantom high-speed camera 17



Single Sine Frequency Vibration

Single frequency vibrations

z = z,sinot
V= dz _ ®wzZ,coswmt
dt 0
_dz_ .
A= g7 = -0 z,sinot

Vibration conditions completely
defined by v=2xf, z,, and a (pick 2,
third is determined)

AAAAANN
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Time

Freguency

The Spectrum of a Sine Wave

QN

18



Examine Process Step-by-Step () i

Free surface breakup jets and droplets
2D cell, 50 cSt PDMS, 215 Hz, 20g, 0.215 mm p-p
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250 um
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120 Hz, 431 um 130 Hz, 368 um 140 Hz, 317 um 150 Hz, 276 um 160 Hz, 276 um
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Similar effects in Tibetan Singing Bowl

The Tibetan Singing Bowl|
Denis Terwagne & John W.M. Bush
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Départerment de Physique Department of Mathematics
Université de Liege Massachusetts Institute of Technology
Belgium USA

John W. M. Bush, Applied Mathematics, MIT
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Sandia
National
Laboratories

Once bubbles exist below free @
surface, what happens to them?

o o

90 kHz, 90 V - vibration and interaction Modes 4 and 5, 126 kHz, 70 V
— preferred spacing

Ultrasound “control” of small bubbles

\ Bubbles are responsive to pressure
waves such as sound waves

Gas injected into microchannel flow
so bubbles are “pancakes” ~100 um
diameter

Mode 10, 126 kHz, 67 V

Work done by Philippe Marmottant philippe.marmottant@univ-grenoble-alpes.fr
Better images with music on YlJu
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Pulling it all Together

Entry #: V012

Bubble Oscillations and Motion under Vibration

T.J. O’'Hern, B. Shelden, J. R. Torczynski

Engineering Sciences Center
Sandia National Laboratories
Albuquerque, NM USA

APS/DFD Gallery of Fluid Motion 2011
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Presence of gas deep in chamber can completely change
the system dynamics (multiphase spring-mass-damper)

gas above + vibration = gas below

<

gas above + gas below = gas spring

<

gas spring + piston mass = resonance

<

Wibration off

NN NN NN NN NN NN NN NN A NN E NN AN NN NN N AN NSNS NN NN NEEENENEEEEEEEEEEREE

Topic of next two
talks this afternoon!

}' Another Application D=,

: [resonance + gap nonlinearity = net motion ! Spring supports piston

26



Cavitation is Not the Usual Source of
Bubbles and Problems

20-cSt PDMS,

40 Hz, 28 g peak
acceleration, 4.34 mm
displacement

Much harder shaking
than the rest of the
cases shown today

500 fps 5100 fps

Unusual conditions here — this does not normally occur

T VA =237
MNVA NS 27



Refresher

Bubble Injection into Vertically
Vibrating Liquids

Tim O’Hern
Bion Shelden
John Torczynski
Louis Romero

S‘andiahNatio_naI Léboratbries
Albuquerque, NM USA
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Gray: gas Blue: Liquid

Bubble Motion in

Complex Geometries

Side view of 3D simulation

w——— R——
Time = 0.00

T I

—— [————

View from left end of side view

Top down view

) =

3D simulation of a bubble
squeezing through a passage.

System initially at rest with
gravitational acceleration
acting downward.

Fromtime =0totime=0.15a
horizontal acceleration is
added which drives the gas
through the passage

A gas bubble forms, pinches
off, and merges with the gas
already present in the right
chamber.

Simulation performed using the SIERRA/TF code ARIA utilizing the Conformal
Decomposition Finite Element Method (CDFEM) method of interface tracking.

Fluid volumes were conserved to within 1.5% of initial values over the course of the

simulation.

29



}‘ Conclusions () i,

« Bubbles under vibration can move
downward

« Compressible regions in otherwise
incompressible system can change
the dynamic behavior

« Care must be taken when a
multiphase dynamic system is
exposed to vibration

* Preliminary 3D simulations show
believable bubble movement
through a passage when the
gravitational vector is rotated

1.0-inch cylinder ID
PDMS silicone oil 20 ¢St, 2.5 psia air above
120 Hz, ~25 pm displacement, <1 g acceleration

30
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David Taylor Model Basin cavitating propeller
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