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ABSTRACT

A variety of neural network models and machine learning tech-
niques have arisen over the past decade, and their successes with
image classification have been stunning. With other classification
tasks, selecting and configuring a neural network solution is not
straightforward. In this paper, we evaluate and compare a variety
of neural network models, trained by a variety of machine learning
techniques, on a variety of classification tasks. While Deep Learn-
ing typically exhibits the best classification accuracy, we note the
promise of Reservoir Computing, and evolutionary optimization on
spiking neural networks. In many cases, these technologies perform
as well as, or better than Deep Learning, and the resulting networks
are much smaller than their Deep Learning counterparts.
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1 INTRODUCTION

Neural networks and machine learning are ubiquitous in today’s
computing landscape. Given the incredible successes of Deep Learn-
ing approaches to image classification, any scientist or researcher,
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when confronted with a task that involves the classification of data,
is compelled to try some sort of neuromorphic machine learning
approach to solve his or her problem. The researcher quickly discov-
ers, however, that applying the successes of current neuromorphic
approaches to problems beyond image classification is challenging,
and there is very little credible guidance. As such, researchers typi-
cally attempt to convert their problems to image classification, and
then apply one of the myriad image classification Deep Learning
models to solve it [11]. Or, they use techniques known as “trans-
fer learning” or “fine-tuning,” where they apply and then refine a
Deep Learning solution (that was originally developed for image
classification) to their data in hopes that it will work.

Besides Deep Learning, there are other neuromorphic approaches
to data classification that hold promise because they rely on highly
recurrent neural networks, rather than the feed-forward neural
networks employed by Deep Learning, to attack the problem. Two
notable examples are Reservoir Computing (RC), where a fixed and
highly recurrent “reservoir” is employed as a pre-processing step
to convert complex data into data that is linearly separable, and
Evolutionary Optimization of Neuromorphic Systems (EONS), where
highly recurrent spiking neuromorphic systems are trained via
genetic algorithms to solve specific problems.

In this paper, we embody a researcher who desires to use neuro-
morphic machine learning to solve some data classification prob-
lems, and we evaluate six approaches that such a researcher might
consider. Four of them are Deep Learning variants, available in the
Keras Deep Learning framework. The other two employ RC and
EONS to leverage a spiking neuromorphic system called NIDA, to
classify data. In each approach, we do not attempt to refine the
approach to each specific problem, as we are embodying a scientific
researcher who desires to use neuromorphic machine learning as a
tool, rather than a computer scientist researching neuromorphic
computing. We found that, in general, there was not one machine
learning approach that performed best overall. However, both the
spiking neural network (RC and EONS) approaches resulted in
much smaller network sizes than the Deep Learning approaches,
and thus can result in more size and power efficient neuromorphic
implementations.

2 NEURAL NETWORKS AND MACHINE
LEARNING ALGORITHMS
The general approach of neuromorphic machine learning is similar

across all of the techniques that we evaluate in this paper. We are
given a collection of data points that are partitioned into different
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classes. We use this data to train the components of a neuromorphic
system (e.g., the weights of the synapses), so that the system may
be employed to predict the classes of subsequent data. The compo-
nents that get trained, and the techniques for training, differ among
the systems that we evaluate. We explain these in the following
subsections.

2.1 Deep Learning Approaches

Deep Learning is a term that encompasses layered, (mostly) feed-

forward neural networks that are trained with back-propagation.

At a high level, the neurons in the system hold values, and synapses

propagate values from one neuron to another. Synapses have weights,
and each neuron’s value is calculated as a function of its incom-

ing synapses’ weights and propagated values. The neurons are

partitioned into layers, and the connectivity from layer to layer

is predefined. Dense layers have full connectivity from neurons

in the previous layers, while other layers such as convolutional or

maxpooling layers have more restricted connectivity.

A modelin a Deep Learning system is the definition of the layers,
their connectivity, and the mathematical functions that compute
neuron values from their incoming synapses. Once a model is de-
fined, the training process uses back-propagation to define the
weights of the synapses. Back-propagation uses a gradient descent-
style process to iteratively reduce the error of the system when
applied to the training data. If a model is more complex, the training
process will be slower; as such, many researchers make their mod-
els, and often the training weights, public so that other researchers
may benefit from their training process.

