SAND2017-8029C

Accelerating LAMMPS Performance

Stan Moore

2017 LAMMPS Workshop and Symposium
Breakout session: Acceleration packages
Albuquerque, NM

\
ENERGY m_ owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
0003525. SAND NO. 2011-XXXXP

U.8. DEPARTMENT OF
@ IR "'& Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
r Administration

LAMMPS Resources for Performance Acceleration

= Hardware support
= CPU including OpenMP
= GPU via Cuda
= KNL via OpenMP
= Website: Benchmarking page (discussed in this session)
= input files, Makefiles, run commands, log files, plots & tables
= Distro
= bench directory
= Manual
= Section 5 = Accelerating LAMMPS performance
= Section 5.3.1 = GPU package
= Section 5.3.2 = USER-INTEL package
= Section 5.3.3 = KOKKOS package
= Section 5.3.4 = USER-OMP package
= Section 5.3.5 = OPT package
= Section 8 = Performance and Scalability

LAMMPS Resources (cont.) i) e

= Packages
= GPU, KOKKOS, OPT, USER-INTEL, USER-OMP

= Makefiles in src/MAKE/OPTIONS dir

= Makefile.kokkos, several variants: Cuda, KNL, OpenMP
= Makefile.intel, several variants: CPU and KNL
= Makefile.omp

= Commands

= balance, fix balance, processors, run style verlet/split

= Example dirs

= balance

Outline of Topics (O}

LAMMPS accelerator packages
= Qverview

= How and when to use them
= New benchmarking website
= Recent work to improve LAMMPS performance
= QOther performance considerations
= Discussion

Please feel free to ask questions, give suggestions, or discuss
during the presentation

4

LAMMPS Accelerator Packages) e,

= Modern HPC platforms such as multi-core CPUs, Xeon Phis,
and GPUs often need to use special code (e.g. OpenMP or
CUDA) to allow LAMMPS to perform well

= LAMMPS has 5 accelerator packages that contain specialized
code:
= OPT
= USER-OMP
= USER-INTEL
= GPU
= Kokkos

OPT Package (]

= Developed by James Fischer (High Performance Technologies), David
Richie, and Vincent Natoli (Stone Ridge Technologies)

= Methods rewritten in C++ templated form to reduce the overhead due to
if tests and other conditional code

= Code also vectorizes better than the regular CPU version

= Contains 9 pair styles:
= pair_eam_alloy
= pair_eam _fs
= pair_eam
= pair_lj_charmm_coul_long
= pair_lj_cut_coul long
= pair_lj_cut
= pair_lj_cut_tip4p_long
= pair_lj_long coul long
= pair_morse

Compiling and Running OPT Package),

= |n src directory, “make yes-opt”
= Compile LAMMPS
= Run with 8 MPI: “mpiexec -np 8 ./Imp_exe -in in.lj -sf opt”

= -sf opt is the suffix style: automatically appends /opt onto
anything it can

= For example, “pair_style lj/cut” becomes “pair_style
lj/cut/opt”

USER-OMP Package (O}

= Developed by Axel Kohlmeyer (Temple U)
= Uses OpenMP to enable multithreading on CPUs or Xeon Phis

= Extensive LAMMPS coverage (108 pair styles, 30 fixes, molecular topology
bonds, angles, etc., PPPM, Verlet & rRESPA)

= Best for a small number of threads (2-4)

= MPI parallelization in LAMMPS is almost always more effective than
OpenMP in USER-OMP on CPUs

= When running with MPI across multi-core nodes, MPI often suffers from
communication bottlenecks and using MPI+OpenMP per node can be
faster

= The more nodes per job and the more cores per node, the more
pronounced the bottleneck and the larger the benefit from MPI+OpenMP

Compiling and Running USER-OMP Package M/E=.

= |nsrcdirectory, “make yes-user-omp”
= Add -fopenmp to the Makefile
= Compile LAMMPS

= Run with 2 MPIl and 2 OpenMP threads: “mpiexec -np 2 -v
OMP_NUM_THREADS=2 ./Imp_exe -in in.lj -sf omp”

USER-INTEL Package

= Developed by Mike Brown (Intel)

= Allows code to vectorize and run well on both Intel CPUs (with or without
threading) and on Xeon Phis

= Can also be used in conjunction with the USER-OMP package

= Supports 11 pair styles, 5 fixes, some bonded styles, PPPM

= Supports single, double, and mixed precision modes

12.00

10.00

il

stillinger
-Weber
(sw)

USER-INTEL Package
Speedup

Tersoff Liquid Cca
(tersoff) = Crystal Water

Atomic | Protein | Copper
Fluid (lj) | {rhodo) (eam)

B Intel® Xeon® E5-2697w 2.03 191 L65 3.52 2.65 4.82 3.13
Mintel® Xeon Phi™ 7250 6.18 5.89 241 8.05 6.88 10.93 9.37 10

Compiling and Running USER-INTEL Package @/&E=.

