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Abstract-- A simple model for coupling of an electromagnetic 

plane wave incident on a conductor above ground has been 

developed using reciprocity theory, providing some advantages as 

compared to the conventional transmission line approach.  The 

model is developed using a semi-infinitely long, single conductor 

above a lossy ground plane, and connected by an arbitrary load 

impedance to a vertical grounding conductor. This configuration 

corresponds to a worst-case wave coupling, because it leads to a 

line induced current larger than in the cases of finite and 

multiconductor lines.  A frequency domain Thévenin equivalent 

model is developed to relate the incident wave amplitude to the 

voltage across a generic load, connected at any point on the vertical 

conductor.  The application to the threat analysis of a High-

altitude Electromagnetic Pulse (HEMP) impact on a power 

transmission line is discussed by considering the time domain 

solution (via inverse Fourier Transform) for an incident EMP fast-

rise transient (E1) waveshape, following the standard IEC 

specifications.  For typical high-voltage power line load 

impedances, it is shown that voltage magnitudes in the MV range  

can be induced across the line termination, in the case of a wave 

with near-grazing incidence angle, and with wave vector aligned 

along the horizontal conductor.  

 

Index Terms—Electromagnetic Pulse (EMP), Transmission 

Line Analysis, High Voltage Transmission Lines   

I.   INTRODUCTION 

A.  Background 

he possible consequences of a large-scale Electromagnetic 

Pulse (EMP) event on the electric power infrastructure has 

been studied for several decades, e.g. [1,2,3]. More 

recently, in part due to the ongoing modernization of the power 

grid, there has been a renewed interest in this matter, with 

specific focus towards the investigation of EMP risk-mitigation 

solutions related to the most critical grid assets [4]. 

In this context, a research effort sponsored by the US 

Department of Energy was initiated in 2016 [5], with the intent 

analyzing possible specific knowledge gaps related to the risk 

of EMP impact on high-voltage, power transformers 

(transmission-class), that indeed represent the most critical 

power grid assets. As a part of this initiative, this paper deals 

with the modeling of the fast-rise, initial transient of the EMP 

(typically referred to as E1 [6]) and, more specifically, focuses 

on an alternative formulation of the transmission line approach. 
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for computing the voltage induced across the termination of a 

power line impacted by an E1 EMP component 
 

B.  Problem Statement 
 

This work is focused on providing a quantitative estimate of E1 

impact on a power line termination, for a realistic set of 

scenarios and for devising a guideline to assess the vulnerability 

of the grid components. While there are several possible 

configurations for transmission power lines, an important 

simplification can be made by considering  the geometry that 

would lead to highest induced voltage or current on the line 

termination, for a given EMP illumination.     

As has been shown in previous analyses [7-9], the case for 

a single, isolated perfectly conducting wire, with open circuit 

terminations, and without ground plane, leads to the maximum 

computed current induced by the EMP wave. The presence of a 

ground plane (both in the case of actual and ideal conductivity) 

and of other parallel wires provide some mitigation of the 

coupling from incident EMP.  

For the present study, in order to provide relevant 

engineering estimates, the more realistic case of a single 

conductor over ground, with generic termination impedances, 

has been considered. In this context, the semi-infinitely long, 

open-circuit termination case, will provide the worst-case 

scenario, (i.e., an upper limit for the EMP-induced termination 

voltage to ground, thus representing a conservative estimate 

from the perspective of EMP wave coupling). Using this model 

as a base, the induced voltage across a transformer input can be 

found by using a realistic input impedance for such a 

transformer.   

C.  Computational Approach 

In principle, the calculation of the current induced on a 

conductor by an impinging electromagnetic wave of given 

characteristics can be done by solving the set of Maxwell 

equations along with the appropriate boundary condition 

specifications. For the case of a conductor parallel to an air-

earth interface, this has been done for a variety of different cases 

and with a mix of analytic and numerical methods [10-12]: in 

particular, for applications to EMP-E1 coupling to power lines, 

the approximate solution via a transmission line approach is 

often considered, due to its simplicity and wide range of validity 

[13-15].      

