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Introduction

The purpose of the work presented in this memo was to calibrate the Sierra material model
Multilinear Elastic-Plastic Hardening Model with Failure, (MLEP-Fail), for 1/8 inch thick
plate of 13-8 PH steel in the H1150 condition. Material testing was pursued first, followed by
the actual calibration. The material testing consisted of uniaxial tension tests on flat smooth
and notched specimens. The notched specimens were manufactured with three notch radii:
1/8, 1/32 and 1/64 inches. The dimensions of the smooth and notched specimens are given
in the prints in Appendix A. The calibration procedure had two steps. The first was to fit
the multi-linear hardening function of the material to best match the measured engineering
stress-strain responses. The second was to use the failure data from the smooth and notched
specimens to calibrate the two parameters of the failure criterion in the model.

Tensile Test Data

The tests were conducted at the Structural Mechanics Laboratory in New Mexico by Jhana
Gearhart (1528) and Colin McConnell (1528) between August 31 and September 6, 2017.
The work planning and control number of the testing activities is SML 4195. The basic
properties listed in the MMPDS-08' are given in Table 1.

Smooth Specimens

The smooth specimens were cut along three directions in the plate: along, transversely and
at 45° to the rolling direction. All specimens were pulled to failure at two nominal strain
rates: 0.73x107* and 0.73 x 1073 s™! to explore possible rate dependencies that could affect

'Metallic Material Properties Development and Standardization, MMPDS-08, April 2013, Copyright Battelle
Memorial Institution.
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Table 1. Basic properties of 13-8 PH steel in the H1150 condition listed in the
MMPDS-08
Young’s Modulus | Poisson’s Ratio | 0.2% Yield Stress | Ultimate Stress | Failure Strain
(Msi) (ksi) (ksi)
| 28.3 0.28 90 | 135 0.14

the responses of the notched specimens. Figures 1 (a) through (c) show the engineering
stress vs. strain curves obtained from the tests for each of the three specimen orientations.
No significant effect of strain rate dependence is present in these tests. Figure 1(d) compares
the curves with the minimum and maximum strain to failure (¢;) from all directions. Little
difference exists among all the curves prior to the ultimate stress. The spread afterwards
is more significant, with the specimens at 45° seemingly having higher values of strain to
failure.
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Figure 1.

(d)

Measured engineering stress vs. strain curves. (a) Rolling direction, (b)

transverse direction, (c) 45° direction and (d) comparison of curves with
minimum and maximum engineering strain to failure for each direction.
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Notched Specimens

Two tests were conducted for each of the three notch radii with a displacement rate of
0.05 x 1072 inches per second. In each test, the axial displacement across the notch (Ap)
was measured with two extensometers, opposite to each other across the thickness. The
gage lengths of the two extensometers (L) were one inch and 1/2 inches. Figure 2 shows the
measured tensile load-deflection responses. The force F' has been normalized by the initial,
nominal, minimun cross-sectional area in the notch (A,). The results from the tests were
nearly identical for each notch radius. As expected, as the notches get sharper, the displace-
ment to failure decreases and the maximum load increases. In each case the displacements
measured with the 1/2 inch extensometer were slightly smaller than those measured with
the one inch extensometer.
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Figure 2. Measured load vs. deflection curves for tension tests of notched specimens
with three notch radii. Tests were conducted in duplicate and each with two
extensometers of gage lengths one and 0.5 inches.

Calibration

Hardening Function

The calibration of the hardening function requires an iterative process that determines the
required hardening function to reproduce an experimentally measured engineering stress-
strain curve. This was done using the script developed by Tim Shelton (1542), which utilizes
an implicit quasi-statics finite element model of the specimen’s gage length. The simulations
used selective deviatoric elements. The form of the hardening function is multilinear. The
curve chosen for calibration was along the rolling direction, with the minimum strain to
failure and obtained at the faster strain rate (specimen RO07 in Appendix B). The basic
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properties of this curve are shown in Table 2. The value of Young’s modulus was measured
as the slope of the engineering stress-strain curve between 0.5 and 26 ksi. Appendix B shows
the basic properties measured for all the tests on smooth specimens. Note that the properties
listed in Tables 1 and 2 are very close, with the exception of the strain to failure, which was
significantly higher in the specimens tested. Poisson’s ratio was not measured in the tests,
and the value listed in Table 2 was assumed prior to consulting the MMPDS-08.