= Need to use a recent version of the Intel compiler

= Use a Makefile in /src/MAKE/OPTIONS/ such as
Makefile.intel_cpu_openmpi

= |n /src “make yes-user-intel” and “make yes-user-omp”

= Compile LAMMPS

" To run using 2 MPIl and 2 threads on a Intel CPU: “mpiexec -np
2 -v OMP_NUM_THREADS=2 ./Imp_exe -inin.lj -pk intel O
omp 2 mode mixed -sf intel”

= -pkis the package command

GPU Package (]

= Developed by Mike Brown and Trung Nguyen (ORNL)
= Designed for one or more GPUs coupled to many CPUs
= Pair runs on GPU, fixes/bonds/computes run on CPU

= Atom-based data (e.g. coordinates, forces) move back and forth between
the CPU(s) and GPU every timestep

= Supports 49 pair styles, PPPM

= Asynchronous force computations can be performed simultaneously on
the CPU(s) and GPU.

= Allows for GPU computations to be performed in single, double precision,
or mixed precision mode

= Provides NVIDIA and more general OpenCL support

Compiling and Running GPU Package) e,

= First compile GPU library in lib/gpu (make -f
Makefile.linux.mixed)

= |n src directory, “make yes-gpu”
= Compile LAMMPS

= Run with 16 MPIl and 4 GPUs: “mpiexec -np 16 ./Imp_exe -in
in.lj -sf gpu -pk gpu 4”

Kokkos) e,

= Abstraction layer between programmer and next-generation platforms

= Allows the same C++ code to run on multiple hardwares (GPU, Xeon Phi,
etc.)

= Core developers are Carter Edwards and Christian Trott (Sandia)

= Kokkos consists of two main parts:

1. Parallel dispatch—threaded kernels are launched and mapped onto backend
languages such as CUDA or OpenMP

2. Kokkos views—polymorphic memory layouts that can be optimized for a
specific hardware

= Used on top of existing MPI parallelization (MPI + X)

= Qpen-source, can be downloaded at https://github.com/kokkos/kokkos

Kokkos Package (]

= Developed by Christian Trott, Stan Moore, Ray Shan (Sandia)
and others

= Supports OpenMP and GPUs
= Scales to many OpenMP threads
= Designed for one-to-one GPU to CPU ratio

= Designed so that everything (pair, fixes, computes, etc.) runs
on the GPU, minimal data transfer from GPU to CPU

= Currently only double precision is supported

= Supports only newer NVIDIA GPUs

LAMMPS Kokkos Package) e,

= 6 atom styles: angle, atomic, bond, charge, full, molecular

= 34 pair styles: buck/coul/cut, buck/coul/long, buck, coul/cut, coul/debye,
coul/dsf, coul/long, coul/wolf, eam/alloy, eam/fs, eam,
lj/charmm/coul/charmm/implicit, lj/charmm/coul/charmm,
lj/charmm/coul/long, lj/class2/coul/cut, lj/class2/coul/long, lj/class2,
lj/cut/coul/cut, lj/cut/coul/debye, lj/cut/coul/dsf, lj/cut/coul/long, lj/cut,
lj/expand, lj/gromacs/coul/gromacs, lj/gromacs, lj/sdk, morse, sw, reax/c,
table, tersoff, tersoff/mod, tersoff/zbl, vashishta

= 12 fix styles: deform, langevin, momentum, nph, npt, nve, nvt, geq/reax,
reaxc/bonds, reaxc/species, setforce, wall/reflect

=] compute style: temp

= 2 bond styles: fene, harmonic

= 2 angle styles: charmm, harmonic
= 2 dihedral styles: charmm, opls

= 1 improper style: harmonic

= 1] kspace style: pppm
16

Kokkos Package Options) &,

= Using a half neighbor list with netwon flag on is usually better
for CPUs but requires atomics when using more than one
thread

= For pairwise potentials, using a full neighbor list doubles the
computation but doesn’t require thread atomics and can
reduce communication (often better for GPU and sometimes
Xeon Phi)

= Using threaded communication (packing/unpacking buffers) is
faster on the GPU since it avoids host/device memory transfer
but can be slower on the CPU or Xeon Phi

= These differences are implemented as options in the LAMMPS
Kokkos package

17

Compiling and Running Kokkos Package) fe,,

= Need c++11 compiler (gcc 4.7.2 or higher, intel 14.0 or higher,
CUDA 6.5 or higher)

= |n /src directory, “make yes-kokkos”

= Build with /src/MAKE/OPTIONS/Makefile.kokkos omp or
Makefile.kokkos cuda openmpi

= Run with 4 MPI and 4 GPUs: “mpiexec-np 4 ./Imp_exe -in in.lj
-k on g 4 -sf kk”

= Run with 4 OpenMP threads: “./Imp_exe -inin.lj -k on t 4 -sf
kk -pk kokkos newton on neigh half”