In the present study, a novel, electromagnetic-reciprocity 

based approach to the solution of wave coupling to a power line 

is presented, illustrating some inherent advantages and 

providing validation with previously published results.  
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II.  DESCRIPTION OF PROBLEM AND SOLUTION OVERVIEW 

The scenario under consideration is that of a semi infinitely 

long (0 < z < ∞) single conductor transmission line above earth 

illuminated by a single frequency (ω = 2πf) plane wave and its 

reflection (Fig. 1).   The transmission line consists of a 

horizontal conductor along the z-direction in the x = 0 plane 

augmented by an attached grounded vertical conductor. The 

line is loaded with a lumped impedance Z, located at a height y 

= ht along the vertical conductor.  Each conductor is assumed 

to have a conductivity σw and a radius a. The earth is assumed 

to have a conductivity 
2  and a relative permittivity εr2. Free 

space is represented by permittivity and permeability ε0 and μ0 

respectively.  Finally, the vertical conductor extends into the 

earth a distance hg and the portion below the surface must be 

accounted for in the solution.   

 
 

Fig. 1.  Geometry of the problem 
 

The solution approach consists in first removing the 

impedance Z leaving an open circuit at height ht, as shown in 

Fig. 2.  Then a Thévenin equivalent circuit at these terminals 

(shown in Fig. 3) is identified, thus including the incident and 

reflected plane wave, and the open-circuited, semi-infinite 

transmission line.  The open circuit voltage of this Thévenin 

equivalent is found using reciprocity theory.  In parallel with 

this, the Thévenin impedance is found.   Once this equivalent 

circuit has been identified, the voltage across and current 

through the impedance Z can easily be found. 
 

 
 

Fig. 2.  System with termination impedance removed.  
 

 
 

Fig. 3. Thévenin equivalent for the system with termination impedance (Z) 

shown.   

III.  RECIPROCITY SOLUTION – FREQUENCY DOMAIN 

A.  General Frequency Domain Solution  
 

A linear isotropic system (not necessarily electrically small) 

with two pairs of terminals (Ports) 1 and 2 is considered, as 

shown in Fig. 4. If “Problem a” and “b” represent two different 

sets of voltage or current sources  for the same system, it is 

known from reciprocity theory that [16,17]   
 

1 1 2 2 1 1 2 2a b a b b a b aV I V I V I V I+ = +                          (1) 

 

 
 

                     Problem a                                                  Problem b                                                                                                          
 

Fig. 4.  Arbitrary linear isotropic system with two pairs of terminals (Ports) 
with voltages and currents defined at Port 1 and Port 2.     
 

At this point, the two specific problems to be used in the 

reciprocity solution are shown in Fig. 5 and will be described 

here.  Each involves the same linear, isotropic system with two 

ports. The first port is on a vertical wire at z = 0 and height ht  

while the second is on a horizontal wire of height h at a distance 

z to the right of the vertical wire or at some height y along the 

vertical wire.   

(a) 
  

 
(b) 

Fig. 5.   Problems to which reciprocity theory will be applied to identify a 

Thévenin equivalent circuit 
 

The first problem in Fig. 5a  corresponds to “Problem a” in 

Fig. 4 with its Port 1  driven by a current source of amplitude 

( )1 0 ,0a tI I h=  and Port 2 on the horizontal wire at z (or on the 

vertical wire at height y) short circuited so that 2 0aV = .  The 

voltage across Port 1 is 1aV  while the current into Port 2 is 

( )2 0 ,aI I h z= − .  The minus sign is needed because the 
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reference directions for 
2aI  and ( )0 ,I h z  are in opposite 

directions.  The second  problem in Fig. 5b shares the same 

geometry as that of Fig. 5a but is excited by an external wave 

incE (incoming plane wave and reflected wave)  that satisfies 

air-earth boundary conditions at y = 0 and induces a current 
bI  

on the wire which is open circuited at Port 1 so that 
1bI  = 0.  

The current 
bI  induced on the wire causes an additional electric 

field 
bE  that again satisfies the air-earth boundary conditions at 

y = 0.  The total voltage across Port 2 (of length d ) due to the 

total axial electric field is  
 

( )( , ( , )) 0inc bE h z E h z d+ =                         (2)  
 

and is equal to zero if the wire is a perfect electric conductor. 

However, this derivation can be generalized to wires with a 

finite intrinsic impedance per unit length,
iwz with the same 

result since terms containing 
iwz cancel.  Note that the absence 

of a minus sign in (2) is due to the choice of  reference directions 

for the voltage and the electric field.  The specific “Problem b” 

of Fig. 4b will now be described.  The specific source for this 

problem is the portion of the induced current bI  between the 

terminals of Port 2. Given (2), the voltage across Port 2 can be 

written as  ( ) ( )2 , ,b b z inc zdV E h z a dz E h z a dz= = −  and a 

corresponding voltage 
1bdV  (i.e., the open circuit voltage 

ocdV

due to the Port 2 source current) can be identified across Port 1.  

