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Abstract—Extreme-scale applications (i.e., Big-Compute) are
becoming increasingly data-intensive, i.e., producing and con-
suming increasingly large amounts of data. The HPC systems
traditionally used for these applications are now used for Big-
Data applications such as data analytics, social network analysis,
machine learning, and genomics. As a consequence of these
trends, the system architecture should be flexible and data-
centric. This can already be witnessed in the pre-exascale systems
with TBs of on-node hierarchical and heterogeneous memories,
PBs of system memory, low-latency, high-throughput networks,
and many threaded cores. As such, the pre-exascale systems
suit the needs of both Big-Compute and Big-Data applications.
Though the system architecture is flexible enough to support
both Big-Compute and Big-Data, we argue there is a software
gap. Particularly, we need data-centric abstractions to leverage
the full potential of the system, i.e., there is a need for native
support for data resilience, the ability to express data locality
and affinity, mechanisms to reduce data movement, the ability
to share data, and abstractions to express User’s data usage
and data access patterns. In this paper, we (i) show the need
for taking a holistic approach towards data-centric abstractions,
(ii) show how these approaches were realized in the SHARed
data-structure centric Programming abstraction (SharP) library,
a data-structure centric programming abstraction, and (iii) apply
these approaches to a variety of applications that demonstrate its
usefulness. Particularly, we apply these approaches to QMCPack
and the Graph500 benchmark and demonstrate the advantages
of this approach on extreme-scale systems.

I. INTRODUCTION

During the petascale era, the architectures of the extreme-

scale systems made a transition from the use of only Cen-
tral Processing Units (CPUs) to the use of both CPUs and

manycore compute accelerators. This allowed researchers to

significantly increase the computational performance of a

system. Additionally, this extended the memory hierarchy and

allowed for a heterogeneous hierarchy. As we transition to

the pre-exascale era, this heterogeneous memory hierarchy is

deepening as the architectures are now being composed of

multiple high performing CPUs and manycore accelerators

as well as non-volatile random access memory (NVRAM).

Examples of this include the upcoming systems to be installed
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at the Oak Ridge Leadership Computing Facility (OLCF) and

Lawerence Livermore National Laboratory (LLNL), Summit

and Sierra, respectively.

With the hierarchical and heterogeneous memories in ad-

dition to the multiple CPUs and manycore compute accel-

erators, there are additional implementation and optimization

challenges for scientific researchers. These challenges stem

from the hierarchy no longer being flat, but being deep with

differing latencies between memories as well as memories with

affinities to specific devices [1]. While there has been much

work over the years to adapt many scientific applications’

algorithms to suite the addition of compute accelerators in

the petascale systems [2], [3], many of these adaptations did

not account for the latencies and affinities of the memories of

these devices.

The adaptation of applications to best utilize these memories

is imperative for applications to fully leverage the compu-

tational resources of these systems [4]. Effective adaptation

of the algorithms can be accomplished by focusing on the

application with a data-centric point of view. More clearly,

understanding the current data layout, organization, and usage

in order to provide data locality and affinity with the devices

accessing the data, provide data resilience for commonly

accessed data, and reduce data movement between memories

on a single node and across a cluster.

The SharP library [5] was designed and developed to

help accomplish these goals by creating and managing data

structures including arrays and hashes on heterogeneous and

hierarchical memories throughout a cluster. The creation and

management of the application’s data structures is completed

based on User-defined Hints and Constraints, which inform

SharP on how the memory is used. However, the Hints and

Constraints originally defined in SharP did not holistically

express an application’s data-centric usage.