= Kokkos package documentation will be updated soon

Comparison of Kokkos to Other LAMMPS =
Packages

= USER-OMP

= Kokkos uses atomics or a full neighbor list to avoid write conflicts, while USER-
OMP uses memory duplication

= USER-OMP is typically faster for a few number of threads, while Kokkos is
more thread-scalable

= GPU package

= GPU package only runs the pair style and a few other computations on the
GPU and works best when coupled with many CPUs

= Kokkos package tries to run everything (including fixes, bonds, etc.) on the
GPU

= USER-INTEL

= USER-INTEL supports single, double and mixed precision, Kokkos currently
only supports double precision

» USER-INTEL vectorizes better

19
-

Accelerator Package Rules of Thumb) jge,

CPUs and Xeon Phis
= Use USER-INTEL if available

= QOtherwise if you are using a few threads, use USER-OMP or
OPT, otherwise use Kokkos serial or Kokkos

GPUs

= |f all/most of the fix styles are in the Kokkos package, use the
Kokkos package

= |f many fixes are not yet in the Kokkos package, use the GPU
package

= |f you want to use many more CPUs than GPUs, use the GPU
package

= For single or mixed precision, use the GPU package
20

New Benchmark Website)t

= Very non-trivial to get optimal performance on modern HPC
platforms

= Current LAMMPS benchmarking page is outdated

= New LAMMPS benchmarking website will show performance
plots for different accelerator packages on different hardware

= Will also include links to:
= Tables of time for each run
= Makefiles used for compiling LAMMPS
= List of modules loaded

= Exact MPIl run command used, along with affinity settings
= LAMMPS logfiles for each run

21

7| Netora

Benchmark Problems

= Lennard-Jones = atomic fluid with Lennard-Jones potential
= EAM = metallic solid with EAM potential

= Tersoff = semiconductor solid with Tersoff potential

= Chain = bead-spring polymer melt of 100-mer chains

= Granular = chute flow of spherical granular particles

= Still to be added: Rhodopsin (solvated protein in bilayer),
ReaxFF, GayBerne

Accelerator Packages used for Benchmarks @

= For acceleration on a CPU/Intel KNL:

CPU = reference implementation, no package, no acceleration (CPU)
OPT package with generic optimizations for CPUs (OPT)

USER-OMP package with OpenMP support (OMP)

USER-INTEL package with CPU and precision options (Intel/CPU)
KOKKOS package with OMP option for OpenMP (Kokkos/OMP)
KOKKOS package with serial option (Kokkos/serial)

= For acceleration on an NVIDIA GPU:
= GPU package, with precision options (GPU)

KOKKOS package with CUDA option (Kokkos/Cuda)

Benchmark Machines i)

= chama = Intel SandyBridge CPUs
= 1232-node cluster

"= node = dual Sandy Bridge:2S5:8C @ 2.6 GHz, 16 cores, no
hyperthreading

= interconnect = Qlogic Infiniband 4x QDR, fat tree

= serrano = Intel Broadwell CPUs
= 1122 nodes

= one node = dual Broadwell 2.1 GHz CPU E5-2695, 36 cores + 2x
hyperthreading

= interconnect = Omni-Path

Benchmark Machines i)

= mutrino = Intel Haswell CPUs and Intel KNLs

= ~100 CPU nodes
= one node = dual Haswell 2.3 GHz CPU, 32 cores + 2x hyperthreading

= ~100 KNL nodes
= node = single Knight's Landing processor, 64 cores + 4x hyperthreading

" interconnect = Cray Aries Dragonfly

Benchmark Machines i)

= ride80 =IBM Power8 CPUs and NVIDIA K80 GPUs

= 11 nodes

= one node = dual Power8 3.42 GHz CPU (Firestone), 16 cores + 8x
hyperthreading

= each node has 2 Tesla K80 GPUs (each K80 is "dual" with 2 internal
GPUs)

= interconnect = Infiniband

= ridel00 =IBM Power8 CPUs and NVIDIA P100 GPUs

= 8 nodes

= one node = dual Power8 3.42 GHz CPU (Garrison), 16 cores + 8x
hyperthreading

= each node has 4 Pascal P100 GPUs

= interconnect = Infiniband

26
-

Parameter Sweep (O}

= Don’t know optimal number of MPI tasks vs OpenMP threads
or number of hyperthreads to use a priori

= For GPU package, don’t know optimal number of CPUs per
GPU

= Use a parameter sweep to find optimal settings for the
different packages

= Only best results for each package included on the website

Types of Runs (O}

= Fixed number of timesteps (i.e. 100)

= For cheap potentials like LJ, run may be too short, which leads to high
variance in the results

= For expensive potentials or large number of atoms, run may take a
long time

= Fixed time (i.e. 30 seconds)

= Use fix halt to set an approximate time limit

= Can use fixed number of timesteps for the first parameter sweep and
then refine results with fixed time

