
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly 
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
0003525. SAND NO. 2011-XXXXP

Accelerating LAMMPS Performance
Stan Moore

2017 LAMMPS Workshop and Symposium

Breakout session: Acceleration packages

Albuquerque, NM

SAND2017-8029C



LAMMPS Resources for Performance Acceleration

 Hardware support

 CPU including OpenMP

 GPU via Cuda

 KNL via OpenMP

 Website: Benchmarking page (discussed in this session)
 input files, Makefiles, run commands, log files, plots & tables

 Distro
 bench directory

 Manual

 Section 5 = Accelerating LAMMPS performance

 Section 5.3.1 = GPU package

 Section 5.3.2 = USER-INTEL package

 Section 5.3.3 = KOKKOS package

 Section 5.3.4 = USER-OMP package

 Section 5.3.5 = OPT package

 Section 8 = Performance and Scalability
2



LAMMPS Resources (cont.)

 Packages
 GPU, KOKKOS, OPT, USER-INTEL, USER-OMP

 Makefiles in src/MAKE/OPTIONS dir
 Makefile.kokkos, several variants: Cuda, KNL, OpenMP

 Makefile.intel, several variants: CPU and KNL

 Makefile.omp

 Commands
 balance, fix balance, processors, run style verlet/split

 Example dirs
 balance

3



Outline of Topics

 LAMMPS accelerator packages
 Overview

 How and when to use them

 New benchmarking website

 Recent work to improve LAMMPS performance

 Other performance considerations

 Discussion

Please feel free to ask questions, give suggestions, or discuss 
during the presentation

4



LAMMPS Accelerator Packages

 Modern HPC platforms such as multi-core CPUs, Xeon Phis, 
and GPUs often need to use special code (e.g. OpenMP or 
CUDA) to allow LAMMPS to perform well

 LAMMPS has 5 accelerator packages that contain specialized 
code: 
 OPT

 USER-OMP

 USER-INTEL

 GPU

 Kokkos

5



OPT Package

 Developed by James Fischer (High Performance Technologies), David 
Richie, and Vincent Natoli (Stone Ridge Technologies)

 Methods rewritten in C++ templated form to reduce the overhead due to 
if tests and other conditional code

 Code also vectorizes better than the regular CPU version

 Contains 9 pair styles:
 pair_eam_alloy

 pair_eam_fs

 pair_eam

 pair_lj_charmm_coul_long

 pair_lj_cut_coul_long

 pair_lj_cut

 pair_lj_cut_tip4p_long

 pair_lj_long_coul_long

 pair_morse

6



Compiling and Running OPT Package

 In src directory, “make yes-opt”

 Compile LAMMPS

 Run with 8 MPI: “mpiexec -np 8 ./lmp_exe -in in.lj -sf opt”

 -sf opt is the suffix style: automatically appends /opt onto 
anything it can

 For example, “pair_style lj/cut” becomes “pair_style
lj/cut/opt”

7



USER-OMP Package

 Developed by Axel Kohlmeyer (Temple U)

 Uses OpenMP to enable multithreading on CPUs or Xeon Phis

 Extensive LAMMPS coverage (108 pair styles, 30 fixes, molecular topology 
bonds, angles, etc., PPPM, Verlet & rRESPA)

 Best for a small number of threads (2-4)

 MPI parallelization in LAMMPS is almost always more effective than 
OpenMP in USER-OMP on CPUs

 When running with MPI across multi-core nodes, MPI often suffers from 
communication bottlenecks and using MPI+OpenMP per node can be 
faster

 The more nodes per job and the more cores per node, the more 
pronounced the bottleneck and the larger the benefit from MPI+OpenMP

8



Compiling and Running USER-OMP Package

 In src directory, “make yes-user-omp”

 Add -fopenmp to the Makefile

 Compile LAMMPS

 Run with 2 MPI and 2 OpenMP threads: “mpiexec -np 2 -v 
OMP_NUM_THREADS=2 ./lmp_exe -in in.lj -sf omp”

9



USER-INTEL Package

 Developed by Mike Brown (Intel)

 Allows code to vectorize and run well on both Intel CPUs (with or without 
threading) and on Xeon Phis

 Can also be used in conjunction with the USER-OMP package

 Supports 11 pair styles, 5 fixes, some bonded styles, PPPM

 Supports single, double, and mixed precision modes

10



Compiling and Running USER-INTEL Package

 Need to use a recent version of the Intel compiler

 Use a Makefile in /src/MAKE/OPTIONS/ such as 
Makefile.intel_cpu_openmpi

 In /src “make yes-user-intel” and “make yes-user-omp”

 Compile LAMMPS

 To run using 2 MPI and 2 threads on a Intel CPU: “mpiexec -np 
2 -v OMP_NUM_THREADS=2 ./lmp_exe -in in.lj -pk intel 0 
omp 2 mode mixed -sf intel”

 -pk is the package command

11



GPU Package

 Developed by Mike Brown and Trung Nguyen (ORNL)

 Designed for one or more GPUs coupled to many CPUs

 Pair runs on GPU, fixes/bonds/computes run on CPU

 Atom-based data (e.g. coordinates, forces) move back and forth between 
the CPU(s) and GPU every timestep

 Supports 49 pair styles, PPPM

 Asynchronous force computations can be performed simultaneously on 
the CPU(s) and GPU.