In this work, we define our view of data-centric com-

puting and enhance the SharP library to be fully capable

of expressing that view. We then analyze both a petascale

capable application, QMCPack, and a petascale benchmark,

the Graph500 benchmark, in terms of data locality, affinity,

movement, and resilience. Through this analysis, we have

identified multiple areas in which the applications can be op-

timized, and implemented these optimizations with the use of
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the enhanced SharP library. To demonstrate the value of these

modifications, we performed an experimental evaluation and

found using a data-centric approach can significantly reduce

checkpoint latency for data resilience, reduce the CPU cache

miss rate, decrease the load balancing overhead in QMCPack,

and increase the Traversed Edges Per Second (TEPS) of the

Graph500 benchmark by decreasing the latency of network

operations. This work makes the following contributions:

• We identify and motivate four areas of data-centric

computing that are of importance as we transition to next-

generation systems and use these to enhance the SharP

library such that it can express these areas for use with

user’s data structures. Then, we analyze two petascale

capable applications, QMCPack and the Graph500 bench-

mark, in these four areas.

• We adapt QMCPack and the Graph500 benchmark to

leverage a data-centric approach by porting them to the

SharP library. For QMCPack, we develop a lightweight

and flexible Checkpoint/Restart (C/R) mechanism as well

as provide data locality and affinity with respect to its

computation and networking capabilities. For Graph500,

we are able to provide data locality and affinity as well.

• We evaluate and demonstrate the utility of our modifica-

tions to both QMCPack and the Graph500 benchmark.

In our evaluation, we found that QMCPack with our

modifications showed up to a 72% reduction in time

required for the load balancing Walkers and up to a

9.9% improvement in performance for the Graph500

benchmark.

II. DATA-CENTRIC TAXONOMY

In this section, we will detail various, well-known aspects

of data-centric computing that we see as important concepts

that should be easily enabled for Users of modern and

future extreme-scale systems. These aspects include (i) data

resilience, (ii) data locality, affinity, and movement, (iii) data

sharing, and (iv) abstractions to capture User intent.

A. Data Resilience

As systems move toward increasingly larger scales, the

amount of data used for computation is increasing. This

increase in size allows for many potential failures or faults

that may affect an application’s data structures. Examples of

these failures include catastrophic failures, transient failures,

and silent data corruption [6]. This increases the need for

providing resilience for the application’s data structures.

B. Data Locality, Affinity, and Movement

Providing data locality has long been a technique to increase

performance by keeping the data used by the application

near the computation. With the addition of the hierarchical

and heterogeneous memories with differing latencies between

memories and multiple devices that can perform computation

(i.e., CPUs and accelerators), providing data locality to multi-

ple computing devices will be challenging. In addition, there is

also a need to provide locality to devices such as the NIC [1],

[7], which may be near a subset of the node’s computing

devices. Providing this locality often results in an increase

in communication performance.

C. Data Sharing

The convergence of Big-Data and Big-Compute coupled

with the growing data size of applications has made data-

sharing an important topic. Data sharing can exist in two

forms: (i) between processes of a single application and (ii)

between processes of multiple applications.

For (i), sharing data between processes within the same ap-

plication is a commonly used technique to reduce the amount

of duplicated data existing in the global state of an application.

On a single node, this can be accomplished through the use

of shared-memory or other constructs that would allow for

multiple processes or threads to access the data local to the

node concurrently. For sharing remote data between multiple

nodes executing the same application, globally shared memory

can be used and was demonstrated in [8]. Globally shared

memory allows for the data elements to span evenly across

nodes within a system while allowing for used elements of data

to be cached local to the Processing Element (PE) using the

elements. This allows for the consumption of fewer resources.

In (ii), the amount of data generated by exascale applications

will likely become exceedingly large. To provide the proper

analytics necessary to process the data, converging Big-Data
with Big-Compute is one methodology to keep the data to be

studied local and perform in-situ techniques to provide data

analytics or visualization without moving the data.

D. Intent-based Data Allocation

Another aspect of providing a data-centric approach for

applications and libraries on extreme-scale systems is the

thought process of the developer of high-performance scien-

tific and analytic applications in Big-Compute and Big-Data
environments. One method to provide this is to have the user

determine the proper data structure and its intended usage with

respect to the potential memories used. The user can define

these through usage hints, which implicitly define how a user

will make use of their data structure. Along with usage hints,

the user can also define access hints to specify how the data

will be accessed. Both of these hints will allow a data-centric

library to optimize a data structure’s organization and access.