Types of Scaling) 2=,

= Single core
= Single node
= Multi-node strong scaling up to 64 nodes (fixed problem size)

= Multi-node weak scaling up to 64 nodes (fixed problem size
per node)

= Also have some data for KNL scaling up to 8192 nodes

Automation) i,

= Python script is created for every machine and every model

= Python scripts work together to generate batch scripts for
each accelerator package and model

= Batch scripts are submitted to the job queue on each machine

= Python script post-process logfiles to generate tables of
timings, finds “best” time in sweep of parameters

= Python scripts generate plots from tables and then generates
webpage

= LAMMPS is constantly being improved; easy to rerun the
benchmarks and regenerate the webpage with updated
results

30

Information Hierarchy) e,

= For each model and scaling type (node, weak etc.), show

= Qverall best performance for each machine using any accelerator

package
16 LJ: single node
- o—e SandyBridge
o—8 Haswell
@ 140 @& Broadwell
%120— oo KNL
I e—e KB80-1
glnn e—e P100-1
& 8ot
Q
Z 40
20t
077K 2K 4K BK 16K 64K 256K 1M 2M 4M
Atom count
= Results in this presentation are preliminary and may be improved 31

Information Hierarchy) foe,,

= For each model and scaling type (node, weak etc.), show

= Qverall best performance for each machine using any accelerator
package

L): strong scalirjg. 512K atoms

fa
I
o

SandyBridge
Haswell
Broadwell
KNL

K80-1
P100-1

]
o
L=

Sr el

h
o

s
o

Millions of atom-steps/sec/node

I
o

1 2 4 8 16 32 64
Node count

32
-

Information Hierarchy) e,

= For each model and scaling type (node, weak etc.), show

= Qverall best performance for each machine using any accelerator
package

EAM: single node

=)}
o

SandyBridge
Haswell
Broadwell
KNL

K80-1
P100-1

un
o

%
(=]

111111

w
(=]

Millions of atom-steps/sec
g
(=]

[
=]

=)

1K 2K 4K BK 16K 64K 256K 1M 2M 4M
Atom count

33

Information Hierarchy) 2=,

= For each model and scaling type (node, weak etc.), show

= Qverall best performance for each machine using any accelerator
package

Tersoff: single node

w0
=]

SandyBridge
Haswell
Broadwell
KNL

K80-1
P100-1

-~ o
=] =}

(=)}
(=]

111111

Millions of atom-steps/sec
hJ w £ un
=] t:l D =]

it
o

=]

1K 2K 4K 8K 16K 64K 256K 1M 2M 4M
Atom count

34

Information Hierarchy

= For each model and scaling type, also show

= Table of performance for each machine using any accelerator package
= Links to LAMMPS logfiles

Single node performance, LT benchmark
Performance in millions of atom-timesteps / second

|Namms |SandyBridge |Haswell

|B roadwell

[k

[k80-1

[P100-1

20.82 (Intel/CPU.mpi=36, hyper=1)

7.98 (Kokkos/KNL, mpi=8,thread=8 hyper=1)

2.96 (GPU,mpi=2 hyper=1)

2.49 (GPU,mpi=1,hyper=1)

[31.58 (Intel/CPU mpi=36 hyper=2)

13.44 (Intel KNL mpi=32 thread=2 hyper=1)

4381 (GPU_mpi=2 hyper=1)

4,657 (GPU.mpi=1 hyper=1)

41.46 (Intel/CPU.mpi=36.hyper=2)

22.6 (Intel/ KNL .mpi=64 thread=1 hyper=1)

8.492 (GPU.mpi=2 hyper=1)

8.532 (GPU.mpi=1.hyper=1)

56.59 (Intel/ CPU mpi=36.hyper=2)

2811 (InteVKNL mpi=32.thread=2 hyper=1)

16.17 (GPU.mpi=2.hyper=1)

16.89 (GPU.mpi=1.hyper=1)

[67.21 (Intel/CPU mpi=36 hyper=1) [38 72 (Intel KNL mpi=64 thread=1 hyper=1) 18 67 (GPU mpi=2 hyper=1) [29 44 (Kokkos/Cudampi=1)

[74.27 (Intel/CPU mpi=36 hyper=1) [45.58 (Intel KNL mpi=64 thread=1 hyper=1) [32.06 (Kokkos/Cuda.mpi=2) |[40.84 (Kokkos/Cudampi=1)

1000 [15.39 (Qatel/CPU.mpi=16)[24.07 (OPTmpi=32.hyper=1)
2000 [21.37 (Intel/CPU.mpi=16) [33.71 (Intel/CPU mpi=32 hyper=1)
4000 |[25.35 (Intel/CPU.mpi=16) [43.72 (Intel/CPU mpi=32 hyper=1)
3000 [29.39 (Intel/CPU.mpi=16) [52.72 (Intel/CPU mpi=32 hyper—1)
[16000 |[34.01 (Intel/CPU mpi=16) [60.33 (Intel/CPU mpi=32 hyper=1)
[32000 |[36.05 (Intel/CPU mpi=16) [67.1 (Intel/CPU.mpi=32 hyper=1)
[64000 |[38.05 (Intel/CPU mpi=16) [71 72 (Intel/CPU mpi=32 hyper=1)