It is well known that the determination of the hardening function can depend on the size
of the element (h.) if the specimen necks. Therefore, Figure 3 shows the results of the
calibration using three models with element sizes of 0.02, 0.01 and 0.004 inches. Figure
3(a) shows the comparison between the measured and calculated engineering stress-strain
responses. It shows very good agreement for most of the response. Only near the failure point
the load calculated using the largest elements is a little high. The multi-linear hardening
functions are shown in Fig. 3(b). The smaller the element, the higher the true stresses (oy)
in the fit. This is as expected because using the smaller elements puts less constraint on the
shape of the neck, thus allowing for a higher hardening function. The hardening function
obtained with h, = 0.004 in. was adopted for the calibration procedure of the failure criterion.

Table 2. Basic properties of fitted engineering stress-strain curve.

Young’s Modulus | Poisson’s Ratio | 0.2% Yield Stress | Ultimate Stress | Failure Strain
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Figure 3. Calibration of uniaxial tension test data as a function of element size. (a)
Comparison of test and calibrated engineering stress vs. strain curves for a
sample in the rolling direction and (b) required hardening curves.
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Failure Criterion

The calibration of the failure criterion is based on data obtained from tension tests conducted
on smooth and notched specimens. The first step is to simulate the notched tension tests
using the hardening function obtained above. Figure 4 shows the results. Although some
differences can be observed between the test and the simulation results, the predictions of
the load vs. deflection responses are reasonably good. At this point no failure criterion has
been used in the simulations, and they were continued beyond the end points shown in the
figure.
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Figure 4. Comparison of measured and predicted responses for the tension tests on
notched specimens.

The failure criterion in the MLEP-Fail model is commonly called tearing parameter. The
criterion assumes that the material accumulates damage (t,) according to

o= [ (o) )

where <> are Macaulay brackets, o; and o, are the maximum principal and mean hydro-
static stresses, and de, is an infinitesimal increment in equivalent plastic strain. The upper
limit of integration represents the current value of equivalent plastic strain. The parameters
of the model to be calibrated include the failure exponent, m and the critical value of ¢,
when material failure occurs, given by t;fit. The objective of the calibration procedure is to
find appropriate values for m and ™.

Procedure

The calibration procedure? consists of measuring the values of A% in the tension tests at
which failure occurred. The next step consists of running finite element models of the tension

2The calibration procedure is similar to that proposed in Reedlunn and Lu (2015), An Attempt to Cali-
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tests on smooth and notched specimens and keeping a record of the values of o1, 0,,, and ¢,
at each solution step for the elements likely to be most critical. These elements are located
in the narrowest part of the notches, or neck in the case of the smooth specimen. The
selective deviatoric elements used have 8 integration points. In the calibration procedure,
the average values of 01, 0y, and ¢, over the 8 integration points were used to calculate t,.
The models used initially all had elements with h, = 0.004 inches®. Subsequently another
calibration was conducted with elements of h, = 0.016 inches. Once the simulations are
done, the recorded values of o1, 0, and €, can be used in a simple script to calculate ¢, at
all critical elements, given a guess of m. The value of t]cfit can then be determined by trial
and error by minimizing the difference between the values A calculated from the guessed
values of the two parameters above and the corresponding measurements A} from the tests.
Here, the objective function to be minimized is

A2 — AL
Al

N

=3

1

(2)

where NV is the number of calibration tests considered, which is four in the present calibration.
Results

To set up the stage for the presentation of the results, the simple, traditional method of
using a constant value of equivalent plastic strain based on the failure of a smooth uniaxial
specimens will be considered first. Note that the constant equivalent plastic strain failure
criterion is equivalent to the tearing parameter in (1) with m = 0. Figure 5(a) shows the
result of applying this criterion to the simulation of the notched tension tests with element
size of 0.004 in. This figure shows plots of the calculated load vs. deflection curves for
all specimen geometries. The symbol x marks the displacement at which failure occurred
in the tests while the symbol O represents the point at which failure would be predicted
based on equivalent plastic strain. The two symbols necessarily coincide for the smooth
specimen. From here, the critical value of equivalent plastic strain was £, = 1.4. Note
that the simulations overestimate the displacements at failure for all the notched tension
tests. Figure 5(b) shows the same results when the element size was 0.016 in. In this case,
&p = 0.95, showing that ductile failure calibrations are element size dependent.

The effect of the element size on the predicted responses is shown in Fig. 6. The same
hardening function obtained with h, = 0.004 in. was used for both element sizes. Note that
the calculated responses of the smooth specimen were identical up to the ultimate stress point
but, as expected, diverged afterward. For the notched specimen simulations, the responses
diverge earlier as the radius of the notch decreases.