III. THE SHARP PROGRAMMING ABSTRACTION

The SharP programming abstraction provides a solution

for researchers with respect to data-centric software abstrac-

tions [5]. The contributions SharP provides as a linkable

library include (i) abstractions of the hierarchical and hetero-

geneous memories within a node as well as across a cluster,

(ii) a simple, intuitive interface for the creation, modification,

and management of distributed data structures, and (iii) an

implementation that provides interoperability with the many

popular programming models currently used in scientific ap-

plications (e.g., MPI, OpenSHMEM, etc.) through a commu-

nication layer that can leverage MPI, Unified Communication
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Fig. 1. The components of the SharP Library. [5]

X (UCX) [9], and OpenSHMEM as communication conduit.

UCX is the default conduit. The usage of UCX allows SharP to

provide high-performance, one-sided communication for data

manipulation of SharP managed data structures. Meanwhile,

optimized collective communication and point-to-point com-

munication are handled through other communication libraries

such as MPI. Thus, MPI+SharP and OpenSHMEM+SharP

are both possible, which limits the porting effort of existing

applications. The various components composing the SharP

library can be seen in Figure 1.

In future exascale systems, it is anticipated that many hier-

archical and heterogeneous memories will be used including

DRAM, High-bandwidth Memory (HBM) (i.e., GPU HBM

or Intel KNL HBM), and NVRAM. To remove the expert

knowledge requirement to use these memories, SharP is com-

posed of many data constructs including Memory Domains,

Data Tiers, and a Unified Memory Allocator (UMA). Memory

Domains are a representation of the physical memories present

in the system, while Data Tiers are logical abstractions of

the Memory Domains based on User Hints and Constraints,

which define how the allocation of memory will be used by

the application. The resulting Data Tier would then be used

by the UMA to collectively allocate memory on a particular

memory or set of memories throughout a cluster. For example,

the user may wish to allocate memory on a NUMA node with

an affinity to an accelerator to reduce the distance between the

memory and the accelerator, thus improving the latency of the

data movement between the CPU and the accelerator.

After memory is allocated as data objects, data layout

mappings may be used to create data structures (i.e., arrays and

hashes) from the allocated data objects. These data structures

are flexible and allow for users to easily manipulate the

data layout and organization to optimize performance for the

application or allow for a simple transition from computation

to analysis (e.g., in-situ visualization). The mappings include

a uniform mapping, which uniformly distributes the data

among all of the PEs within a network group (e.g., MPI

Communicator and OpenSHMEM Active Sets), and a custom

mapping, which allows the user to specify the data layout

(e.g., strided chunking). As an example, the implicit tiling and

block-cyclic data layouts that are used by [10] and [11] can

be explicitly defined through the custom mappings.

IV. SHARP SUPPORT FOR DATA-CENTRIC APPROACHES

Currently, the SharP library provides varying levels of

support for the aspects of data-centric computing detailed in

Section II. In this section, we will detail the support and where

the support is lacking for (i) data resilience, (ii) data locality,

affinity, and movement, (iii) data sharing, and (iv) intent-based

data allocations.

The SharP library natively enables data resilience. This

support is provided by the allocations of data objects and

distributed data structure interfaces attached to these data

objects, which keeps memory in contiguous buffers. Overall,

this allows applications using SharP to (i) reduce checkpoint

latency through fine-grained or coarse-grained checkpoints, (ii)

provide sequential and non-sequential checkpoints, and (iii)

support coordinated and uncoordinated checkpoints. However,

this requires the User to use NVRAM rather than any stable

storage through the persistent usage hint or constraint. This

limits the usability of the approach as not all systems will be

equipped with NVRAM.