83 55 (Intel/CPU. mpi=T72 hyper=1) 55 06 (Intel/ KNL mpi=128 thread=1 hyper=2)[47 7 (Kokkos/Cuda,mpi=2) [64.65 (Kokkos/Cuda mpi=1)

[128000 |[37.03 (Intel/CPU mpi=16) [14.09 (Intel/CPU mpi=32 hyper=1)

[92.17 (Intel/CPU mpi=72 hyper=2) [66.81 (IntelKNL mpi=128 thread=1 hyper=2)[69.42 (Kokkos/Cuda,mpi=2) |[73.07 Kokkos/Cudampi=1)

[256000 |[33 8 (Intel/CPU mpi=16) [70.93 (Intel/CPU mpi=64 hyper=2)

[85.01 (Intel/CPU mpi=36 hyper=2) |73 44 (Intel KNL mpi=64 thread=2 hyper=2) (85 4 (Kolkos/Cuda mpi=2) [92 (Kokkos/Cuda mpi=1)

512000 |32.8 (Intel/CPU.mpi=16) |65.39 (OPT,mpi=64.hyper=2)

79.26 (Intel/CPU,mpi=72,hyper=2)

84.5 (IntelKNL .mpi=128 thread=1 hyper=2)

98.27 (Kokkos/Cuda,mp1=2)

113.9 (GPU.mpi=16 hyper=1)

1024000/[31.68 (Intel/CPU_mpi=16) [61.9 (OPT.mpi=64_hyper=2)

75.59 (Intel/ CPU_mpi=72 hyper=1)

88 38 (Intel KNL_mp1=128 thread=1 hyper=2)

1003 (GPU.mpi=16 hyper=1)

139.6 (GPU.mpi=16 hyper=1)

2048000|30.67 (Intel/CPU.mpi=16) |39.74 (Intel/CPU.mpi=64 hyper=2)

169.92 (Intel/CPU.mpi=72 hyper=2)

192.06 (Intel KNL.mpi=128 thread=1.hyper=2)

100.3 (GPU.mpi=16.hyper=1)

156.1 (GPU.mpi=16 hyper=1)

4096000/30.95 (Intel/CPU.mpi=16) [56.98 (OMP.mpi=64 hyper—2_thread—1)

[69.94 (Intel/CPU.mpi=72.hyper=1)

102.7 (Intel KNL mpi=256.thread=1 hyper—4)

105 (GPU.mpi=16.hyper—1)

165.8 (GPU.mpi=16 hyper=1)

Run commands and logfile links for column SandyBridge

|1000 ‘mpinm -n 16 -N 16 —bind-to core lmp_chama_cpu -sf intel -pk intel 0 mode double v x 5 vy 5 -vz 10 -v t 30 -v tfreq 100 -in 1n]j -log log lammps date=31Mar] 7 model=lj machine=chama pkg=intel cpu precision=double kind=node size=1K node=1 mpi=16
2000 'mpirun -n 16 -N 16 --bind-to core lmp chama cpu -sf intel -pk intel 0 mode double -vx 5 -vy 10 -v z 10 -v 1 30 -v tfreq 100 -in in |j -log log.lammps date=3 1Mar1 7 model=lj. machine=chama pkg=intel cpu.precision=double kind=node size=2K node=1mpi=16
4000 mpirun -n 16 -N 16 —-bind-to core lmp_chama_cpu -sf intel -pk intel 0 mode double -v x 10 vy 10 v z 10 -v t 30 -v tfreq 100 -in in]j -log log lammps date=31Mar17 model=lj.machine=chama pkg=intel cpu.precision=double kind=node size=4K node=1.mpi=16
|SOUU ‘mpinm -n 16 -N 16 --bind-to core lmp chama cpu -sf intel -pk intel 0 mode double -v x 10 -v v 10 -v z 20 -v t 30 -v tfreq 100 -in in 1j -log log lammps date=31Mar17 model=lj machine=chama pkg=intel cpu precision=double kind=node size=8K node=1 mp1=16
16000 |mpirun -n 16 -N 16 --bind-to core lmp_chama_cpu -sf intel -pk intel 0 mode double -v x 10 -v y 20 -v z 20 -v t 30 -v tfreq 100 -in in]j -log log lammps date=31Marl7.model=lj.machine=chama pkg=intel cpu.precision=double.kind=node size=16K node=1.mpi=16
32000 |mpirun-n 16 -N 16 —-bind-to core lmp_chama_cpu -sf intel -pk intel 0 mode double v x 20 -v y 20 -v z 20 -v t 30 -v tfreq 100 -1n in 1j -log log lammps date=31Mar17 model=lj machine=chama pkg=intel cpu.precision=double kind=node size=32K node=1 mpi=16
|64—000 ‘mpi.nm -n 16 -N 16 --bind-to core lmp chama cpu -sf intel -pk intel 0 mode double -v x 20 -v v 20 -v z 40 -v 1 30 -v tfreq 100 -in in |j -log log lammps. date=3 1Marl 7. model=lj. machine=chama pkg=intel cpu.precision=double kind=node size=64K node=1.mpi=16
|128000 ‘mpi.nm -n 16 -N 16 --bind-to core lmp_chama_cpu -sf intel -pk intel 0 mode double -v x 20 -v y 40 -v 2 40 -v t 30 -v tfreq 100 -in in]j -log log.lammps.date=31Mar17.model=lj machine=chama pkg=intel cpu.precision=double kind=node size=128K node=1.mpi=16
|2560[)0 ‘mpinm -n 16 -N 16 --bind-to core lmp_chama_cpu -sf intel -pk intel 0 mode double -v x 40 -v v 40 -v z 40 -v 1 30 -v tfreq 100 -in in 1j -log log lammps date=31Mar17 model=lj machine=chama pkg=intel cpu precision=double kind=node size=256K node=1 mpi=16
512000 |mpirun -n 16 -N 16 --bind-to core lmp_chama_cpu -sf intel -pk intel 0 mode double -v x 40 -v v 40 -v 2 80 -v £ 30 -v tfreq 100 -in in lj -log log.lammps.date=31Marl 7.model=lj.machine=chama pkg=intel cpu.precision=double kind=node size=512K node=1.mpi=16
1024000 mpirun -n 16 -N 16 —-bind-to core lmp_chama_cpu -sf intel -pk intel 0 mode double -v x 40 -v y 80 v z 80 -v t 30 -v tfreq 100 -in in]j -log log.lammps. date=31Marl7.model=lj. machine=chama pko—intel cpu.precision=double kind=node size=1M.node=1.mpi=16