It should be noted that each voltage is “differential” because the 

Port 2 gap is infinitesimal while the incident electric field is 

finite.     

The problem illustrated in Fig. 5a (i.e., “Problem a”)  can be 

solved in a straightforward manner for arbitrary frequencies 

using either numerical techniques or analytical techniques 

appropriate for the high frequency regime [18].  Later simple 

explicit solutions for lower frequencies will be given, but here 

it will be assumed that the current through Port 2  

( )2 0 ,aI I h z= −                                     (3) 

can be found.   

It is not actually necessary to directly solve for the currents 

and voltages in the circuit of Fig. 5b (i.e., “Problem b”) .  In 

fact, one advantage of the approach here introduced is that 

solving this relatively complicated electromagnetic scattering 

problem can be avoided.  Rather, the open circuit voltage in 

“Problem b” (the original goal) will be found using reciprocity.  

Since 2 0aV =  and 1 0bI = , (1) reduces to  

1 1 2 20 b a b adV I dV I= +                               (4) 

or equivalently 
 

( ) ( ) ( ) ( )0 00 ,0 , ,oc t t inc zdV h I h E h z a dzI h z= +           (5) 
 

If now, (5) is solved for the open circuit voltage and (3) inserted 

into the result (for the horizontal wire)  

( ) ( ) ( )( ) ( )0 0, / ,0 ,oc t t inc zdV h I h z I h E h z a dz= −           (6) 

Finally, since (6) is only the result for the portion of the incident 

field at a point “z”, it must be  integrated over sources at all 

points on the wire including those on the vertical wire.  The 

result is  

( )
( )

( ) ( )

( )
( ) ( )

0

0

0

0 0

1
,0 ,0

,0

1
, ,

,0

g

h

oc t y

t h

inc z

t

V h I y E y dy
I h

I h z E h z a dz
I h

−



= −

− 





             (7) 

The contribution of the wire in the earth has been included in 

(7).  However, it can often be neglected at lower frequencies 

because the vertical electric field in the earth (
earthE ) is very 

small compared to that in the air ( airE )by the boundary 

condition 
0 2( / )earth airE j E  while the current is 

continuous across the boundary.   Also, between the terminals 

of Port 1 the total electric field is much larger than incE  

because the scattered electric field is concentrated around open 

circuited terminals as in a receiving antenna.  Hence it is not 

necessary to add incE in calculating the total open circuit 

voltage.    

While solving “Problem a” the Thévenin impedance can be 

determined by dividing the voltage ( ) 1t aV h V=  across the 

Thévenin terminals by the current source amplitude, ( ),0tI h  

when the current source is  connected to Port 1. 
 

( ) ( ) ( )1 /th t t tZ h V h I h=                             (8)  
 

From Fig. 3, the current through the impedance Z can be written 

as            

( ) ( ) ( )( )/Z t oc t th tI h V h Z h Z= +                       (9) 

and the voltage across the impedance is simply 

              ( ) ( ) ( ) ( )( )/Z t Z t oc t th tV h I h Z V h Z Z h Z= = +     (10) 

To this point, the solution (7) is valid for any frequency as 

long as i) the appropriate current distribution is used and ii) the 

gap across which ( )oc tV h is defined is small compared to the 

wavelength of the incident wave; no voltages are defined for 

which the spacing between terminals is comparable to or larger 

than a wavelength.    

The motivation for using reciprocity theory to solve a 

problem that has been previously solved using field coupled 

transmission line theory [19], can be highlighted as follows: 

1. The use of reciprocity theory eliminates the need to solve a 

relatively more difficult problem (i.e., that of the problem in 

Fig. 5b) that involves electromagnetic scattering, to find a 

current distribution on the conductors.   

2. No voltages need to be defined (thus no reference zero 

potential is required) except those between closely spaced 

terminals, for which the voltage is unique and well defined.   

This is important because the voltage between the line and 

ground is strictly unique only when the condition h << λ is 

satisfied 

3. By proper selection of currents in (7), the solution can be used 

at higher frequencies than in methods that are based on the 

transmission line approximation.  For example, a current 

such as that in [20] might be used.   