The SharP library has many enabling data constructs for

data locality and affinity, as well as reducing data movement

between devices. These constructs were explained in detail and

demonstrated in [5], and included concepts such as explicitly

and implicitly allocating memory near devices. However, while

a User could allocate memory explicitly near a NIC, the User
was not capable of allocating memory implicitly, which limited

the performance portability of the approach and required users

to determine the hardware architecture of their cluster to

improve communication performance.

SharP is capable of natively sharing data between processes

of the same application (i.e., (i) from II-C) through the creation

and management of global and local data structures. This was

demonstrated in [5]; however, SharP’s capability for sharing

data between applications was not clearly defined and requires

users to implement this feature themselves.

For SharP, user intent was captured through usage hints
and Constraints. These were flexible enough to allow the user

to easily define how memory allocations should occur across

multiple PEs within a cluster, which allowed for portability

of the application between different computing architectures.

However, the Hints and Constraints were limited to the use of

a data structure for computation and not how the data structure

will be accessed by other PEs within the same application or

in another application. By providing these access Hints and

Constraints, the user would be able to more clearly define a

data structures usage and how the data structure should be

allocated.

V. EXTENSIONS TO SHARP’S DATA CONSTRUCTS

To best provide the support necessary to enable the many

data-centric approaches that have been discussed thus far,

extensions to SharP’s User Hints and Constraints can be

made to provide a more thorough mapping between the User’s

intent and the physical memories present in the system. These

extensions include information on how the User’s data will

be accessed by the application. More specifically, we can
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extend the Hints and Constraints to provide Access Hints and

Constraints.

Access hints can be used by the User to provide SharP

with information concerning data affinity to particular devices,

which will provide data locality and reduce data movement.

Such hints can be specified with:

• SHARP_HINT_LATENCY_OPT: When this access hint

is provided SharP will provide a best-effort approach to

identify and construct a mapping between the User’s data

structure and memory with an affinity to the NIC or

fabric. It will accomplish this by attempting to maximize

both the compute and latency performance characteristics

by utilizing a matrix of relative distances between devices

and finding a NIC with an affinity to the calling PE’s

processing location (i.e., NUMA node) and the NIC.

• SHARP_HINT_COMPUTE_OPT: This usage hint is used

to suggest to SharP that the memory allocated should be

as close as possible to the calling PE. This will result in

a memory allocation that is also bound to that memory.

In addition to access hints, access constraints can be used

to better specify how data will be used by the application

and require SharP to provide memory allocations enabling this

usage. The added constraints can be seen below:

• SHARP_ACCESS_INTRAP: Requires SharP to allocate

memory for a data object such that it is at least accessible

to threads of the calling process.

• SHARP_ACCESS_INTERP: Requires SharP to allocate

memory that is accessible between processes within the

same job through RDMA operations.

• SHARP_ACCESS_INTERJ: Requires SharP to allocate

memory that is accessible between processes of multiple

jobs through RDMA operations or file operations.

With these new access Hints and Constraints, SharP

will be capable of enabling the features that were lack-

ing in Section IV. For data resilience, applications can

now implicitly make use of the parallel file-system instead

of only NVRAM through the combination of the Hints
and Constraints: SHARP_CONSTRAINT_PERSISTENT and

SHARP_ACCESS_INTERJ, which will allocate a persistent

data object accessible across jobs. In addition, the same

access constraint may be used to enable data sharing be-

tween applications. For Data locality and affinity, support

for communication-based locality is provided through the

SHARP_HINT_LATENCY_OPT Hint.

VI. DATA-CENTRIC ANALYSIS OF APPLICATIONS

In this section, we will analyze applications and benchmarks

such as QMCPack and the Graph500 benchmark regarding the

topics listed in Section II. This will begin with an assessment

of their current implementation followed by a description of

the modifications we performed enable a data-centric approach

with SharP.

A. Analysis of QMCPack

For the analysis of QMCPack, we will focus on the follow-

ing areas: data resilience, locality, affinity, and movement. In

each area, the focus will be narrowed to the Variational Monte

Carlo (VMC) and Diffusion Monte Carlo (DMC) methods

supported by QMCPack. The analysis will be followed by a

description of the modifications made to QMCPack.