|2043000 ‘mpinm -n 16 -N 16 --bind-to core lmp chama cpu -sf intel -pk intel 0 mode double -v x 80 -v v 80 -v z 80 -v t 30 -v tfreq 100 -in in lj -log log lammps date=31Mar17 model=lj machine=chama pkg=intel

cpu.precision=double kind=node size=2M node=1 mpi=16

|4096000 ‘mpi.nm -n 16 -N 16 --bind-to core lmp_chama_cpu -sf intel -pk intel 0 mode double -v x 80 -v y 80 -v z 160 -v t 30 -v tfreq 100 -in in lj -log log.lammps.date=3 1Mar 1 7.model=lj. machine=chama pkg=intel cpu.precision=double.kind=node.size=4M.node=1.mpi=16

35

Information Hierarchy) 2=,

= For each machine, model, and scaling type, show

= Performance for each accelerator package (best out of parameter
sweep)

L: Slanrijrid%e, single node

CPU

OPT

OMP
Intel/CPU/double
Intel/CPU/mixed
Kokkos/OMP
Kokkos/serial

. LY

1111

251

11

20r

Millions of atom-steps/sec

1K 2K 4K BK 16K 64K 256K 1M 2M 4M
Atom count

36
-

Information Hierarchy) 2=,

= For each machine, model, and scaling type, show

= Performance for each accelerator package (best out of parameter

sweep)
16 LJ: Broadwell, single node
o—e CPU
e—e QOPT
§ 807 o—e OMP
% ®— |ntel/CPU/double
 60F ® -® |ntel/CPU/mixed
g oo Kokkos/OMP
g o—e Kokkos/serial
o 40f
i
S
s 50l

1K 2K 4K 8K 16K 64K 256K 1M 2M 4M
Atom count

37
-

Information Hierarchy) 2=,

= For each machine, model, and scaling type, show

= Performance for each accelerator package (best out of parameter
sweep)

350 LJ: KNL, single node

CPU/KNL

OPT/KNL
OMP/KNL
Intel/KNL/double
Intel/KNL/mixed
Kokkos/KNL
Kokkos/serial/KNL

100}

1111

801

60|

11

40+

Millions of atom-steps/sec

20r

1K 2K 4K 8K 16K 64K 256K 1M 2M 4M
Atom count

38

Information Hierarchy

= For each machine, model, and scaling type, show

= Performance for each accelerator package (best out of parameter

sweep)
66 LJ: P100, single node
o—e GPU-1/double

350¢ ®-® GPU-1/mixed
@ 300! ®—8 GPU-2/double
E‘_ ®-m GPU-2/mixed
2501 ¥ GPU-4/double
5200 ¥-v GPU-4/mixed
..g e—e Kokkos/Cuda-1
v 150} m—a Kokkos/Cuda-2
9
E 100- ¥ Kokkos/Cuda-4

