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EMP Coupling to a Straight Conductor Above
Ground: Transmission Line Formulation Based
on Electromagnetic Reciprocity

R. G. Olsen, Fellow, IEEE, A.G. Tarditi, Member IEEE

Abstract-- A simple model for coupling of an electromagnetic
plane wave incident on a conductor above ground has been
developed using reciprocity theory, providing some advantages as
compared to the conventional transmission line approach. The
model is developed using a semi-infinitely long, single conductor
above a lossy ground plane, and connected by an arbitrary load
impedance to a vertical grounding conductor. This configuration
corresponds to a worst-case wave coupling, because it leads to a
line induced current larger than in the cases of finite and
multiconductor lines. A frequency domain Thévenin equivalent
model is developed to relate the incident wave amplitude to the
voltage across a generic load, connected at any point on the vertical
conductor. The application to the threat analysis of a High-
altitude Electromagnetic Pulse (HEMP) impact on a power
transmission line is discussed by considering the time domain
solution (via inverse Fourier Transform) for an incident EMP fast-
rise transient (E1) waveshape, following the standard IEC
specifications. For typical high-voltage power line load
impedances, it is shown that voltage magnitudes in the MV range
can be induced across the line termination, in the case of a wave
with near-grazing incidence angle, and with wave vector aligned
along the horizontal conductor.

Index Terms—Electromagnetic Pulse (EMP), Transmission
Line Analysis, High Voltage Transmission Lines

I. INTRODUCTION

A. Background

he possible consequences of a large-scale Electromagnetic

Pulse (EMP) event on the electric power infrastructure has

been studied for several decades, e.g. [1,2,3]. More
recently, in part due to the ongoing modernization of the power
grid, there has been a renewed interest in this matter, with
specific focus towards the investigation of EMP risk-mitigation
solutions related to the most critical grid assets [4].

In this context, a research effort sponsored by the US
Department of Energy was initiated in 2016 [5], with the intent
analyzing possible specific knowledge gaps related to the risk
of EMP impact on high-voltage, power transformers
(transmission-class), that indeed represent the most critical
power grid assets. As a part of this initiative, this paper deals
with the modeling of the fast-rise, initial transient of the EMP
(typically referred to as E1 [6]) and, more specifically, focuses
on an alternative formulation of the transmission line approach.
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for computing the voltage induced across the termination of a
power line impacted by an E1 EMP component

B. Problem Statement

This work is focused on providing a quantitative estimate of E1
impact on a power line termination, for a realistic set of
scenarios and for devising a guideline to assess the vulnerability
of the grid components. While there are several possible
configurations for transmission power lines, an important
simplification can be made by considering the geometry that
would lead to highest induced voltage or current on the line
termination, for a given EMP illumination.

As has been shown in previous analyses [7-9], the case for
a single, isolated perfectly conducting wire, with open circuit
terminations, and without ground plane, leads to the maximum
computed current induced by the EMP wave. The presence of a
ground plane (both in the case of actual and ideal conductivity)
and of other parallel wires provide some mitigation of the
coupling from incident EMP.

For the present study, in order to provide relevant
engineering estimates, the more realistic case of a single
conductor over ground, with generic termination impedances,
has been considered. In this context, the semi-infinitely long,
open-circuit termination case, will provide the worst-case
scenario, (i.e., an upper limit for the EMP-induced termination
voltage to ground, thus representing a conservative estimate
from the perspective of EMP wave coupling). Using this model
as a base, the induced voltage across a transformer input can be
found by using a realistic input impedance for such a
transformer.

C. Computational Approach

In principle, the calculation of the current induced on a
conductor by an impinging electromagnetic wave of given
characteristics can be done by solving the set of Maxwell
equations along with the appropriate boundary condition
specifications. For the case of a conductor parallel to an air-
earth interface, this has been done for a variety of different cases
and with a mix of analytic and numerical methods [10-12]: in
particular, for applications to EMP-E1 coupling to power lines,
the approximate solution via a transmission line approach is
often considered, due to its simplicity and wide range of validity
[13-15].