1) Data Resilience for QMCPack: The QMCPack imple-

mentation executes iteratively with multiple blocks. At the end

of each block, all of the PEs will synchronize with a data

exchange and perform a checkpoint based on the user-defined

checkpoint frequency. QMCPack will use either the Adaptable

IO System (ADIOS) library [12] or the HDF5 library to save

the current configuration and Walker data to stable storage. We

will focus on the ADIOS library as it has been shown to be

more performant [13]. The checkpointing approach is single-

level, coordinated, and sequential, which requires synchro-

nization. The use of coordinated and sequential checkpointing

may lead to significant checkpoint latency. Additionally, the

single-level checkpointing approach will likely suffer from

performance issues as the scale increases into the exascale

era [14].

Focusing on the single-level C/R approach, a reduction

of checkpoint latency and overhead can be accomplished by

keeping data structures in a state ready for checkpointing

without data packing. Additionally, taking advantage of data

affinity to memories and devices would allow for checkpoints

to move efficiently to stable storage and provide capabilities

that would allow for uncoordinated checkpoints, which may

reduce the checkpoint latency.

2) Data Locality/Affinity for QMCPack: The QMCPack
implementation has two primary areas in which data locality is

necessary. These areas include, (i), the abstractions used for the

underlying implementation and, (ii), the methodologies used

to load balance Walkers between PEs during each branching

step of the DMC algorithm.

For (i), the implementation of QMCPack contains many

dynamic, discontiguous data structures, which allow the ap-

plication to support an unbounded amount of Walkers and

data sets. The use of these data structures does not allow

for a simple use of heterogeneous and hierarchical memories

and will lack locality to the devices using them. Additionally,

during the load balancing phase, Walker data is required to be

packed and unpacked, which can diminish performance.

In (ii), the memory used by the communication library to

exchange Walkers during the load balancing phase may not

be allocated near the NIC. Because of this, a data movement

penalty could be seen when exchanging Walkers between PEs.

By moving the Walker’s data from discontiguous data

structures to contiguous data structures, the Walker would no

longer need to be packed or unpacked during an exchange.

Additionally, the control plane (i.e., notification of message

delivery) of the swapping of Walkers is completed by MPI,

which may not be performing its communication with data

near the NIC. Instead, adapting the control plane to use

data near the NIC will decrease the time between the PE

acknowledging the arrival of data and continuing to the next

computational step.
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3) Data Movement for QMCPack: Data movement can

be viewed as local and remote. Local data movement refers

to the movement of data from main memory to the CPU.

Remote data movement refers to the movement of data over

the network.

For the data movement between the local memory and

CPU, there is currently a considerable amount of movement.

This is because all of the information stored by QMCPack
is stored within discontiguous data objects as mentioned in

Section VI-A2. By placing the data objects in memory dis-

contiguously, the implementation is removing potential spatial

locality benefits over time.

Data movement between PEs occurs within the DMC

method. This data movement is realized in the branching

step of the DMC algorithm. During this step, the QMCPack
implementation performs a packing operation when sending a

Walker. The receiver will then unpack the Walker into a new

buffer and add this Walker to its list of Walkers.

4) Modifications made to QMCPack: The first modifica-

tion completed was moving the important data structures of

QMCPack to SharP. Placing the data structures in SharP

allows the state of the data structures to be globally and

locally shared. Additionally, usage and access hints can be

used to provide data locality and affinity. This enables the

modifications described in Section VI-A1, VI-A2, and VI-A3.

For data resilience, we modified the C/R functionality of

QMCPack. The approach we utilized retains the semantics

established in QMCPack, however, our approach allows for

flexibile checkpointing. More clearly, our approach does not

keep us from also applying techniques such data deduplication,

compression, migration of data between PEs, or multi-level

checkpointing. Additionally, our approach allows for data

locality between devices and memories.