50f

1K 2K 4K 8K 16K 64K 256K 1M 2M 4M
Atom count

39

Information Hierarchy) 2=,

= For each machine, model, and scaling type, show

= Performance for each accelerator package (best out of parameter
sweep)

Tersoff: Broadwell, single node

CPU

OMP
Intel/CPU/double
Intel/CPU/mixed
Kokkos/OMP
Kokkos/serial

111

[N}
wn
T
[]
]
e

11

=
o

Millions of atom-steps/sec
=)
o o

L
T

=]

1K 2K 4K 8K 16K 64K 256K 1M 2M 4M
Atom count

40

Information Hierarchy

= For each machine, model, and scaling type, show

= Performance for each accelerator package (best out of parameter

sweep)
500 ITersnflf: P100, 5ilngle nqdel
o—e GPU-1/double

250} ®-® GPU-1/mixed
3 == GPU-2/double
Ezon- ® -8 GPU-2/mixed
3 v—¥ GPU-4/double
5 150 ¥-v GPU-4/mixed
.,g e—e Kokkos/Cuda-1
2 100l =—& Kokkos/Cuda-2
= ¥—v Kokkos/Cuda-4
=

i
o

1K 2K 4K 8K 16K 64K 256K 1M 2M 4M
Atom count

41
-

Plot Hierarchy (cont.))t

= For each machine, model, and scaling type, also show

= Table of performance for each accelerator package (best out of
parameter sweep)

Single node performance, LT benchmark, SandyBridge
Performance in millions of atom-timesteps / second

[Natoms |CPU (mp1) |OPT (mpi) |OMP (mpi.thread) [Intel/CPU/double (mp1) (Intel/CPU/mixed (mpi) [Kokkos/OMP (mpi thread) Kokkos/serial (mpi){
1000 [12.13 (16) [13.93 (16) [13.91 (16.1) 1539 (16) 1645 (16) 7.477 (16.1) 11.06 (16)
2000 (1522 16) [18.11 (16) [17.79 (16.1) 137016) 2329 (16) [10.03 (16.1) 1502 (16)
l4000 [|16.83 (16) [20.39 (16) [19.92 (16.1) [25.55 (16) 2566 (16) [11.97 6.1 [15.85 (16)
[soo0 [is01a6) 222206 21780161 2939 18) [32.91(16) [13.44 (16.1) 2012 (16)
[16000 (1935 (16) |[24.31 (16) [23.75 (16.1) [34.01 (16) [382(16) [14.47 (16.1) 2223 (16)
[32000 [19.87 16) 2524 (16) [24.7 (16.1) [36.05 (16) [41.44 (16) [14.99 (16.1) 2331086
[s4000 [[20.47 (16) |[26.16 (16) [25.64 (16.1) [38.05 (16) [44.25 (16) [15.27 (16.1) 2418 (16)
[128000 [21.01 (16) |[26.86 (16) [26.37 (16.1) [37.03 (16) [44.34 (16) [13.7 16.1) 2452(16)
[256000 186 (16) |23 81 (16) 2593 (16.1) [38(16) [40.15 (16) [152 (16.1) 43416
[512000 [19.63 (16) [25.15 (16) [25.23 (16.1) [328(16) 38.24 (16) [15.05 (16.1) 2357 (16)
[1024000(19 17 (16) |[24 72 (16) [24.65 (16.1) [31.68 (16) 36.92 (16) [148 (16.1) P304 (16)
[2048000(18.65 (16) [24.19 (16) [24.13 (16.1) [30.67 (16) 35.91 (16) [14.41 (16.1) 2229 (16)
[1096000]18 71 (16) 2422 (16) [24.15 (16.1) [30.95 (16) [36.11 (16) [14.4(16.1) 2201 (16)

Run commands and logfile links for column CPU

1000 impirun -n 16 -N 16 —-bind-to core lmp _chama cpu-vx 5 -vy 5 -vz 10 vt 30 v tfreq 100 -in in }j -log log lammps date=31Mar1 7 model=lj machine=chama pkg=cpu kind=node size=1K node=1 mpi=16

2000 impirun -n 16 -N 16 --bind-to core lmp_chama_cpu -vx 5 -vy 10 -v z 10 -v t 30 -v tfreq 100 -in in |j -log log.lammps date=31Marl 7. model=lj.machine=chama pkg=cpu kind=node.size=2K node=1.mpi=16