There are a variety of open-source Deep Learning systems such
as TensorFlow, CNTK, and Theano [1, 28, 32]. The Keras Deep
Learning framework is a high-level framework and API in Python,
that allows one to design and employ Deep Learning models with
any of these as their back-end [5]. We have developed a very simple
data classification framework in Keras that allows us to employ
multiple models to classify data, and in this paper, we evaluate four
models:

e Perceptron is a simple model with just two layers of neu-
rons: the inputs and the outputs. They are fully connected
by synapses. As such, this model can perform linear sepa-
ration of its data. The output is passed through a softmax
activation function to generate a probability distribution for
classification purposes.

e Multi-Layer Perceptron is composed of three fully con-
nected layers, each containing 64 neurons, employing the
ReLU activation function, with a softmax at the end. Some-
times termed “vanilla neural networks,” Multi-Layer Percep-
tron networks are known to be good classifiers, with the
multiple layers and non-linear activation functions allowing
them richer functionality than linear classifiers [13]

e Conv: “LeNet-5” is a well-known convolutional model first
developed for handwriting recognition [16]. It is easily mod-
ifiable for different input structures, and therefore is our
archetypical model for convolutional Deep Learning net-
works.
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e LSTM: “Long Short-Term Memory” is an enhancement to
the neuron structure of standard feed-forward neural net-
works to add some recurrence, and ideally some memory, to
the networks [14]. Stacking LSTM layers is a commonly used
technique in order to better learn higher dimensional fea-
tures and time-series data [12]. Our LSTM implementation
contains three layers, each with 32 cells.

2.2 Spiking Recurrent Neural Networks

Spiking neural networks work very differently from the Deep Learn-
ing neural networks described above. In spiking neural networks,
there is an explicit time component, and rather than holding values,
neurons hold charge. Synapses transmit charge over time, and when
a synapse’s charge arrives at a neuron, it is added to the neuron’s
charge value. If this neuron’s charge exceeds a threshold, the neu-
ron fires, resetting its charge value to some base value and sending
charge out along its outgoing synapses.

In a spiking neural network, neuron thresholds, synapse weights
and synapse delays are configurable. When the networks are re-
current, there is no constrained structure as there is with Deep
Learning networks. The goal of training a spiking recurrent neural
network is to define the connections, thresholds, weights and delays
so that the network can “solve” an application. With a classification
application, the values of the data points must be converted into
spikes, and output spikes must be converted into classifications.
We will describe how that works in Section 2.3 below.

The spiking neural network system that we use is called Neu-
roscience Inspired Dynamic Architecture (NIDA) [24]. This is a
very simple system featuring neurons configured in three dimen-
sional space and unlimited connectivity between neurons. Weights
and thresholds are floating point values, and delays correspond
to the Eudlidean distance between neurons. NIDA has a few ad-
ditional features such as refractory periods for neurons, where
they may accumulate charge without firing, and long term poten-
tiation/depression, (LTD/LTP), where synapse weights grow and
shrink according to how responsible they are to their target neu-
ron’s firing. NIDA has demonstrated success at applications such
as data classification and control [23, 25, 27].

2.3 EONS: Evolutionary Optimization of
Neuromorphic Systems

Spiking recurrent neural networks like NIDA are not static and
tightly constrained as feed-forward neural networks are. Thus, they
cannot be easily programmed by back-propagation, and other tech-
niques must be employed to make them work effectively. EONS [27]
takes a genetic algorithm approach to training networks. In partic-
ular, the following steps are taken in EONS to generate a spiking
recurrent neural network for a particular application:

(1) An initial population of networks is generated randomly.
Heuristics may be employed to intelligently initialize net-
works, for example, to force input neurons to have paths to
output neurons.

(2) Each network in the population is evaluated and given a
fitness value. This is done by having the application apply a
training suite of tasks to it (e.g., sweeping through a training
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Name Software Neural Network Training
Perceptron TENN-Lab Feed Forward Back-propagation
MLP Keras / TensorFlow Feed Forward Back-propagation
Conv Keras / TensorFlow Feed Forward Back-propagation
LSTM Keras / TensorFlow Nodes with recurrency Back-propagation
EONS TENN-Lab / NIDA Spiking, Recurrent Evolutionary Optimization
Reservoir TENN-Lab / NIDA | Spiking, Recurrent + Perceptron | Random + Back-Propagation

Table 1: Summary of the neural networks and machine learning algorithms employed in this paper.

set of data) and measure its success (e.g., calculating the
accuracy of the classification).