 Allows for GPU computations to be performed in single, double precision, 
or mixed precision mode

 Provides NVIDIA and more general OpenCL support

12



Compiling and Running GPU Package

 First compile GPU library in lib/gpu (make -f 
Makefile.linux.mixed)

 In src directory, “make yes-gpu”

 Compile LAMMPS

 Run with 16 MPI and 4 GPUs: “mpiexec -np 16 ./lmp_exe -in 
in.lj -sf gpu -pk gpu 4”

13



Kokkos

 Abstraction layer between programmer and next-generation platforms

 Allows the same C++ code to run on multiple hardwares (GPU, Xeon Phi, 
etc.)

 Core developers are Carter Edwards and Christian Trott (Sandia)

 Kokkos consists of two main parts:

1. Parallel dispatch—threaded kernels are launched and mapped onto backend 
languages such as CUDA or OpenMP

2. Kokkos views—polymorphic memory layouts that can be optimized for a 
specific hardware

 Used on top of existing MPI parallelization (MPI + X)

 Open-source, can be downloaded at https://github.com/kokkos/kokkos

14



Kokkos Package

 Developed by Christian Trott, Stan Moore, Ray Shan (Sandia) 
and others

 Supports OpenMP and GPUs

 Scales to many OpenMP threads

 Designed for one-to-one GPU to CPU ratio

 Designed so that everything (pair, fixes, computes, etc.) runs 
on the GPU, minimal data transfer from GPU to CPU

 Currently only double precision is supported

 Supports only newer NVIDIA GPUs

15



LAMMPS Kokkos Package
 6 atom styles: angle, atomic, bond, charge, full, molecular 

 34 pair styles: buck/coul/cut, buck/coul/long, buck, coul/cut, coul/debye, 
coul/dsf, coul/long, coul/wolf, eam/alloy, eam/fs, eam, 
lj/charmm/coul/charmm/implicit, lj/charmm/coul/charmm, 
lj/charmm/coul/long, lj/class2/coul/cut, lj/class2/coul/long, lj/class2, 
lj/cut/coul/cut, lj/cut/coul/debye, lj/cut/coul/dsf, lj/cut/coul/long, lj/cut, 
lj/expand, lj/gromacs/coul/gromacs, lj/gromacs, lj/sdk, morse, sw, reax/c, 
table, tersoff, tersoff/mod, tersoff/zbl, vashishta

 12 fix styles: deform, langevin, momentum, nph, npt, nve, nvt, qeq/reax, 
reaxc/bonds, reaxc/species, setforce, wall/reflect

 1 compute style: temp

 2 bond styles: fene, harmonic

 2 angle styles: charmm, harmonic

 2 dihedral styles: charmm, opls

 1 improper style: harmonic

 1 kspace style: pppm
16



Kokkos Package Options

 Using a half neighbor list with netwon flag on is usually better 
for CPUs but requires atomics when using more than one 
thread

 For pairwise potentials, using a full neighbor list doubles the 
computation but doesn’t require thread atomics and can 
reduce communication (often better for GPU and sometimes 
Xeon Phi)

 Using threaded communication (packing/unpacking buffers) is 
faster on the GPU since it avoids host/device memory transfer 
but can be slower on the CPU or Xeon Phi

 These differences are implemented as options in the LAMMPS 
Kokkos package

17



Compiling and Running Kokkos Package

 Need c++11 compiler (gcc 4.7.2 or higher, intel 14.0 or higher, 
CUDA 6.5 or higher)

 In /src directory, “make yes-kokkos”

 Build with /src/MAKE/OPTIONS/Makefile.kokkos_omp or 
Makefile.kokkos_cuda_openmpi

 Run with 4 MPI and 4 GPUs: “mpiexec -np 4 ./lmp_exe -in in.lj
-k on g 4 -sf kk”

 Run with 4 OpenMP threads: “./lmp_exe -in in.lj -k on t 4 -sf 
kk -pk kokkos newton on neigh half”