4000 impirun -n 16 -N 16 —-bind-to core lmp_chama_cpu v x 10 vy 10 -vz 10 v t 30 -v tfreq 100 -in in 1j -log log lammps date=31Marl 7 model=lj machine=chama pkg=cpu kind=node size=4K node=1 mpi=16
8000 impirun -n 16 -N 16 --bind-to core Imp_chama_cpu -vx 10 -vy 10 -vz 20 -v t 30 -v tfreq 100 -in in |j -log log.lammps date=31Marl 7.model=li. machine=chama pkg=cpu kind=node.size=8K node=1.mpi=16
‘16000 |rnpirun -n 16 -N 16 —-bind-to core Imp_chama_cpu -v x 10 vy 20 -v z 20 v t 30 v tfreq 100 -in in 1j -log log lammps date=31Mar17 model=]j machine=chama pkg=cpu kind=node size=16K node=1 mpi=16
‘32000 |mpinm -n 16 -N 16 --bind-to core Imp_chama_cpu -v x 20 -v y 20 -v z 20 -v t 30 -v tfreq 100 -in in 1y -log log.lammps date=3 1Mar17 model=lj. machine=chama pkg=cpu kind=node. s1ze=32K node=1.mpi=16
‘64000 |mpinm -n 16 -N 16 —-bind-to core Imp_chama_cpu -v x 20 -vy 20 -v z 40 -v t 30 -v tfreq 100 -in in 1j -log log lammps date=31Mar17 model=lj machine=chama pkg=cpu kind=node size=64K node=1 mpi=16
‘128000 |mpirun -n 16 -N 16 --bind-to core lmp_chama_cpu -v x 20 -v y 40 -v z 40 -v t 30 -v tfreq 100 -in in |y -log log.lammps date=31Mar] 7 model=lj machine=chama pkg=cpu kind=node. size=128K node=1.mpi=16
‘256000 |mpinm -n 16 -N 16 —-bind-to core Imp_chama_cpu -v x 40 -v y 40 -v z 40 -v t 30 -v tfreq 100 -in in 1j -log log lammps date=31Mar17 model=lj machine=chama pkg=cpu kind=node size=256K node=1 mpi=16
‘512000 |mpirun -n 16 -N 16 --bind-to core Imp_chama_cpu -v x 40 -v y 40 -v z 80 -v t 30 -v tfreq 100 -in in |y -log log.lammps date=31Mar] 7 model=lj machine=chama pkg=cpu kind=node. s1ize=512K node=1 . mpi=16
‘1024000 |mpinm -n 16 -N 16 —-bind-to core Imp_chama_cpu -v x 40 -v y 80 -v z 80 -v t 30 -v tfreq 100 -in in 1j -log log lammps date=3 1Mar17 model=lj machine=chama pke=cpu kind=node size=1M node=1 mpi=16
‘2048000 |mpirun -n 16 -N 16 --bind-to core Imp_chama_cpu -v x 80 -v y 80 -v z 80 -v t 30 -v tfreq 100 -in in 1y -log log.lammps date=3 1Mar1 7 model=lj. machine=chama pks=cpu kind=node.size=2M node=1.mpi=16
‘4096000 |mpinm -n 16 -N 16 —-bind-to core Imp_chama_cpu -v x 80 -v y 80 -v z 160 -v t 30 -v tfreq 100 -in in 1j -log log lammps date=3 1Mar 17 model=lj machine=chama pke=cpu kind=node size=4M node=1 mpi=16 42

Recent Performance Work =

= USER-INTEL added full neighbor list with newton off, can be
better for simple pair-wise potentials on Xeon Phi

= Added “short” neighbor list to CPU, OpenMP, Kokkos and
GPU (not yet released) many-body potentials (sw, tersoff, and
vashishta)

= KOKKOS package improved EAM and ReaxFF performance on
GPUs

= USER-OMP added multithreaded ReaxFF

ReaxFF) e,

= 4 versions in LAMMPS:
= USER-REAXC
= Fortran
= KOKKOS
= USER-OMP

= KOKKOS version more memory robust, should be used with
GCMC

= KOKKOS serial version faster than USER-REAXC, at least in
some cases

= KOKKOS version can run on NVIDIA GPUs

= USER-OMP version brand new, probably better for OpenMP
on Xeon Phi/CPU (need to benchmark performance)

44

Performance Regression Testing

= Currently have automated “code correctness” regression
testing for LAMMPS

* But no performance regression tests

= Changes to the code could slow down performance without
developers knowledge

= Could add automated performance regression tests

Long-Range Electrostatics)

= Truncation doesn’t work well for charged systems due to
long-ranged nature of Coulombic interactions

= Use Kspace style to add long-range electrostatics: Q
= PPPM—usually fastest, uses FFTs

= Ewald—potentially most accurate, but slow for large systems
= MSM—multigrid method that also works for non-periodic systems

= Usually specify a relative accuracy (1e-4 or 1e-5 typically
used)

= Example syntax (for periodic systems): kspace_style pppm
1.0e-4

= Use pair_style *coul/long such as lj/cut/coul/long

Accelerating LRE)

= 2-FFT PPPM (kspace modify diff ad)
= Staggered PPPM

= Single vs double precision PPPM

= Partial charge PPPM

= Verlet/split run style--can overlap pair computation with
Kspace

7| Netora

Other Performance Considerations

= Processor command for MPI grid layout, can map to numa
regions
= Load-balancing

= balance command

= fix balance

= Affinity is important and complicated, see examples on new
benchmark website

Questions?
Discussion/Suggestions?

49