In the present study, a novel, electromagnetic-reciprocity
based approach to the solution of wave coupling to a power line
is presented, illustrating some inherent advantages and
providing validation with previously published results.
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I1. DESCRIPTION OF PROBLEM AND SOLUTION OVERVIEW

The scenario under consideration is that of a semi infinitely
long (0 < z < ) single conductor transmission line above earth
illuminated by a single frequency (w = 2zf) plane wave and its
reflection (Fig. 1).  The transmission line consists of a
horizontal conductor along the z-direction in the x = 0 plane
augmented by an attached grounded vertical conductor. The
line is loaded with a lumped impedance Z, located at a height y
= hy along the vertical conductor. Each conductor is assumed
to have a conductivity oy and a radius a. The earth is assumed
to have a conductivity o, and a relative permittivity e2. Free

space is represented by permittivity and permeability g, and po
respectively. Finally, the vertical conductor extends into the
earth a distance hg and the portion below the surface must be
accounted for in the solution.
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Fig. 1. Geometry of the problem

The solution approach consists in first removing the
impedance Z leaving an open circuit at height h;, as shown in
Fig. 2. Then a Thévenin equivalent circuit at these terminals
(shown in Fig. 3) is identified, thus including the incident and
reflected plane wave, and the open-circuited, semi-infinite
transmission line. The open circuit voltage of this Thévenin
equivalent is found using reciprocity theory. In parallel with
this, the Thévenin impedance is found. Once this equivalent
circuit has been identified, the voltage across and current
through the impedance Z can easily be found.
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Fig. 2. System with termination impedance removed.
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Fig. 3. Thévenin equivalent for the system with termination impedance (Z)
shown.

I1l. RECIPROCITY SOLUTION — FREQUENCY DOMAIN

A. General Frequency Domain Solution

A linear isotropic system (not necessarily electrically small)
with two pairs of terminals (Ports) 1 and 2 is considered, as
shown in Fig. 4. If “Problem a” and “b” represent two different
sets of voltage or current sources for the same system, it is
known from reciprocity theory that [16,17]
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Fig. 4. Arbitrary linear isotropic system with two pairs of terminals (Ports)
with voltages and currents defined at Port 1 and Port 2.

At this point, the two specific problems to be used in the
reciprocity solution are shown in Fig. 5 and will be described
here. Each involves the same linear, isotropic system with two
ports. The first port is on a vertical wire at z = 0 and height h;
while the second is on a horizontal wire of height h at a distance
z to the right of the vertical wire or at some height y along the
vertical wire.
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+
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Fig. 5. Problems to which reciprocity theory will be applied to identify a
Thévenin equivalent circuit

The first problem in Fig. 5a corresponds to “Problem a” in
Fig. 4 with its Port 1 driven by a current source of amplitude
I, =1,(h,0) and Port 2 on the horizontal wire at z (or on the
vertical wire at height y) short circuited so that V,, =0. The
voltage across Port 1 is V,, while the current into Port 2 is

I, =—lo(h,z). The minus sign is needed because the



reference directions for 1,, andl,(h,z) are in opposite

2a
directions. The second problem in Fig. 5b shares the same
geometry as that of Fig. 5a but is excited by an external wave

E,.. (incoming plane wave and reflected wave) that satisfies

air-earth boundary conditions at y = 0 and induces a current |,
on the wire which is open circuited at Port 1 so that 1, = 0.
The current 1, induced on the wire causes an additional electric
field E, that again satisfies the air-earth boundary conditions at

y = 0. The total voltage across Port 2 (of length d /) due to the
total axial electric field is

(En (h2)+E,(h2))d7=0 @

and is equal to zero if the wire is a perfect electric conductor.
However, this derivation can be generalized to wires with a
finite intrinsic impedance per unit length, z,, with the same

! Tiw
result since terms containing z;, cancel. Note that the absence

of a minus sign in (2) is due to the choice of reference directions
for the voltage and the electric field. The specific “Problem b”
of Fig. 4b will now be described. The specific source for this
problem is the portion of the induced current 1, between the

terminals of Port 2. Given (2), the voltage across Port 2 can be
written as  dV,, =E, (h,z)&dz=-E, (hz)&dz and a

corresponding voltage dV,, (i.e., the open circuit voltage dV,,

due to the Port 2 source current) can be identified across Port 1.
It should be noted that each voltage is “differential” because the
Port 2 gap is infinitesimal while the incident electric field is
finite.