(3) The members of the population with the highest fitness are
selected for reproduction, which involves mutating parame-
ters of single networks, and performing crossover operations
on pairs of networks.

(4) Return to step two with the population composed of these
newly generated networks.

(5) Quit when the fitness achieves a desired threshold, or after
a specified period of time has passed.

EONS is advantageous because of its generality — so long as an
application can define its fitness suite and a neuromorphic system
can define the reproduction operations, then EONS can train net-
works. Its major problem is that its search space can be colossal,
and therefore it can be slow (or unable) to converge. EONS has been
applied successfully to various control and classification problems
on multiple neuromorphic systems [19, 22, 26, 27].

For EONS, we use the TENN-Lab Hardware/Software Co-Design
Framework [22], which provides application and device support for
spiking neuromorphic systems. This framework includes a general
classification application, which trains networks for given labeled
classification data sets. The application assumes that the each data
point is composed of (r X ¢) values. It then employs a network with
r input neurons and inputs the values in ¢ groups, one per neuron.
The groups are separated by 5 units of simulated time. The values
themselves are converted into spikes normalized from -1 to 1.

There is one output neuron per class. For each data set, the
network runs for N time steps from when the first wave of values
begins, N being chosen based on the application. At the end of
the N time steps, the output neuron that fires the most determines
the classification. The TENN-Lab framework supports multiple
neuromorphic computing architectures, one of which is NIDA.

2.4 Reservoir Computing

Reservoir Computing [15, 18] is a paradigm that attempts to harness
the power of a highly recurrent neural network (“the reservoir”)
by training a “readout” layer to interpret its output. A high level
diagram is in Figure 1. In this work, the reservoir is a large NIDA
network, generated randomly. It processes its data for classification
like the EONS application, with r input neurons for (r X c) input
values. Each network has 100 output neurons. During the spiking
neural network simulation, firings are counted for the last M time
steps, with M being chosen based on the application. These counts
compose the state vector of Figure 1, which is then input to the
perceptron layer. The outputs of the perceptron layer are then

passed to a softmax layer, as in the Deep Learning network. The
reservoir in this system does not change once it is created. For
NIDA, this means that the LTD/LTP synaptic plasticity process is
turned off. Only the weights of the perceptron layer are trained
using back-propagation.

000 o7
0| GO 800 State Probability
Input % O Reservoir Vector| Distribution
g9 §o %
o o0 Perceptron

Figure 1: This is a simple diagram of the reservoir computing para-
digm. In our work, the reservoir is made up of a recurrent spiking
neural network model known as NIDA. The single layer connected
to the weight matrix is the output layer.

Most research on RC is heavily laden with mathematics. One
body of work employs non-spiking networks for the reservoir.
These are called Echo State Networks [15]. A second body of work
employs recurrent, spiking networks like NIDA. These are called
Liquid State Machines [18]. A third body of work employs single
neurons and delayed feeback loops as their reservoirs. These are
called Time Delay Reservoirs [4]. With all three models, “good”
reservoirs are defined by properties such as, for example, input sep-
arability and fading memory for Liquid State Machines [18]. Many
works explore optimizing based on these parameters [9], but that
expands beyond the thesis of this paper.

2.5 Summary of Neural Networks and Machine
Learning Algorithms

Table 1 summarizes the neural networks and machine learning algo-
rithms that we employ in this paper. We note that while Keras and
Tensor Flow are both open-source software packages, at present
the TENN-Lab software framework is not. The TENN-Lab authors
welcome collaborations with application and neuromorphic archi-
tecture teams who wish to explore their software.

3 CLASSIFICATION APPLICATIONS

This section introduces and briefly describes the classification data
sets that we explore in this work. The data sets come from a variety
of sources and have different properties that make them interesting.
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Figure 2: Example time series plots of two EEG signals: healthy (orange), and epileptic(blue).