Our C/R mechanism employs a sequential checkpointing

approach utilizing two globally shared arrays. Both arrays

make use of access hints to enable persistence, which will

have the arrays allocated on some stable storage including the

parallel file-system, NVRAM, etc. The first array contains all

of the Walkers for each PE. The second array contains relevant

information to the simulation including trial energy, reference

variance, etc. Because the checkpoint state is already resident

in SharP arrays, the implementation of the C/R mechanism’s

functionality becomes a simple copy of data between data

structures. This allows the approach to be uncoordinated and

extensible to further enable policy-driven modifications such

as multi-level checkpointing [15] because the checkpoint data

is not abstracted away from the user.

For data locality, affinity, and movement, QMCPack was

modified with respect to two aspects: (i) contiguous data

storage and (ii) the control plane and mechanisms for com-

munication when swapping Walkers between PEs.

In (i), the use of discontiguous storage has been replaced

with contiguous allocations. The transition between the data

structures required modification to the data objects of the

Walkers that are commonly used for computation. This mod-

ification allows for increased data locality for computations,

provides for decreased data movement between memories and

caches, and allows for Walkers to be moved between PEs

without packing and unpacking the data.

In (ii), when changing the control plane for swapping

Walkers, we also modified how the Walkers are swapped.

Because SharP uses one-sided operations, we modified the

swapping of Walkers to be one-sided while retaining the

original semantics of the two-sided approach for the sake

of comparison (i.e., emulated two-sided communication with

one-sided communication). Thus, semantically, only the mes-

sage delivery notification of the swapped Walker is different

from the original QMCPack version. In our approach, we used

the access hints of SharP to place memory near the NIC to

leverage data affinity and reduce data movement.

B. Graph500

Because Graph500 is a benchmark, we will only discuss the

topics of data locality, affinity, and movement.

1) Data Locality/Affinity for Graph500: The Graph500

benchmark performs 64 BFS operations originating from ran-

dom vertices within a generated graph. The MPI one-sided

communication port of the benchmark uses a predecessor map

to determine previously visited nodes within the graph during

each BFS operation. The data structure is allocated near each

PE prior to initiating the BFS operation and is shared globally.

Within each BFS operation, a copy of the predecessor map and

two bitmap queues are allocated and also shared. With these

data structures, one map and queue are used for reading while

the others are used for writing. This is done due to the use

of MPI-2 one-sided semantics, which uses a fence operation

to begin modifications to a shared data structure and another

fence to guarantee completion of the modifications.

In each iteration of the BFS, a series of MPI Accumulate

operations are completed. Whether or not the operation is re-

quired is not known because the operations are not completed

until after the final fence operation. Because the data structure

is primarily used for writing using network operations, placing

these data elements near the NIC may provide increased

performance through decreased latency.

2) Data Movement for Graph500: Currently, the bench-

mark has all of its data structures in memory near the PE.

Because the data is located near the PE and not necessarily

near the NIC, the distance the data is forced to move is large.

Placing data near the NIC will reduce data movement for each

BFS operation.

3) Modifications to Graph500: The first modification made

during the adaptation of the benchmark was to move the

important data structures to the SharP library. These data

structures include the predecessor maps and queue bitmaps.

To obtain data locality and affinity and reduce data movement,

usage and access hints are used.

To obtain similar semantics to the one-sided MPI-2 port,

modifications were made to the BFS implementation. These

modifications replaced the MPI Accumulate operations with

Atomic Memory Operations (AMO) operations similar to those
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discussed in [16]. In [16], the authors replaced MPI Accumu-

late operations with AMO operations that would first retrieve

the current value from the map or bitmap being modified

and determine if the modification should take place. This was

accomplished with a fetch-and-add operation, which we

replaced with a Get operation. This improved performance of

the implementation and retained correctness.