The problem illustrated in Fig. 5a (i.e., “Problem a”) can be
solved in a straightforward manner for arbitrary frequencies
using either numerical techniques or analytical techniques
appropriate for the high frequency regime [18]. Later simple
explicit solutions for lower frequencies will be given, but here
it will be assumed that the current through Port 2

I, :—Io(h,z) (3)
can be found.

It is not actually necessary to directly solve for the currents
and voltages in the circuit of Fig. 5b (i.e., “Problem b”) . In
fact, one advantage of the approach here introduced is that
solving this relatively complicated electromagnetic scattering
problem can be avoided. Rather, the open circuit voltage in
“Problem b” (the original goal) will be found using reciprocity.

Since V,, =0 and 1, =0, (1) reduces to

0= dvlb I+ dVZb P 4
or equivalently

0=dV,.(h)l,(h,0)+E, (hz)-adzl,(hz) (5)

If now, (5) is solved for the open circuit voltage and (3) inserted
into the result (for the horizontal wire)

dv,. (h)=—(1,(h,2)/1,(h,0))E,, (h,z)-a,dz (6)

Finally, since (6) is only the result for the portion of the incident
field at a point “z”, it must be integrated over sources at all
points on the wire including those on the vertical wire. The
result is

Ve ()= I l,(y,0)E, (v,0)dy
v 7)
(ft O)II (h,2)E, (h,z)-a,dz

The contribution of the wire in the earth has been included in
(7). However, it can often be neglected at lower frequencies
because the vertical electric field in the earth (E_,,, ) is very

small compared to that in the air (E,, )by the boundary
condition E_,, = (jows,/o,)E,, while the current s
continuous across the boundary. Also, between the terminals
of Port 1 the total electric field is much larger than |E

inc

because the scattered electric field is concentrated around open
circuited terminals as in a receiving antenna. Hence it is not
necessary to add E,_in calculating the total open circuit

voltage.
While solving “Problem a” the Thévenin impedance can be
determined by dividing the voltage V (h[ )=V,, across the

la
Thévenin terminals by the current source amplitude, I (h,,0)

when the current source is connected to Port 1.

Zy(h)=Va(h)/1(h) ®

From Fig. 3, the current through the impedance Z can be written

as
12 () =V (h)/(Zy () +2) ©)
and the voltage across the impedance is simply

Vv, (h)=1;(h)Z _Voc(ht)Z/(Zth(ht)*‘Z) (10)

To this point, the solution (7) is valid for any frequency as
long as i) the appropriate current distribution is used and ii) the

gap across which V, (h, ) is defined is small compared to the

wavelength of the incident wave; no voltages are defined for

which the spacing between terminals is comparable to or larger

than a wavelength.

The motivation for using reciprocity theory to solve a
problem that has been previously solved using field coupled
transmission line theory [19], can be highlighted as follows:

1. The use of reciprocity theory eliminates the need to solve a
relatively more difficult problem (i.e., that of the problem in
Fig. 5b) that involves electromagnetic scattering, to find a
current distribution on the conductors.

2.No voltages need to be defined (thus no reference zero
potential is required) except those between closely spaced
terminals, for which the voltage is unique and well defined.
This is important because the voltage between the line and
ground is strictly unique only when the condition h << A is
satisfied

3. By proper selection of currents in (7), the solution can be used
at higher frequencies than in methods that are based on the
transmission line approximation. For example, a current
such as that in [20] might be used.

4. Since the system modelled by the Thévenin equivalent is
linear, the equivalent circuit can be used to solve for the
current in a non-linear load such as has been done in [19,21].