3.1 Iris, Breast Cancer, Pima

These are three well-known static classification datasets, available
from the UCI Machine Learning Repository [17]. By static, we
mean that there is no temporal component to this data. For EONS
this means that ¢ equals one. This simplification required us to
change a few of the neural networks models. For Convolutional,
we simplify the LeNet-5 model from a 2D convolutional model
to a 1D model. For RC, because Reservoir Computing relies on
dynamics generated within the reservoir, the features were mapped
into multiple pulses over time for continuous stimulation. This is
necessary for high accuracy classification of static tasks in reservoir
computing [2].

The Iris data set is quite old [10] and is very frequently used
as a first classification task for machine learning experiments. It
consists of 50 data points for each of three classes of flowers: Setosa,
Virginica, and Versicolor. Each data point has four values: the length
and width of both the sepals and the petals. The Wisconsin Breast
Cancer (WBC) dataset is composed of data collected from digitized
images of a fine needle aspirate of a breast mass [30]. There are
699 data points, composed of 10 data values per data point. The
classifications are whether the mass is benign or malignant. The
Pima Indians Diabetes dataset is a set of 768 multivariate samples
from patients that either have diabetes or do not. The goal is to
determine whether a given patient exhibits the symptoms based on
the number of pregnancies, glucose concentration, blood pressure,
skin thickness, insulin levels, body mass index, pedigree function,
and age.

3.2 Satellite Radio

The Radio dataset is published by DeepSig, Inc. [8], and contains
128-sample snippets of complex-valued temporal radio signals that
have been modulated according to 11 different waveforms and
20 different signal-to-noise ratios. Each waveform contains the
same number of snippets per signal-to-noise ratio, and there are
between 4,200 and 24,940 snippets per waveform. The curators of
this data have applied a custom 5-level Deep Learning network
for classifying this data, and achieved roughly 95% accuracy when
focusing on data with the highest signal-to-noise ratio [21]. For
our testing, we selected one modulation type (8PSK) and tested
classification performance of that type vs. all of the others, with the
highest signal to noise ratio. We trained on 667 snippets, equally
divided between 8PSK and the others, and tested on 166 different
snippets, also equally divided. We chose the 8PSK modulation type
due to its mis-classification with other signals in [21], making it

good for individual comparison. We show two example snippets
from this data set in Figure 3.

Figure 3: Two example snippets from the Radio dataset: 8PSK on
the top, and GFSK on the bottom. Real values are plotted in black,
and imaginary values in red.

3.3 Electroencephalogram (EEG)

The Electroencephalogram (EEG) is a measure of activation signals
in the brain over time. An EEG can contain lots of interesting in-
formation within the signal. Because of this, statistical measures
have been used to extract relevant and useful metrics. Many works
explore onset detection of epilepsy from EEG signals [29]. How-
ever, in this work, we perform standard classification rather than
onset detection. The dataset used for classification is made publicly
available by Andrzejak [3].

The dataset has five sets of EEG signals labeled A through E,
composed of 23.6 seconds of signals recorded with a sampling rate of
173.61 Hz, for a total of 4,097 samples per data set. For classification,
we employed 200 sets of signals split equally between healthy (from
set A) and epileptic (from set E). We display two of these data sets
in Figure 2. To be consistent with the literature, we used 80 signals
from each set for training, and 20 for testing [31].

3.4 Consonants vs. Vowels

The TIMIT dataset contains audio files of ten sentences spoken by
each of 630 speakers, sampled at 16 kHz. We convert each WAV
file into Mel-frequency Cepstral Coefficients (MFCCs): vectors of
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Name r ¢ | Classifications | Training Testing N M
Data Points | Data Points | (Time Steps) | (Output Window)

Iris 4 1 3 75 75 440 330
WBC 9 1 2 560 139 440 330
Pima 8 1 2 615 153 440 330
Radio 2 128 2 667 166 1400 1200
EEG 1 | 4097 2 160 40 4100 4000
TIMIT | 13 48 2 2000 200 500 450

Table 2: Summary of classification data sets and their parameters as they affect the various machine learning algorithms. N, which corre-
sponds approximately to spiking neural network run-time, applies only to EONS and RC, and M, which corresponds to when output pulses

are counted, applies only to RC.