VII. EXPERIMENTAL EVALUATION

This Section will present an experimental evaluation of the

data-centric modifications enabled by SharP of both QMCPack
and the Graph500 benchmark and compare these versions with

their vanilla counter parts. The testbed used to perform these

evaluations consisted of the Titan system located at Oak Ridge

National Laboratory (ORNL). The Titan system consists of

18,688 nodes each equipped with a single NVIDIA Tesla K20

GPU, 32 GB of memory, and the Cray Gemini interconnect.

A. QMCPack

To evaluate the data-centric adaptation and the vanilla

QMCPack, we used three different solid structures depending

on the experiment being conducted. These solids include:

1) Body-centered cubic Hydrogen (bccH) 1x1x1 supercell.

This is a very small and simple solid requiring minimal

computation in both the VMC and DMC methods. Each

Walker is near 1 KB in size.

2) Diamond 2x1x1 supercell. This solid requires more

computation than the bccH solid, but is a light workload.

Each Walker is roughly 20 KB in size.

3) Graphite 4x2x2 supercell. This solid requires a signif-

icant amount of computation per Walker. Each Walker

is roughly 16 MB in size.

1) Checkpoint/Restart: For an evaluation of data resilience

with QMCPack, we will perform an evaluation with two

compute sizes resulting in small and large checkpoint sizes.

The first workload will consist of the Diamond supercell

and the second workload will be the Graphite supercell.

This will give us an understanding of the behavior of the

C/R mechanisms with differing workloads. For the Diamond

supercell experiment, we used 8 Walkers per PE with 8 PEs

per node. For the Graphite supercell experiment, we used

4 Walkers per PE and 4 PEs per node. The results of this

experiment are shown in Figure 2.

As expected, there is a considerable difference in checkpoint

latency between ADIOS and the data-centric version. This

is due to how the checkpoint is stored and the coordination

between PEs. For ADIOS, the checkpoint is stored in a single,

shared file on the Lustre filesystem, while the data-centric

version used a single file per PE, which does not require

coordination between PEs. Thus, the checkpoints could be

completed asynchronously with PE synchronization occurring

later in execution. For the Diamond supercell experiment, the

data-centric version’s checkpoint latency is less than 1% of the

latency of ADIOS’s with 4 nodes (i.e., 32 PEs) and continues

to be less than 1% regardless of the scaling up to 128 nodes
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Fig. 2. Average checkpoint latency of QMCPack using either ADIOS or
SharP to perform checkpoints. This includes both the Diamond and Graphite
supercell experiments. Lower is better.

(i.e., 1024 PEs). For the Graphite supercell experiment, the

adapted version also outperforms ADIOS by up to 6X.

2) Data Locality, Affinity, and Movement: Two modifica-

tions were made to QMCPack to provide data locality and

affinity: (i) the Walker data structures were modified to be

contiguous and (ii) the control plane’s memory was allocated

near the NIC. Both modifications were previously discussed

in Section VI-A4.

In (i), we evaluated our modifications by exploring the

execution timings of the VMC method. Additionally, we

measured the CPU’s L1 and L2 cache to understand the

affect on data movement and locality. For this experiment,

we used the bccH and Diamond supercells due to their size.

We excluded the Graphite supercell because the size of the

Walkers is larger than the caches on Titan. The results of these

experiments can be seen in Figure 3(a) and 3(b).

For the VMC execution timings, we found that the use of

contiguous data structures improves the overall performance

of small workloads such as bccH by up to 2.1%. For a

Diamond run, which is a larger workload than bccH, we saw

a negligible increase in performance of 0.5%. The reasons

for these performance differences can be seen in Figure 3(b).

The data-centric adaptation lowered the number of accesses

to the L1 and L2 cache for the bccH data set by 1.6% and

8.8%, respectively. This suggests there is less data movement

between the CPU and memory. Further, the L1 and L2 miss

rates were lowered by as much as 11.5%. The Diamond

experiment had similar results. With the Diamond experiment,

the cache miss reduction within the L1 cache was up to 4.7%

lower and 1.2% lower with the L2 cache.