4. Since the system modelled by the Thévenin equivalent is 

linear, the equivalent circuit can be used to solve for the 

current in a non-linear load such as has been done in [19,21].   
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B.  The Incident Wave Electric Field 
 

The incident electric field consists of a vertically polarized 

plane wave and its reflection in the yz plane.  The relevant axial 

(e.g., along “z”) electric field is  

( ) ( ) 0 cos
, , ,

jk z

z zvE x y z E x y e
−

=                       (11) 

where 

( )0 0sin sin
( , ) sin

jk y jk y

zv v vE x y E e R e
  −

= −        ,        (12) 

vE is the amplitude of the incident wave, and the geometry for 

this incident wave is shown in Fig. 6 [8].  Reference [8] also has 

a more general incident plane wave. Rv is the reflection 

coefficient for the vertically polarized field expressed as  

(13) 

( ) ( )

( ) ( )

1/2
2

2 2 0 2 2 0

1/2
2

2 2 0 2 2 0

/ sin / cos

/ sin / cos

r r

v

r r

j j
R

j j

       

       

 + − + − 
=

 + + + − 

                         

 
 

Fig. 6.  Geometry of the incident plane wave and its reflection for ϕ = 0.  The 

transmission line is absent for this calculation.   
 

The vertical electric field of the incident plane wave is  

           ( ) ( ) 0 cos cos
, , ,

jk z

y yE x y z E x y e
 −

=                    (14) 

where 

( )0 0 0sin sin cos sin
( , ) cos

jk y jk y jk x

y v vE x y E e R e e
    −

= +  .   (15) 

C.  Reduction to the Low Frequency Limit 

If it is now assumed that h << λ, the problem illustrated in 

Fig. 5a (i.e., “Problem a”) can easily be solved using the 

equivalent transmission line theory for a wire above earth, since 

the wire is driven through electrically short vertical wires by a 

current source at its left end [22].  The result is 
 

 ( ) ( )0 0, ,0 TLj z

tI h z I h e
−

                           (16) 

where the propagation constant TL is given in Appendix A. 

From (7), using h << λ for the first integral and (16) with 

( ) ( )0 0,0 ,0tI h I h  for the current, it is found  

( )

( ) ( )

1 2

0

/ 2 ,TL

oc z oc oc

j z

y inc z

V h V V

hE h e E h z a dz




−

= + 

− − 
        ,   (17) 

where the vertical electric field is evaluated at half the height of 

the horizontal wire although the specific height is arbitrary 

since the vertical electric field is relatively constant along the 

vertical wire.  

The Thévenin impedance can be determined while solving 

“Problem  a” with reference to the circuit shown in Fig. 7. Here 

the current source ( ),0tI h  connected to the input terminals is in 

series with the grounding impedance 0gZ  shown as the buried 

wire in Fig. 1 and the input impedance 
inZ  of the semi-infinite 

wire above earth transmission line.  This impedance is simply 

the characteristic impedance 0TLZ of the wire above earth 

equivalent transmission line and is given in Appendix A.  For 

this derivation, 
0gZ  at low frequencies can be determined using 

standard quasi-static techniques or high frequency models 

discussed in [23,24].    

 
 

Fig. 7. Input Circuit for Conductor above the Earth Transmission Line. The 
source is at y = ht.   

 Given this background, the Thévenin impedance for the 

equivalent circuit in Fig. 3 is 

( ) 0 0th t g TLZ h Z Z= +                               (18) 

D.  Calculating the Low Frequency Thévenin Equivalent  
 

The open circuit voltage in (17) will now be evaluated using the 

incident field given in the previous section. To begin, since the 

current on the vertical wire has been assumed to be constant,  

the term 
1ocV  simply becomes 

( )1 1 cosoc v vV E h R  − +                      (19) 

In a subsequent paper, the constant current assumption will be 

relaxed and the current on the vertical wire allowed to be a 

function of the distance above the earth.  

Next, using (16), (17) and (11) with x = 0, the contribution 

of the horizontal conductor can be written as  
 

 ( ) 0 cos

2

0

0, TLjk z j z

oc zvV E h e e dz
 



− −
= −                   (20) 

   

where (0, )zvE h   is defined in (12).  This integral can be 

evaluated analytically (assuming, in general, that the imaginary 

part of TL is nonzero) and  (20) becomes                                  

  
( )

( )
2

0

0,

cos

zv

oc

TL

jE h
V

k  
=

+
                           (21) 

Hence, the open circuit voltage is the sum of (19),  and (21):   
                                        

( )

( )0

0,
(1 )cos

cos

zv

oc v v

TL

jE h
V E h R

k


 
= − + +

+
             (22) 

 

As shown earlier, the Thévenin impedance is given in (18).  