12 coefficients, where each vector represents a slice of the spoken
sentence [7]. The MFCCs are computed every 10 ms, over a sam-
ple size of 25 ms. To the 12 coefficients, we add a 13th value, the
log energy [33]. An example phoneme spectrogram is included in
Figure 4. Being able to discern between vowels and consonants
has important implications for speech recognition [6]. As such, we
have partitioned the data set into two classifications: vowels and
consonants. To be consistent with the work by Norton and Ven-
tura [20], we employed a training set of 2000 values, equally split
between consonants and vowels, and a testing set of 200 values.

Phoneme iy’ (vowel)

13 MFCC Features

Frames

Figure 4: Spectrogram of MFCC features from a spoken phoneme
’iy’; a vowel. Each column is a MFCC vector with 13 values, calcu-
lated every 10 ms over 25 ms of samples.

3.5 Summary of Data Sets

Table 2 summarizes the data sets that we explore in our experiments.
For each data set, we summarize the (rxc) values for each data point
that is input to the neural networks, the number of classifications,
the partitioning of data points into training and testing, the number
of time steps for the spiking neuromorphic networks, and the output
window over which spikes are counted for the RC test.

4 EXPERIMENTAL SETUP

The Deep Learning tests were executed on an Intel Core i7-7700
CPU, running at 3.60 GHz with 16 GB of RAM. Because EONS

and RC are more computationally demanding during training, we
performed them on a 44-node, 1772-core cluster of AMD Opteron
CPUs running at 2.3 GHz. Eight of the nodes have 24 GB of RAM,
and the remaining nodes have 96 GB of RAM.

With the Deep Learning models, the (r X c¢) data points were
flattened and applied into the networks simultaneously; with EONS
and RC, they were input in ¢ waves of r points, as described in
Section 2.3. For Deep Learning, we ran 10 training runs of each
method, each with a different random number seed, and trained
for 1024 epochs. For EONS, we ran 100 training runs, each with
a population size of 100 networks, for one hour each on a single
CPU core. For RC, we generated 100 random reservoirs, and then
trained the readout layer for 1024 epochs.

5 RESULTS

The classification accuracies on the testing data of the best net-
work for each model are shown in Table 3 and Figure 5. The best
classification accuracy for each data set is on par with, or exceeds
previously published data [20, 21, 27, 31].

Model / Data Iris | WBC | Pima | Radio | EEG | TIMIT
Perceptron 97.38 48.40 67.54 50.70 54.05 77.57
MLP 95.33 94.71 68.37 80.53 48.25 83.73
Conv 96.13 96.45 67.70 93.95 99.00 85.20
LSTM 96.67 95.71 79.22 83.64 45.00 83.40
EONS 98.66 99.28 78.57 71.00 99.00 83.00
Reservoir 93.33 96.47 79.22 73.00 98.00 85.00

Table 3: Percentage accuracies of each model on each data set. Each
number presents the best classification accuracy on the testing set
of data.

Perhaps the most important thing to note from the results is
that there is no consistent “best method” over all of the data. EONS
displays the best classification accuracy for Iris, WBC and EEG
(tied with Conv); the Convolutional Deep Learning method dis-
plays the best accuracy for Radio, EEG and TIMIT; and LSTM
and Reservoir tie for the best at Pima.

With the exception of Iris, on which all of the models perform
well, the Perceptron model classifies significantly worse than the
other models. This is unsurprising, since the Perceptron model
has no hidden layer, and thus restricted computational abilities.
The Multi-Layer Perceptron (MLP) improves accuracy sigificantly
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Figure 5: Bar graph of model accuracy per data set. Accuracies are
from table 3.

over the single Perceptron with the WBC, Pima and TIMIT data
sets. The Conv model performs poorly only on the Pima data set,
and it performs better than all of the other models on the Radio
data set. As described by O’Shea et al, this is because the Radio
data set exhibits features similar to image classification [21]. It is
surprising that LSTM performs poorly on the Radio and EEG data
sets, given that they are time-series data sets, for which LSTM was
developed. We surmise that this is due to two separate reasons.
For EEG, the number of samples (4097) is still considered to be a
very long sequence, and the LSTM paradigm is impacted by the
vanishing gradient problem. By exploring parameter settings in
Keras and breaking the sequence into subsequences, LSTM could
improve. Since a goal of this paper was to inhabit the perspective
of a scientist wanting to classify data, and not a computer scien-
tist exploring Deep Learning, we intentionally did not spend time
exploring parameter settings.