B. The Incident Wave Electric Field

The incident electric field consists of a vertically polarized
plane wave and its reflection in the yz plane. The relevant axial
(e.g., along “z”) electric field is

E,(X,y,2)=E, (x,y)e = (11)

where

E,(xy)=E,siny (e —Re ) (12)

E, is the amplitude of the incident wave, and the geometry for

this incident wave is shown in Fig. 6 [8]. Reference [8] also has
a more general incident plane wave. Ry is the reflection
coefficient for the vertically polarized field expressed as

(13)

(6, +0,/ ja)go)sinl//—[(grz +0, | jwe,)—cos? l//]l/2
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Fig. 6. Geometry of the incident plane wave and its reflection for ¢ =0. The
transmission line is absent for this calculation.

The vertical electric field of the incident plane wave is

E, (X Y,2) = E, (x,y)e toreosveos w

where
Ey (X, y) _ EV COSV/(ejkoysiny/ + Rve—jkoysiny/ )ejkuxcosy/sinzp . (15)

C. Reduction to the Low Frequency Limit

If it is now assumed that h << A, the problem illustrated in
Fig. 5a (i.e., “Problem a”) can easily be solved using the
equivalent transmission line theory for a wire above earth, since
the wire is driven through electrically short vertical wires by a
current source at its left end [22]. The result is

l,(h,2) = 1,(h,0)e "’ (16)
where the propagation constant y;, is given in Appendix A.
From (7), using h << 2 for the first integral and (16) with
l,(h,0)=1,(h,0) for the current, it is found

Vo (h,) =V, +V,, =

ocl oc2 =

_ - , (a7
—hEy(h/2)—je”’TLZEinC(h,z)-ézdz an
0

where the vertical electric field is evaluated at half the height of
the horizontal wire although the specific height is arbitrary
since the vertical electric field is relatively constant along the
vertical wire.

The Thévenin impedance can be determined while solving
“Problem a” with reference to the circuit shown in Fig. 7. Here

5

the current source | (h,O) connected to the input terminals is in
series with the grounding impedance Z, shown as the buried

wire in Fig. 1 and the input impedance Z,, of the semi-infinite

wire above earth transmission line. This impedance is simply
the characteristic impedance z,, of the wire above earth

equivalent transmission line and is given in Appendix A. For
this derivation, Z , at low frequencies can be determined using

standard quasi-static techniques or high frequency models
discussed in [23,24].

o r—
V(h,) CP I(h,)
[:| Zin=Zom

Fig. 7. Input Circuit for Conductor above the Earth Transmission Line. The
source isaty = h;.

Given this background, the Thévenin impedance for the
equivalent circuit in Fig. 3 is

Zth (ht ) = ZgO + ZOTL

D. Calculating the Low Frequency Thévenin Equivalent

g0

(18)

The open circuit voltage in (17) will now be evaluated using the
incident field given in the previous section. To begin, since the
current on the vertical wire has been assumed to be constant,
the term V_, simply becomes

Vo =—Eh(1+R,)cosy

o = (19)
In a subsequent paper, the constant current assumption will be
relaxed and the current on the vertical wire allowed to be a
function of the distance above the earth.
Next, using (16), (17) and (11) with x = 0, the contribution
of the horizontal conductor can be written as
V,,, =-E, (0, h)J'e”'k‘l”“"’e’j’““Zdz

0

where E, (0,h) is defined in (12). This integral can be

evaluated analytically (assuming, in general, that the imaginary
part of y;, is nonzero) and (20) becomes

(20)

g L L GL) (21)
(ko COS‘//+7TL)
Hence, the open circuit voltage is the sum of (19), and (21):
iE,, (0,h
Voc :_Evh(l_'_Rv)COSl//"' ! ZV( ) (22)

(ko COS'//'"?/TL)
As shown earlier, the Thévenin impedance is given in (18).

E. Validity of the Low Frequency Result

As shown in Appendix B, that the open circuit voltage in (22)
reduces to the expression from [19] derived from the solution
of the telegrapher’s equations.