E.  Validity of the Low Frequency Result 
 

As shown in Appendix B, that the open circuit voltage in (22) 

reduces to the expression from [19] derived from the solution 

of the telegrapher’s equations. 
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Furthermore, the simple result given in (22) is generally 

valid for frequencies such that h << λ, or f(MHz) 

300/ (meters)h . In the specific case for a HEMP standard 

waveform, it is expected be valid over a wide enough range of 

frequencies to calculate worst-case  induced voltages for the 

following reasons. Specifically, the first term in (22) (i.e., 
1ocV  

) can be ignored if two important criteria are satisfied.  First, if 

th = 0 (as assumed for the results in this paper) there are no 

problems with high frequency resonances which can occur for 

wire lengths greater than a quarter wavelength and can  cause 

1ocV to become large.   Second, it is shown in Section IV and 

validated numerically that the second term of (22) dominates 

the first in  the case of near-grazing incidence.  Since this case 

produces the largest line termination voltages (i.e., the worst- 

case scenario),  the validity of 2ocV over the entire frequency 

range relevant to the EMP becomes an important issue.  The 

only assumption made in deriving (21) is the that of the wire 

over earth equivalent transmission line current, as in (16).  This 

current is valid at low frequencies, but also can be shown to be 

in good approximation equivalent to the current on thin lossless 

wires in free space (i.e., 0exp( )I jk z− ) when the frequency 

becomes sufficiently high [25].  In this case then (21) can be 

accurate enough at higher frequencies, while considering a 

small amount of loss due to the conducting wire that is required 

for convergence, and (15) for the electric field. 

For the Thévenin impedance generally, 0 0TL gZ Z . Hence 

the relevant question is whether 
0TLZ is accurately represented 

by the characteristic impedance of the equivalent transmission 

line over the frequency range of the HEMP standard waveform.  

As it was verified, the analysis of the transfer function of the 

linear system that represents coupling of the EMP pulse to a 

transformer at the end of a semi-infinite power line at height h 

= 10 meters (the case considered here) indicate that frequencies 

higher than approximately 5 MHz are attenuated. Further,  it 

has been shown that the transmission line approximation is 

reasonably valid (for h = 10 meters) up to 5 MHz [20].  Hence, 

it is  can be concluded that the Thévenin impedance is 

reasonably valid over the range of frequencies relevant to this 

problem.    

IV.  DISCUSSION  OF THE WORST-CASE FREQUENCY DOMAIN 

RESULT (GRAZING INCIDENCE) 
 

From (21) it can be noted that Voc2 becomes large for plane 

waves at angles of incidence such that 0 cos 0TLk  +  .  

Generally, this occurs for angles near grazing incidence, from 

the right of Fig. 1 (i.e., cos 1  −  in Fig. 5) and results in a 

significantly pulse enhanced coupling to the conductor (and 

then to its load). From (13), it is also clear that Ezv vanishes for 

ψ  π, however a detailed analysis of (21) shows that Voc2 

reaches a maximum value at an angle ψmax, as ψ approaches π 

[26]. It can be shown that this maximum also occurs for finite 

line lengths, and the longer the line, the closer ψmax  gets to π, 

that is Voc2 peaks closer to grazing incidence conditions. 

This result was analyzed by first considering that the impact 

of the incident field on the conductor can be represented by a 

set of distributed voltage sources (as in [18], [27]). These 

sources represent the voltage dVs(zs)=Es(zs)dz on each 

infinitesimal segment dz of the line that is induced from the 

external (incident plus reflected) field Es(zs) in z = zs. Each 

source also generates traveling waves along the conductor: for 

example, similarly to (16), let ( ) ( )0, TL sj z

line s s sdV z e dV z


=  be 

the transmission line voltage in z=0 (with zero reference to 

infinity, for a semi-infinite line) from a source dVs(zs) in z=zs. 

The total line voltage will be then found by integrating the 

dVline(0, zs)  contributions, for each zs ranging from 0 to ∞. This 

total line voltage corresponds to Voc2 in (21), as it is may be 

deducted from the discussion in Appendix B.  

One could consider an approximate distribution of finite 

voltage sources Vn=Vs(zn)=Es(zn)Δz  defined over segments of 

the line of length Δz and centered in z = zn. Then the total line 

voltage can be approximated with the series 
 

( ) ( )
0 0 0

(0) (0, ) TL n TL n

N N N
j z j z

line n s n s n

n n n

V V z e V z e E z z
 

= = =

 = =   
 

that converges to the integral Voc2 for N→∞ and Δ →0.  