 Kokkos package documentation will be updated soon

18



Comparison of Kokkos to Other LAMMPS 
Packages

 USER-OMP

 Kokkos uses atomics or a full neighbor list to avoid write conflicts, while USER-
OMP uses memory duplication

 USER-OMP is typically faster for a few number of threads, while Kokkos is 
more thread-scalable

 GPU package

 GPU package only runs the pair style and a few other computations on the 
GPU and works best when coupled with many CPUs

 Kokkos package tries to run everything (including fixes, bonds, etc.) on the 
GPU

 USER-INTEL

 USER-INTEL supports single, double and mixed precision, Kokkos currently 
only supports double precision

 USER-INTEL vectorizes better

19



Accelerator Package Rules of Thumb

CPUs and Xeon Phis

 Use USER-INTEL if available

 Otherwise if you are using a few threads, use USER-OMP or 
OPT, otherwise use Kokkos serial or Kokkos

GPUs

 If all/most of the fix styles are in the Kokkos package, use the 
Kokkos package

 If many fixes are not yet in the Kokkos package, use the GPU 
package

 If you want to use many more CPUs than GPUs, use the GPU 
package

 For single or mixed precision, use the GPU package
20



New Benchmark Website

 Very non-trivial to get optimal performance on modern HPC 
platforms

 Current LAMMPS benchmarking page is outdated

 New LAMMPS benchmarking website will show performance 
plots for different accelerator packages on different hardware

 Will also include links to:
 Tables of time for each run

 Makefiles used for compiling LAMMPS

 List of modules loaded

 Exact MPI run command used, along with affinity settings

 LAMMPS logfiles for each run

21



Benchmark Problems

 Lennard-Jones = atomic fluid with Lennard-Jones potential 

 EAM = metallic solid with EAM potential 

 Tersoff = semiconductor solid with Tersoff potential 

 Chain = bead-spring polymer melt of 100-mer chains 

 Granular = chute flow of spherical granular particles 

 Still to be added: Rhodopsin (solvated protein in bilayer), 
ReaxFF, GayBerne

22



Accelerator Packages used for Benchmarks

 For acceleration on a CPU/Intel KNL: 
 CPU = reference implementation, no package, no acceleration (CPU) 

 OPT package with generic optimizations for CPUs (OPT) 

 USER-OMP package with OpenMP support (OMP) 

 USER-INTEL package with CPU and precision options (Intel/CPU) 

 KOKKOS package with OMP option for OpenMP (Kokkos/OMP) 

 KOKKOS package with serial option (Kokkos/serial) 

 For acceleration on an NVIDIA GPU: 
 GPU package, with precision options (GPU) 

 KOKKOS package with CUDA option (Kokkos/Cuda) 

23



Benchmark Machines

 chama = Intel SandyBridge CPUs 
 1232-node cluster 

 node = dual Sandy Bridge:2S:8C @ 2.6 GHz, 16 cores, no 
hyperthreading

 interconnect = Qlogic Infiniband 4x QDR, fat tree

 serrano = Intel Broadwell CPUs 
 1122 nodes 

 one node = dual Broadwell 2.1 GHz CPU E5-2695, 36 cores + 2x 
hyperthreading

 interconnect = Omni-Path

24



Benchmark Machines

 mutrino = Intel Haswell CPUs and Intel KNLs 
 ~100 CPU nodes 

 one node = dual Haswell 2.3 GHz CPU, 32 cores + 2x hyperthreading

 ~100 KNL nodes 

 node = single Knight's Landing processor, 64 cores + 4x hyperthreading

 interconnect = Cray Aries Dragonfly 

25



Benchmark Machines

 ride80 = IBM Power8 CPUs and NVIDIA K80 GPUs 
 11 nodes 

 one node = dual Power8 3.42 GHz CPU (Firestone), 16 cores + 8x 
hyperthreading

 each node has 2 Tesla K80 GPUs (each K80 is "dual" with 2 internal 
GPUs) 

 interconnect = Infiniband

 ride100 = IBM Power8 CPUs and NVIDIA P100 GPUs 
 8 nodes 

 one node = dual Power8 3.42 GHz CPU (Garrison), 16 cores + 8x 
hyperthreading

 each node has 4 Pascal P100 GPUs 

 interconnect = Infiniband

26



Parameter Sweep

 Don’t know optimal number of MPI tasks vs OpenMP threads 
or number of hyperthreads to use a priori

 For GPU package, don’t know optimal number of CPUs per 
GPU

 Use a parameter sweep to find optimal settings for the 
different packages

 Only best results for each package included on the website

27



Types of Runs

 Fixed number of timesteps (i.e. 100)
 For cheap potentials like LJ, run may be too short, which leads to high 

variance in the results

 For expensive potentials or large number of atoms, run may take a 
long time

 Fixed time (i.e. 30 seconds)
 Use fix halt to set an approximate time limit

 Can use fixed number of timesteps for the first parameter sweep and 
then refine results with fixed time