Furthermore, the simple result given in (22) is generally
valid for frequencies such that h << A, or f(MHz)
<< 300/h (meters) . In the specific case for a HEMP standard

waveform, it is expected be valid over a wide enough range of
frequencies to calculate worst-case induced voltages for the
following reasons. Specifically, the first term in (22) (i.e., V,

ocl
) can be ignored if two important criteria are satisfied. First, if
h,= 0 (as assumed for the results in this paper) there are no

problems with high frequency resonances which can occur for
wire lengths greater than a quarter wavelength and can cause
V., to become large. Second, it is shown in Section 1V and

validated numerically that the second term of (22) dominates
the first in the case of near-grazing incidence. Since this case
produces the largest line termination voltages (i.e., the worst-
case scenario), the validity of V,, over the entire frequency

range relevant to the EMP becomes an important issue. The
only assumption made in deriving (21) is the that of the wire
over earth equivalent transmission line current, as in (16). This
current is valid at low frequencies, but also can be shown to be
in good approximation equivalent to the current on thin lossless
wires in free space (i.e., |exp(—jk,z)) when the frequency

becomes sufficiently high [25]. In this case then (21) can be
accurate enough at higher frequencies, while considering a
small amount of loss due to the conducting wire that is required
for convergence, and (15) for the electric field.

For the Thévenin impedance generally, Z,, >>Z_,.Hence

the relevant question is whether Z, is accurately represented

by the characteristic impedance of the equivalent transmission
line over the frequency range of the HEMP standard waveform.
As it was verified, the analysis of the transfer function of the
linear system that represents coupling of the EMP pulse to a
transformer at the end of a semi-infinite power line at height h
=10 meters (the case considered here) indicate that frequencies
higher than approximately 5 MHz are attenuated. Further, it
has been shown that the transmission line approximation is
reasonably valid (for h = 10 meters) up to 5 MHz [20]. Hence,
it is can be concluded that the Thévenin impedance is
reasonably valid over the range of frequencies relevant to this
problem.

IV. DISCUSSION OF THE WORST-CASE FREQUENCY DOMAIN
RESULT (GRAZING INCIDENCE)

From (21) it can be noted that Vo becomes large for plane
waves at angles of incidence such that k,cosy +jy,, =0.

Generally, this occurs for angles near grazing incidence, from
the right of Fig. 1 (i.e., cosy = -1 in Fig. 5) and results in a

significantly pulse enhanced coupling to the conductor (and
then to its load). From (13), it is also clear that E,y vanishes for
v = 7, however a detailed analysis of (21) shows that Voc
reaches a maximum value at an angle wmax, as w approaches =
[26]. It can be shown that this maximum also occurs for finite
line lengths, and the longer the line, the closer wmax gets to =,
that is Voc2 peaks closer to grazing incidence conditions.

This result was analyzed by first considering that the impact
of the incident field on the conductor can be represented by a
set of distributed voltage sources (as in [18], [27]). These
sources represent the voltage dVs(z)=Es(zs)dz on each

6

infinitesimal segment dz of the line that is induced from the
external (incident plus reflected) field Es(zs) in z = z;. Each
source also generates traveling waves along the conductor: for

example, similarly to (16), let dV;,, (0,z,)=e""*dV,(z,) be

the transmission line voltage in z=0 (with zero reference to
infinity, for a semi-infinite line) from a source dVy(z) in z=z.
The total line voltage will be then found by integrating the
dViine(0, zs) contributions, for each zs ranging from 0 to oo. This
total line voltage corresponds to Vo in (21), as it is may be
deducted from the discussion in Appendix B.

One could consider an approximate distribution of finite
voltage sources Vn=Vs(zn)=Es(zn)4z defined over segments of
the line of length Az and centered in z = z,. Then the total line
voltage can be approximated with the series

N N N
V(0) =D Ve (0,2,) =D eV, (z,) =) e E,(z,) Az
n=0 n=0 n=0

that converges to the integral Vo2 for N—co and A —0.