By analyzing the terms of the series, it can be shown that the 

traveling wave contributions Vline(0, zn)  add up both with a 

larger amplitude, and with smaller phase spread when ψ 

approaches ψmax. On the other hand, for ψ away from ψmax, these 

contributions have lower amplitudes and/or an increased phase 

spread, thus leading lower cumulative effect [28]. 

This effect of a larger induced voltage at near-grazing 

incidence is know from previous analyses of EM wave coupling 

on long conductors (e.g. [9, 26]), and it also represents the 

fundamental physics behind the Beverage receiving antenna 

[25]. 
 

V.  THE TIME DOMAIN RESPONSE  

This section presents the application of the TL model in the time 

domain. The incident waveform is considered according to the 

IEC-E1 standard [6] as 

 
( )1 1

01 1

( ) 0, 0

, 0

v

a t b t

E t t

E k e e t
− −

= 

− 
                   (23) 

where 
1

1 1
1 1

01 1

1 1 1

7 1 8 1

1 1

50,000 / , 1.3,

4 10 sec , 6 10 sec

a

b ab b
E V m k

b a a

a x b x

−

− −

  
= = =  

−  

= =

 

.  The Fourier transform of this waveform is  

1 1

01 1

1 1

( )
( )( )

j t

v

b a
E E k e

a j b j


 

−  −
=  

+ + 
             (24) 

The waveform in (23) has rise and fall times of approximately 

5 and 60 ns, respectively.  The Fourier transform (24) was 

multiplied by the voltage across an arbitrary impedance Z in 

(10) (together with (12) and (12)-(14),  and (18) with 0gZ  set 

to zero), then sampled and  transformed into the time domain 

using the inverse Fourier Transform. Several comments will be 

made before presenting the results.  

First, the solution was (partially) validated by comparing the 

calculated value of ocV  for the special case of perfectly 

conducing earth and h << λ.   As shown in Appendix C,  the 

result for ocV  should be equal to 2 vhE− .  Since this is a constant, 
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it was verified that in this case the time domain response indeed 

corresponds to the waveshape (23) multiplied by  ̶ 2hEv.  

Second, the low frequency range of (22) is important for 

calculating the long-term time response.  Here, however, the 

results shown in Figs. 8 i and 9 were generated by calculating  

the inverse transform of (10), using (22), (18) and the capacitive 

load impedance.  The finite number of samples used produces 

a small offset voltage which tends to zero as the number of 

samples was increased, thus it has been subtracted from the 

result. Finally, while any load (including nonlinear ones) could 

be used for the calculations of termination voltage, either a 100 

pF or 300 pF capacitive load was considered.  These choices 

were made because measurements of typical load impedances 

of transformer bushings or surge arresters in high-voltage lines 

give values of capacitance between 100 and 300 pF.  
 

VI.  RESULTS 

Using the IEC input pulse waveform (23) for the incident field, 

the voltage across the terminals shown in Fig 1 was computed 

for a capacitive load impedance and with the physical 

parameters in Table I, while the FFT used 128K samples with a 

value of  the largest time sample for the inverse Fourier 

transform equal to 10 μsec. The results are shown in Figs. 8 and 

9.   
 

Wire/Earth Geometry Incident field/ 

loads 

σw  (S/m) 3.5x107 a (m) .01 Zg0 (Ω) 5 

σ (S/m) 0.01 h (m) 10 Ct (pF) text 

εr 5 ht (m) 0 Ev (V/m) 1.0 

  ϕ (rad) 0 Eh (V/m) 0.0 
 

Table I.  Parameters used for calculation of transient voltages in Figs. 8 - 9.   
 

  

 
Fig. 8.  Load voltage across a 100 pF capacitor at the junction of a semi-

infinite horizontal single conductor transmission line and a vertical riser at its 

end due to an incident IEC-E1 pulse, and with the parameters given in Table I.   

 

It is shown in Fig. 8 that, aside from the grazing incidence 

cases, the load voltage for the 100 pF case i) is roughly 

independent of incidence angle ii) becomes spread out over a 

few microseconds and iii) reaches a maximum magnitude of 

about 200 kV.  As expected, and discussed in section IV-A, 

however, the magnitude of the load voltage increases as the 

angle of incidence approaches grazing.  In this case, the 

maximum load voltage can  reach about 1 MV.  For the 300 pF 

case of Fig. 9, as expected, the maximum voltage magnitude is 

lower, limited to about 100 kV for large incidence angles, and 

to approximately 800 kV for near-grazing incidence.  It has 

been verified that for larger transmission line heights, these 

voltages can be expected to increase.   