Minimizing the objective function in (2) should give the optimum values of m and t;rit that
best fits the test data. The procedure followed here consisted of fixing the value of m to an

brate and Validate a Simple Ductile Failure Model Against Axial-Torsion Experiments on Al 6061-T651,
SAND2015-20782

3Elements of this size gave reasonably well converged results for even the sharpest notch used here, as shown
in a previous memo: Evaluation of Planar Notched Specimens for Failure Model Calibration, May 9, 2017.
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Comparison of the failure points between test data and predictions by the

constant equivalent plastic strain at failure criterion for two model element
sizes when calibrated to match failure data in a uniaxial tension test.
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Figure 6. Comparison between load-deflection responses predicted with models of two
element sizes. The same hardening function was used in both cases.
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integer value and then finding the value of tf,rit that minimized the objective function. This
value was found within 40.025. The results are shown in Table 3 for both values of element
size considered. Figure 7 shows the failure points marked on the predicted load-deflection
responses for both element sizes used. Clearly the failure points are clustered around the test
data and all fits are reasonable, which brings up the question: which one should be chosen?
One approach is to pick the ones that gave the overall lowest value of the objective function.
If this is the case then the best fits are m = 4 with 5™ = 5.6 and m = 1 with ¢J™ = 1.1 for
he = 0.004 and 0.016 in., respectively. Actually when h, = 0.004 in. the lowest value of the
objective function occurred for m = 5, but the results presented were capped at m = 4 for
reasons to be discussed next.

Table 3. Combinations of critical tearing parameter and failure exponent that fit the test
data reasonably well for meshes with h, = 0.004 and 0.015 inches.
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Figure 7. Comparison of failure points for the calibrations presented in Table 3. (a)
he = 0.004 in. and (b) h. = 0.016 in.

The issue of which fit could be potentially more appropriate can not be categorically settled
with the information that we have so far. This is even if we were to pustulate that the
material fails exactly according to the tearing parameter, which is unlikely, and that the
element size has no influence on failure, which is incorrect. Although the calculated failure
points in Fig. 7 are clustered around the test data, there are significant differences in the
failure details. For example, Fig. 8 shows the paths in plastic equivalent strain vs. triaxiality
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(ep vs. 1) space followed by the points where failure eventually occurred for two extreme
cases, m = 0 and 4 with their respective values of t;m. In the case with m = 0, shown
in Fig. 8(a), the equivalent plastic strain to failure is independent of triaxiality, so all the
calculated failure points lie along a horizontal. In this case, the smooth and notched specimen
with R = 1/8 in. fail at the center of the notch while the specimens with R = 1/32 and
1/64 fail at the edge of the specimen. The other case, when m = 4 as shown in Fig. 8(b) all
failure points are at the center of the specimen, and the variation of equivalent plastic strain
to failure with triaxiality is quite steep.

How flat or steep the variation of equivalent plastic strain is with triaxiality has significant
implications on when failure would occur for states of stress that are have triaxialities that
are not in the vicinity of the test data. For example, in the case of an ideal pure shear test, the
triaxiality would be zero. The example shown in Appendix C shows that the expected strain
to failure for zero triaxiality would range from &, = 1.15 form =0to &, = 28.3 form =4. A
factor of 20! A plastic strain to failure of 28.3 in pure shear seems unlikely, so the fits with,
say, m between 0 and 2 seem more likely. Note that the failure exponent does not have to
be an integer as has been used here. A shear-dominated test to failure would greatly help
improve the failure model calibration. Conversely at a triaxiality value of n = 2, the strain
to failure could vary between 1.15 again for m = 0 and 0.07 for m = 4. Whereas current
research is ongoing exploring the low triaxiality, or shear-dominated, regime, techniques for
achieving high triaxialites in the order of 2 in the laboratory have not been investigated.
Finally note that the range of triaxiality that the four tests in this work covered could vary
significantly depending on what fit is considered. It could range from a relatively wide
0.4 <n < 1.1 for the fit with m = 0 to a narrow 1.0 < n < 1.1 for the fit with m = 4.
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Figure 8. Paths in the equivalent plastic strain vs. triaxiality space for points where
failure occurred and all specimen geometries considered. The failure points
from test and calibration are shown. (a) m = 0 and (b) m = 4.

Validation

In order to validate the calibration procedure, the calibrations with m = 2 for both meshes
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were used as input to the MLEP-Fail model in Sierra/SM. Simulations of all specimen geome-
tries were then conducted, and the failure points as computed by Sierra/SM were compared
against those that resulted from the calibration procedure. In most cases the difference in
the displacements to failure as calculated with the calibration scripts and Sierra/SM was
zero. Only when R = 1/64 in. was a difference of 3% detected. Although the reason for
this difference has not been investigated, it is possible that it is due to the different order of
operations used when averaging quantities over the element.

Summary and Conclusions

This work concentrated on the calibration of Sierra/SM’s MLEP-Fail model for 13-8 PH
Steel in the H1150 condition. Multilinear forms of the hardening function were obtained
employing the script developed by Tim Shelton for this purpose. The hardening function
depends on the element size used in the finite element model of the uniaxial tension test.
The curves obtained using the element sizes considered here were relatively close, but bigger
elements could give rise to more substantial differences. Ideally, the smaller the element, the
more representative the fit should become of the actual behavior, but it comes at the cost
of increased computational time.