By analyzing the terms of the series, it can be shown that the
traveling wave contributions Viine(0, z,) add up both with a
larger amplitude, and with smaller phase spread when
approaches ymax. On the other hand, for y away from ymax, these
contributions have lower amplitudes and/or an increased phase
spread, thus leading lower cumulative effect [28].

This effect of a larger induced voltage at near-grazing
incidence is know from previous analyses of EM wave coupling
on long conductors (e.g. [9, 26]), and it also represents the
fundamental physics behind the Beverage receiving antenna
[25].

V. THE TIME DOMAIN RESPONSE

This section presents the application of the TL model in the time
domain. The incident waveform is considered according to the
IEC-E1 standard [6] as

E,(t)=0, t<0
—at —bt (23)
Eyk, (67 —e™), t>0
where
£, ~50,000V /m, k = (L](&j 13,
b—a )\ &
a, =4x10" sec™, b =6x10° sec™
. The Fourier transform of this waveform is
Ev (50) = Eolkle_jwt ( bl & . j (24)
(a + jo)b, + jo)

The waveform in (23) has rise and fall times of approximately
5 and 60 ns, respectively. The Fourier transform (24) was
multiplied by the voltage across an arbitrary impedance Z in
(10) (together with (12) and (12)-(14), and (18) with Z , set
to zero), then sampled and transformed into the time domain
using the inverse Fourier Transform. Several comments will be
made before presenting the results.

First, the solution was (partially) validated by comparing the
calculated value of V_ for the special case of perfectly
conducing earth and h << 1. As shown in Appendix C, the
result for V. should be equal to —2hE, . Since this is a constant,



it was verified that in this case the time domain response indeed
corresponds to the waveshape (23) multiplied by —2hE,.

Second, the low frequency range of (22) is important for
calculating the long-term time response. Here, however, the
results shown in Figs. 8 i and 9 were generated by calculating
the inverse transform of (10), using (22), (18) and the capacitive
load impedance. The finite number of samples used produces
a small offset voltage which tends to zero as the number of
samples was increased, thus it has been subtracted from the
result. Finally, while any load (including nonlinear ones) could
be used for the calculations of termination voltage, either a 100
pF or 300 pF capacitive load was considered. These choices
were made because measurements of typical load impedances
of transformer bushings or surge arresters in high-voltage lines
give values of capacitance between 100 and 300 pF.

VI. RESULTS

Using the IEC input pulse waveform (23) for the incident field,
the voltage across the terminals shown in Fig 1 was computed
for a capacitive load impedance and with the physical
parameters in Table I, while the FFT used 128K samples with a
value of the largest time sample for the inverse Fourier
transform equal to 10 psec. The results are shown in Figs. 8 and
9.

Wire/Earth Geometry Incident field/
loads
ow (S/m) | 35x10° | a(m) | .01 | Zgp(Q) 5
o (S/m) 0.01 h(m) | 10 Ci(pF) | text
&r 5 he (m) 0 Ev(Vim) | 1.0
d(ad) | 0 En (V/m) | 0.0

Table I. Parameters used for calculation of transient voltages in Figs. 8 - 9.
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Fig. 8. Load voltage across a 100 pF capacitor at the junction of a semi-
infinite horizontal single conductor transmission line and a vertical riser at its
end due to an incident IEC-E1 pulse, and with the parameters given in Table I.

It is shown in Fig. 8 that, aside from the grazing incidence
cases, the load voltage for the 100 pF case i) is roughly
independent of incidence angle ii) becomes spread out over a
few microseconds and iii) reaches a maximum magnitude of
about 200 kV. As expected, and discussed in section IV-A,
however, the magnitude of the load voltage increases as the
angle of incidence approaches grazing. In this case, the
maximum load voltage can reach about 1 MV. For the 300 pF
case of Fig. 9, as expected, the maximum voltage magnitude is
lower, limited to about 100 kV for large incidence angles, and

to approximately 800 kV for near-grazing incidence. It has
been verified that for larger transmission line heights, these
voltages can be expected to increase.