 

 
Fig. 9.  Load voltage across a 300 pF capacitor at the junction of a semi-

infinite horizontal single conductor transmission line and a vertical riser at its 

end due to an incident IEC pulse, and with the parameters given in Table I.   

 

VII.  CONCLUSIONS  

A model for the coupling of the fast-rise component of a High-

altitude Electromagnetic Pulse (HEMP) to a transmission 

power line has been developed using the electromagnetic 

reciprocity principle. The model has been validated by 

comparing it to the traditional approach based on transmission 

line theory with a distributed voltage source excitation.  

Time-domain results for the solution of the voltage across a 

typical high voltage power line load impedance (such as a 

transformer bushing) have been derived by considering the 

impact of a plane wave on a single, semi-infinitely long 

conductor line above a lossy ground plane. This provides an 

illustration of the worst-case condition for the surge voltage that 

can be generated on an actual power line termination. It was 

found that the maximum voltage across the load can reach 

magnitudes in the MV range , for near-grazing wave incidence 

conditions. Transmission lines higher than 10 m have been 

verified to have larger induced voltages.   

While the geometry considered for this analysis is limited to 

conditions for which the line height is electrically small as 

compared to the incident wavelength, extensions to a more 

general case that includes higher frequencies, as well as to 

responses in presence of non-linear loads, can be developed in 

a straightforward manner and will be discussed in a follow-up 

publication. 
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Appendix A 
 

Wire Above Earth Equivalent Transmission Line  
 

Expressions for the relevant parameters of a transmission line 

equivalent to the wire over the earth problem at low frequencies 

are given here [19].   
 

11 11

1/2

2 0

0

( , , ) 2 ( )
1 , Im( ) 0

ln(2 / ) ln(2 / )

TL

c iw

TL

j z y

J a h h j z
k

h a h a



 


=  

  
 − −   

  

(A1)  

 is the propagation constant for the horizontal wire above 

ground where   

  ( ) 0

11 ln(2 / ) , ,
2

c iw

j
z h a J a h h z




 − +            (A2)                      

is the series impedance of the conductor above earth, and 

( ), ,cJ a h h is the Carson integral defined as 

   ( ) ( ) ( )2

2

2 0

2
, , cosh

cJ a h h u e a d
k

  


−= −            (A3)  

       

2 2

2u k= − , 
/4

2 0 2e jk   −  if 2 0 2r   .  

In (A2) ziw is the intrinsic impedance per unit length of the 

conductor: 

( ) ( ) ( )0 1/ 2 /iw i dc w w wz r j l r k a J k a J k a= + =       (A4) 

where      

                        ( )21/dc wr a =                                     (A5) 

is the resistance per unit length of the wire at dc (i.e., zero 

frequency), w is the wire conductivity, ( )
1/2

0w wk j = −  

and  ( )0 wJ k a and ( )1 wJ k a  are Bessel functions of argument q,  

and order zero and one, respectively. Low and high frequency 

approximations to iwz are available [15].   

The admittance per unit length is  
 

          
1

11 02 ln(2 / )y j h a j c  
−

 =               (A6) 
 

where the capacitance per unit length is defined as  
 

      ( )02 / ln 2 /c h a=                            (A7) 
 

Since the horizontal conductor is semi-infinitely long, there 

is no reflected wave from the right side and the input impedance 

http://ece-research.unm.edu/summa/notes/In/0064.pdf
http://ece-research.unm.edu/summa/notes/In/0435.pdf
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is simply the characteristic impedance of the wire above earth.  

This impedance is  
 

    0 11 11/th TLZ Z z y= =                               (A8) 
 

Appendix B 
 

Comparison to Distributed Voltage Source Excitation Theory 
 

Given that the reciprocity-based derivation is not a traditional 

approach to the problem of an EM wave incident on conductors, 

it is important to validate the results by comparison to more 

traditional methods [17] or [23].  