The calibration of the failure model (tearing parameter) was conducted based on failure data
from smooth and notched tension specimens. The calibration of the failure model was not
unique given the data available. The reason for the non-uniqueness was discussed, and it
boils down to having insufficient data. The solution to this issue is to obtain other failure
points that are removed from the range of triaxialities achieved in these tests. A possible
test is a low-triaxiality, shear dominated test. The feasibility and utility of such tests are
currently being investigated. Another possibility that may be useful to remove some of the
uncertainty that gave rise to the non-unique calibrations is based on the data in Fig. 8 by
determining the location where failure initiated in the specimens. It may be possible to
image the fracture surfaces using an SEM to find the region where failure initiated, but
there are no guarantees that the observations will be successful.

The calibration of the failure criterion also depends on the element size used to model the
specimens. This is an important observation because the combination of geometry and
element size used in applications can significantly influence the predicted loads at failure, as
has been shown in many previous studies.

In conclusion, a recommendation for the use of the failure criterion would be to use the fits
with m < 2, while being mindful of the element size used in the applications. Obviously
this does not put us in a state where the model can be accurate in predicting ductile failure.
Given that demands for failure prediction by computational means will continue, gahtering
experience in the area will in time improve our abilities to deliver more credible failure
assessments.
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Appendix A: Specimen Prints

Figures 9 and 10 show the manufacturing prints of the specimens used.

NOTES:
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THE ENDS OF THE REDUCED SECTION TO
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Figure 9. Smooth specimen.

Appendix B: Material Properties Measured at the SML

Table 4 presents the values of the basic material properties measured at the Structural
Mechanics Laboratory. The R and T labels indicate whether the specimen axis was along
the rolling or transverse directions of the plate, while the 45 label indicates the axis of the
specimen was at 45° to the rolling direction. The letter F indicates the faster strain rate. The
Young’s modulus was measured as the slope of the stress-strain curve in the range between
one and five ksi. Specimen R07 was used to conduct the fit of the hardening function.
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NOTES:

1. ALL WORK PER 9900000
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TYPE: 13-8PH H1150
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NOTCH SPECIMENS

015R NOTCH SPECIMEN 031R NOTCH SPECIMEN 125R NOTCH SPECIMEN

Figure 10. Notched specimens.

Table 4. Basic material properties measured from all smooth specimens in the Structural
Mechanics Laboratory.

Specimen | Young’s Modulus | 0.2% Yield Stress | Ultimate Stress | Failure Strain
(Msi) (ksi) (ksi )

RO5 (F) 294 88.3 145.0 0.226
R0O6 294 84.3 146.3 0.214

RO7 (F) 28.0 89.7 145.0 0.212
R10 28.1 87.8 145.7 0.209
TO01 29.5 87.4 145.4 0.217
T03 29.3 83.4 147.0 0.215
T09 28.5 83.9 147.1 0.208

T10 (F) 28.7 82.3 146.9 0.203

45-2 (F) 29.0 91.6 148.0 0.227
45-4 30.1 84.3 146.2 0.223
45-6 29.1 87.5 147.3 0.237
45-7 28.5 87.9 146.4 0.219

45-12 (F) 28.8 91.6 146.3 0.237
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Appendix C: Example of the Dependence of Equivalent Plastic
Strain at Failure on Triaxiality for MLEP-Fail Model

To illustrate an example of the relation between the equivalent plastic strain to failure and
triaxiality, consider a state of stress given by:

o=| 17 oy 0 |. (3)

The principal stresses are given by:
O\ =0y +T, 0y =0p, 03 =0y —T, (4)
and, assuming a Jo or von Mises yield function, the equivalent stress is given by
Oe = V37, (5)
The triaxiality is defined as the ratio of the mean hydrostatic stress to the equivalent stress
and is given by
Om og

UZJ—EZE- (6)

Substituting the values of o, and o7 into (1) gives the following relation
2 e m
=3 (VBn+1)| & (7)

Finally, solving for €, in terms of ¢, and considering failure gives
_ 2 \/_ - crit
g, = 5( Bp+1)| . (8)

Plots of (8) are shown in Fig. 11(a). Fig. 11(b) shows a close-up for lower values of £,. Note
that increaing the value of m makes the curves steeper,thus giving higher values of &, for
low 17 and lower for high 7.
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Figure 11. Equivalent plastic strain at failure vs. triaxiality plots for the example
problem and the (m,t$™) combinations in Table 3 for h, = 0.004.
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