0
2200 |«
S 400
b / —— = 0.167m,0.25m, 0.51t
© -600 |/
2 \ — —)=0.833n
S o0 |/
T —— )= 0.938n
9 -1000
— — )= 0.984n
-1200
-1400
Time (usec)

Fig. 9. Load voltage across a 300 pF capacitor at the junction of a semi-
infinite horizontal single conductor transmission line and a vertical riser at its
end due to an incident IEC pulse, and with the parameters given in Table I.

VII. CONCLUSIONS

A model for the coupling of the fast-rise component of a High-
altitude Electromagnetic Pulse (HEMP) to a transmission
power line has been developed using the electromagnetic
reciprocity principle. The model has been validated by
comparing it to the traditional approach based on transmission
line theory with a distributed voltage source excitation.

Time-domain results for the solution of the voltage across a
typical high voltage power line load impedance (such as a
transformer bushing) have been derived by considering the
impact of a plane wave on a single, semi-infinitely long
conductor line above a lossy ground plane. This provides an
illustration of the worst-case condition for the surge voltage that
can be generated on an actual power line termination. It was
found that the maximum voltage across the load can reach
magnitudes in the MV range , for near-grazing wave incidence
conditions. Transmission lines higher than 10 m have been
verified to have larger induced voltages.

While the geometry considered for this analysis is limited to
conditions for which the line height is electrically small as
compared to the incident wavelength, extensions to a more
general case that includes higher frequencies, as well as to
responses in presence of non-linear loads, can be developed in
a straightforward manner and will be discussed in a follow-up
publication.
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Appendix A
Wire Above Earth Equivalent Transmission Line

Expressions for the relevant parameters of a transmission line
equivalent to the wire over the earth problem at low frequencies
are given here [19].

e :ijxlznyn =
1/2
J . (a,h,h)) j2rwe,z, (w)
k2 [1-=e _ 0w M@, ) <0
( 0( In(2h/a)] In(2h/ a) )

is the propagation constant for the horizontal wire above
ground where

(A1)

z

~

{In(2h7a)-J,(a,h,h)} +z, (A2)

Joopy
11
T
is the series impedance of the conductor above earth, and
J. (a,h,h) s the Carson integral defined as

0

J.(a,h,h)= k—zzj(u —x )™ cos(xa)dx
20

(A3)
u=x’ -k, k, =" Jouo, if o, >> weye,, .

In (A2) ziw is the intrinsic impedance per unit length of the
conductor:
z, =T+ jol =1 (k,a/2)J,(k,a)/ I, (k,2) (A4
where
. =1/(o,7a’) (A5)
is the resistance per unit length of the wire at dc (i.e., zero
frequency), o, is the wire conductivity, k, :(—ja),uo(fw)“2

and J,(k,a)and J,(k,a) are Bessel functions of argument g,

and order zero and one, respectively. Low and high frequency
approximations to z,, are available [15].

The admittance per unit length is

Yu = 27 jog, {In(2h/a)} " = joc (A6)
where the capacitance per unit length is defined as
c=2z¢,/In(2h/a) (A7)

Since the horizontal conductor is semi-infinitely long, there
is no reflected wave from the right side and the input impedance
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is simply the characteristic impedance of the wire above earth.
This impedance is

Zth = ZOTL =\ / Y

Appendix B

(A8)

Comparison to Distributed Voltage Source Excitation Theory

Given that the reciprocity-based derivation is not a traditional
approach to the problem of an EM wave incident on conductors,
it is important to validate the results by comparison to more
traditional methods [17] or [23].

The distributed voltage source excitation theory is discussed
for a generic transmission line illuminated by an incident plane
wave in [17], Fig. 7.17. Further, the validation will be
performed for a generic line length L, showing that it holds also
for L — co. Without limiting generality, it will be assumed that,
in reference to Fig. 2, hi= h (an infinitesimal gap distance), so
that the gap is at the top of the vertical conductor (although, as
long as h <<, the final result is independent of the exact value
for hy). The validation holds for both PEC and lossy ground
and conductor conditions, the only difference being in the
actual values used for Zorthe and yr.. Finally, to be consistent
with notation of this paper, x and z in [17] will be replaced by z
and y respectively, Eo, d and k in [17] will be set equal to Ey, h
and ko respectively, and instead of y in [17], -jy will be used,
consistently with (16).