28



Types of Scaling

 Single core

 Single node

 Multi-node strong scaling up to 64 nodes (fixed problem size)

 Multi-node weak scaling up to 64 nodes (fixed problem size 
per node)

 Also have some data for KNL scaling up to 8192 nodes

29



Automation

 Python script is created for every machine and every model

 Python scripts work together to generate batch scripts for 
each accelerator package and model

 Batch scripts are submitted to the job queue on each machine

 Python script post-process logfiles to generate tables of 
timings, finds “best” time in sweep of parameters

 Python scripts generate plots from tables and then generates 
webpage

 LAMMPS is constantly being improved; easy to rerun the 
benchmarks and regenerate the webpage with updated 
results

30



Information Hierarchy

 For each model and scaling type (node, weak etc.), show
 Overall best performance for each machine using any accelerator 

package

 Results in this presentation are preliminary and may be improved 31



Information Hierarchy

 For each model and scaling type (node, weak etc.), show
 Overall best performance for each machine using any accelerator 

package

32



Information Hierarchy

 For each model and scaling type (node, weak etc.), show
 Overall best performance for each machine using any accelerator 

package

33



Information Hierarchy

 For each model and scaling type (node, weak etc.), show
 Overall best performance for each machine using any accelerator 

package

34



Information Hierarchy

 For each model and scaling type, also show
 Table of performance for each machine using any accelerator package

 Links to LAMMPS logfiles

35



Information Hierarchy

 For each machine, model, and scaling type, show
 Performance for each accelerator package (best out of parameter 

sweep)

36



Information Hierarchy

 For each machine, model, and scaling type, show
 Performance for each accelerator package (best out of parameter 

sweep)

37



Information Hierarchy

 For each machine, model, and scaling type, show
 Performance for each accelerator package (best out of parameter 

sweep)

38



Information Hierarchy

 For each machine, model, and scaling type, show
 Performance for each accelerator package (best out of parameter 

sweep)

39



Information Hierarchy

 For each machine, model, and scaling type, show
 Performance for each accelerator package (best out of parameter 

sweep)

40



Information Hierarchy

 For each machine, model, and scaling type, show
 Performance for each accelerator package (best out of parameter 

sweep)

41



Plot Hierarchy (cont.)

 For each machine, model, and scaling type, also show
 Table of performance for each accelerator package (best out of 

parameter sweep)

42



Recent Performance Work

 USER-INTEL added full neighbor list with newton off, can be 
better for simple pair-wise potentials on Xeon Phi

 Added “short” neighbor list to CPU, OpenMP, Kokkos and 
GPU (not yet released) many-body potentials (sw, tersoff, and 
vashishta)

 KOKKOS package improved EAM and ReaxFF performance on 
GPUs

 USER-OMP added multithreaded ReaxFF

43



ReaxFF

 4 versions in LAMMPS: 
 USER-REAXC

 Fortran

 KOKKOS

 USER-OMP

 KOKKOS version more memory robust, should be used with 
GCMC

 KOKKOS serial version faster than USER-REAXC, at least in 
some cases

 KOKKOS version can run on NVIDIA GPUs

 USER-OMP version brand new, probably better for OpenMP
on Xeon Phi/CPU (need to benchmark performance)

44



Performance Regression Testing

 Currently have automated “code correctness” regression 
testing for LAMMPS

 But no performance regression tests

 Changes to the code could slow down performance without 
developers knowledge

 Could add automated performance regression tests

45



Long-Range Electrostatics

 Truncation doesn’t work well for charged systems due to 
long-ranged nature of Coulombic interactions

 Use Kspace style to add long-range electrostatics:
 PPPM—usually fastest, uses FFTs

 Ewald—potentially most accurate, but slow for large systems

 MSM—multigrid method that also works for non-periodic systems

 Usually specify a relative accuracy (1e-4 or 1e-5 typically 
used)

 Example syntax (for periodic systems): kspace_style pppm
1.0e-4

 Use pair_style *coul/long such as lj/cut/coul/long

46



Accelerating LRE

 2-FFT PPPM (kspace_modify diff ad)

 Staggered PPPM

 Single vs double precision PPPM

 Partial charge PPPM

 Verlet/split run style--can overlap pair computation with 
Kspace

47



Other Performance Considerations

 Processor command for MPI grid layout, can map to numa
regions

 Load-balancing
 balance command

 fix balance

 Affinity is important and complicated, see examples on new 
benchmark website

48



Questions?

Discussion/Suggestions?

49