The spiking neuromorphic models perform well with one ex-
ception. The exception is on the Radio data set, which obviously
has features that the two training methods could not discover. We
intend to explore this data set more thoroughly to discover why
the two models perform so much worse than the Deep Learning
models.

In Table 4, we display the neuron and synapse counts for the net-
works that produced the best classification accuracies. For LSTM,
we define a “neuron” as an LSTM cell, which is more complex than
a single neuron, but occupies the neuron’s place in the neural net-
work. For all of the Deep Learning models, we define a “synapse” as
the number of trainable parameters. For all but the Convolutional
model, this is in fact the number of synapses. For the Convolu-
tional model, the actual synapse count is higher, because the con-
volutional and max-pooling layers train groups of synapses with a
single parameter.

With the exception of the Perceptron, which does not classify as
well as the others, the Deep Learning networks are orders of magni-
tude larger than the spiking, recurrent neural networks. Unsurpris-
ingly, the Convolutional model has the most elements, peaking
at roughly 20,000 neurons and 3,500,000 synapses for TIMIT. The
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Figure 6: Bar graph of network sizes for comparison. Network sizes
are in table 4

spiking, recurrent networks are much smaller, highlighting their
computational power. With EEG and TIMIT, we explored smaller
reservoirs than the standard 200-neuron reservoir, and were able to
generate reservoirs that were significantly smaller, yet retained the
same classification accuracy. These are included in parentheses in
Table 4. It is worth noting that an individual synapse in the spiking
recurrent networks is more complex than the individual synapses
in the Deep Learning networks. However, since we are targeting
building networks for spiking neuromorphic implementations, the
synapses in the Deep Learning networks will still take up the same
amount of “space” on the chip, even though they are not using the
full functionality of the synapses that the spiking recurrent neural
networks are.

6 CONCLUSION

We compare six approaches for training neuromorphic networks for
six classification tasks. The six approaches comprised of four Deep
Learning approaches, a spiking neural network training approach
trained using evolutionary optimization (EONS), and a reservoir
computing (RC) approach using spiking neural networks. We found
that there was no one clear winner amongst the six approaches
on all six tasks in terms of classification accuracy. However, for
neuromorphic implementation, classification accuracy is often not
the only metric considered; in particular, for certain applications,
metrics such as size, weight, and power (SWaP) of the resulting
neuromorphic implementation are also important to consider. As
such, we also compared the sizes of the resulting networks for each
of the six approaches. We found that, in general, the spiking ap-
proaches (EONS and RC) both produced networks that were orders
of magnitude smaller than the networks produced by the successful
Deep Learning approaches. Thus, networks trained using those
approaches may be more suitable for certain SWaP constrained
applications.

It is worth noting that in this work, we approached the compar-
ison of the different methods naively in order to simulate how a
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Model / Data Iris WBC Pima Radio EEG TIMIT

S N S N S N S N S N S
Perceptron 7 12 11 18 10 16 258 512 4099 8194 626 1248
MLP 199 8835 | 203 9090 | 202 9026 450 24898 4291 270722 818 48450
Convolutional | 775 30019 | 2678 31042 | 2314 30786 | 12278 805652 | 876547 202562 28006 3530652
LSTM 99 21091 98 21058 | 98 21058 98 21186 98 21058 98 27074
EONS 74 164 22 166 38 173 26 103 8 30 39 246
Reservoir 200 300 200 600 200 600 200 300 200 (7) 900 (14) | 200 (53) 1000 (140)

Table 4: Neuron and synapse counts for the networks that produced the classification accuracies in Table 3.

non-machine learning expert would approach. There is much addi-
tional work that could be done to improve the performance of any
given machine learning approach on any given application. Further,
this work does not address significantly large datasets (hundreds of
thousands or millions of examples) or datasets with many classes.
The length of time training with the spiking neural network models
(EONS, RC) needs to be compared to the amount of time to train
non-spiking variants. We also suspect a comparison of training
times between EONS and RC would yield interesting results. Other
future work includes exploring extra models, such as Echo State
Networks [15]. Because of the promising results for the spiking
neural network approaches in terms of resulting network size, we
intend to focus our research on those areas moving forward.
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