The solution in [17] is provided through the BLT equations,
a compact version of the telegraphers’ equation solution written
as in [17, eq. (6.42)] for the voltages and currents at the a line
terminations with generic impedances Z; at z=0, and Z; at z=L.
The same equations can be formulated for the case of
distributed source, referring to the case of a line illuminated by
an incident wave, as in [17, eq. 7.35], and from that, with the
present notations, the termination voltage V(z) at z=0 can be
written as

Vs, (U+p)  S,(1+p)p,
- 4 PP —e?lr + P10,

V(0) = (B1)

where S; and S; are source terms that depend on the incident
field and p1 and p, are the line termination reflection
coefficients.

For the purpose of this comparison, Z; — o« (i.e., the input
terminals are open-circuited in the same way as the problem
described earlier in Fig. 1). Also, in order to represent the semi-
infinite line condition, Z, will be set to the characteristic
impedance of the transmission line, so that there is no reflected
wave. With these assumptions then pi1=1 and p,=0 and (B1)
simplifies as

V(0)=2e Vs, (B2)
where

1% : VARV,

S, =—=[e=N yelv L2 B3

2 =5 j ()G +elr 2 (83)

In (B3), Vs is the distributed voltage source along the wire

which is related to the external field along the line E;, at the

height "y=h" from the ground). This is the z-component of the
incident plus reflected field, that was given in (17) and (18):

Vs (2)=E,(.h)
=E sin l//(ejkohsinw —R e—jkohsim// )e—jkozcosw

In addition, the terms V1 and V; in (B3) are the lumped voltage
sources at each end due to the y-component of the external field
Ey(y,z) (from (20) and (21). Here only V3, the one in z=0, is
considered because the other will be infinitely far away and,
hence, not part of the solution, thus

(B4)

h
V, :-j E,(y,0)dy = —E, cosyh(1+R,) (B5)
0

where in the evaluation of the integral the same approximation
as in (23) was used, (i.e., assuming that h is electrically small).
By replacing (B5) in (B3) and then in (B2) it was then shown
that Vi1 from (B5) is the term that corresponds to the vertical
contribution of V(0) in (B2), and that corresponds to Voc1 from
(23). Finally, by replacing (B4) in (B3) and evaluating the
integral analytically for L—oo (with the assumption of Im[y]<0
to assure convergence) as

o inlly

J‘eJy(L—g)e—jgkUcoswdg - _ JE

5 v +k, cosy
it is found that the term that corresponds to the horizontal
contribution of V(0) in (B2) equals Vo2, thus

V (0) :Vocl +Voc2 (BG)

that completes the validation of (26) through the conventional
TL theory. It has also been verified that a more general
validation holds with finite L, by taking into account the
dependence of Ey(y,z) on the vertical coordinate in the
calculation of the integral in (B5).

Appendix C
Lossless Line over Perfect Ground

For perfectly conducting earth, e — 1, o, —> o, thusR, —> 1.
Furthermore, for a lossless line yr. = ko and (26) reduces to

JE,, (O,h)
V,. =—2E,h(1+R,)cosy + ————— (C1)
(ko COSY + 77, )
From (18):
E_ (X, y) = E, siny (eMysv _R g loysiny
2 (% Y) =E,siny ’ ) (2

=2jE, sinysin(k,ysiny)
A further approximation can be considered for h << A=2n/ko
that leads to

EZV(X’ y) = 2JEkahS|n2 l//
and replacing (C3) into (C1) it is found:
2E k,hsin®y
(ko cosy +k,)

(C3)

V,. =—2Ehcosy —

L, (C4)

= 2Eh| cosy—— Y |- 2Eh
(cosy +1)

An equivalent finding to (C4) is shown in [23], p. 85. This result

shows that for a lossless line, and for a distance from the ideal

ground plane that is electrically small, the voltage on the line

(with zero reference both to ground and infinity) is independent
of the frequency and the angle of incidence.