The distributed voltage source excitation theory is discussed 

for a generic transmission line illuminated by an incident plane 

wave in [17], Fig. 7.17.  Further, the validation will be 

performed for a generic line length L, showing that it holds also 

for L → ∞.  Without limiting generality, it will be assumed that, 

in reference to Fig. 2,  ht  h ( an infinitesimal gap distance), so 

that the gap is at the top of the vertical conductor (although, as 

long as h << λ, the final result is independent of the exact value 

for ht).   The validation holds for both PEC and lossy ground 

and conductor conditions, the only difference being in the 

actual values used for Z0TL the and γTL. Finally, to be consistent 

with notation of this paper, x and z in [17] will be replaced by z 

and y respectively, E0, d and k in [17] will be set equal to Ev, h 

and k0 respectively, and instead of γ in [17],  -jγ will be used, 

consistently with (16).   

The solution in [17] is provided through the BLT equations, 

a compact version of the telegraphers’ equation solution written 

as in [17, eq. (6.42)] for the voltages and currents at the a line 

terminations with generic impedances Z1 at z=0, and Z2 at z=L. 

The same equations can be formulated for the case of 

distributed source, referring to the case of a line illuminated by 

an incident wave, as in [17, eq. 7.35], and from that, with the 

present notations, the termination voltage V(z) at z=0 can be 

written as  

2 1 1 1 2

2 2

1 2 1 2

(1 ) (1 )
(0)

jL

jL jL

e S S
V

e e



 

  

   

+ +
= − −

− + − +
                (B1) 

 

where S1 and S2 are source terms that depend on the incident 

field and ρ1 and ρ2 are the line termination reflection 

coefficients. 

For the purpose of this comparison, Z1 → ∞ (i.e., the input 

terminals are open-circuited in the same way as the problem 

described earlier in Fig. 1). Also, in order to represent the semi-

infinite line condition, Z2 will be set to the characteristic 

impedance of the transmission line, so that there is no reflected 

wave. With these assumptions then ρ1=1 and ρ2=0 and (B1) 

simplifies as  

2(0) 2 jLV e S−=                                  (B2) 

where  

                         
( ) ( )' 1 2

2

0

1

2 2 2

L
j L jL

S

V V
S e V d e

   
+

= − + −                             (B3) 

 

In (B3), 𝑉S
′ is the distributed voltage source along the wire 

which is related to the external field along the line Ez, at the 

height "y=h" from the ground). This is the z-component of the 

incident plus reflected field, that was given in (17) and (18): 
 

( )

( )0 0 0

'

sin sin cos

( , )

sin

S z

jk h jk h jk z

v v

V z E z h

E e R e e
   − −

=

= −
       (B4) 

In addition, the terms V1 and V2 in (B3) are the lumped voltage 

sources at each end due to the y-component of the external field 

Ey(y,z) (from (20) and (21). Here only V1, the one in z=0, is 

considered because the other will be infinitely far away and, 

hence, not part of the solution, thus 

( )1

0

( ,0) cos 1

h

y v vV E y dy E h R= − = − +             (B5) 

where in the evaluation of the integral the same approximation 

as in (23) was used, (i.e., assuming that h is electrically small).  

By replacing (B5) in (B3) and then in (B2) it was then shown 

that V1 from (B5) is the term that corresponds to the vertical 

contribution of V(0) in (B2), and that corresponds to Voc1 from 

(23). Finally, by replacing (B4) in (B3) and evaluating the 

integral analytically for L→∞ (with the assumption of Im[γ]<0 

to assure convergence) as 

( ) 0 cos

00
cos

jL
j L j k je

e e d
k


    

 


− −

= −
+  

it is found that the term that corresponds to the horizontal 

contribution of V(0) in (B2) equals Voc2, thus 
 

( ) 1 20 oc ocV V V= +                             (B6) 

that completes the validation of (26) through the conventional 

TL theory. It has also been verified that a more general 

validation holds with finite L, by taking into account the 

dependence of Ey(y,z)  on the vertical coordinate in the 

calculation of the integral in (B5).  
 

Appendix C 
 

Lossless Line over Perfect Ground 
 

For perfectly conducting earth, εr2 → 1, 2 → , thus 1vR → . 

Furthermore, for a lossless line γTL = k0 and (26) reduces to  
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jE h
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From (18):  
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A further approximation can be considered for h << λ=2π/k0 

that leads to 

2

0( , ) 2 sinzv vE x y jE k h =                           (C3) 

and replacing (C3) into (C1) it is found: 
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             (C4) 

An equivalent finding to (C4) is shown in [23], p. 85. This result 

shows that for a lossless line, and for a distance from the ideal 

ground plane that is electrically small, the voltage on the line 

(with zero reference both to ground and infinity) is independent 

of the frequency and the angle of incidence.   