For (ii), we used both the bccH and Diamond supercells

for the evaluation. The results of the experiments can be seen

in Figure 4 where Figure 4(a) and 4(b) are the average time

taken to send and receive a Walker. The results for both the

bccH and Diamond experiments were similar. In both, the

data-centric approach outperformed the vanilla approach when

sending and receiving Walkers, which was expected. When

sending Walkers in the bccH experiment, the time to send

a Walker was reduced by up to 72% with 512 PEs. In the

Diamond experiment, the time to send a Walker was reduced

by up to 40% with 1024 PEs. Similarly, the time to receive a
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Fig. 3. The VMC execution time (a) and CPU cache (b) results of the vanilla QMCPack and the data-centric QMCPack.
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Walker was reduced by up to 73% for the bccH experiment

and 59% for the Diamond experiment.

B. The Graph500 Benchmark

To understand the utility of providing both data locality

and affinity to the NIC for the Graph500 benchmark, we

used our adapted Graph500 benchmark and modified the Hints
given to SharP to produce two different implementations: one

with memory allocated near the NIC and one with memory

allocated near the compute (i.e., PE), which is the default

implementation for the Graph500 benchmark. These imple-

mentations were weakly scaled with a initial scale of 15. For

this experiment, we used 8 PEs per node.

As expected, the implementation with memory near the NIC

outperformed the default allocation location as the graph size

was increased. While the performance is similar for less than

128 PEs (i.e., roughly 1.4%), the difference increases to up

to 9.9%. This suggests that data-intensive applications would

benefit from this type of approach.

VIII. RELATED WORK

This work touches on many aspects of data-centric comput-

ing including topics such as providing data-resilience, data-

locality, and data-affinity as well as reducing data-movement

through abstractions of User intent. There have been many

prior works on locality and affinity also touching on either

(i) the importance of providing locality with current architec-

tures or (ii) automatic provisioning of data locality based on

software hints.

In (i), there are multiple works by Moreaud et al. [1],

[7] and Goglin et al. [17]. In [1], [7], and [17], the authors

discuss the importance of data locality to the NIC. More

specifically, the authors show a roughly 15% improvement in

performance when providing locality to the NIC in NUMA

systems. Much of this work was used to motivate and develop

the hwloc library [18], which is commonly used to obtain

locality information between devices in an individual system.

Each of these works serve as motivation for our work.

For (ii), works providing automatic provisioning of data

locality, there are multiple works including DASH [10],

TiDA [11], and Kokkos [19], which provide some form of

data locality for applications. DASH is a C++, MPI-based

PGAS abstraction implemented with templates executing on
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the DASH Runtime (DART). This work gives array data

structures a global view while providing locality for elements

of the array. This work was furthered in [20] and [21] where

the user can specify hints on how the array will be accessed

to assist in the locality of the data placement. TiDA is a

similar work to DASH in that it provides data locality for array

elements based on how the array is used. However, unlike

DASH, the locality also takes into account locality between

NUMA nodes.
Unlike these works, this work takes a holistic approach to

enable many aspects of data-centric computing including data

resilience, locality, affinity, movement, and the abstraction of

User’s intent. Likewise, the discussions in this work do not

relate to a single type of data structure (i.e., an array), but to

many possible data structures and their usage.

IX. CONCLUSION

As we move to the pre-exascale systems and eventually

reach exascale systems, the architectures of extreme-scale

systems will be composed of many high-performing comput-

ing devices, a high-performance NIC, and hierarchical and

heterogeneous memories. With these systems, it is important

to make use of a data-centric approach to fully take advantage

of the future systems.
In this paper, we have enhanced the SharP library to

support a wider range of capabilities to enable data-centric

computing. Additionally, we have explored, discussed, and

demonstrated the importance of using a data-centric approach

for the development of scientific applications. The particular

topics of a data-centric approach that were explored and

discussed include resilience in Section II-A, locality, affinity,

and movement in Section II-B, sharing in Section II-C, and

abstractions capturing User intent in Section II-D.
We analyzed and adapted two petascale capable applica-

tions, QMCPack and the Graph500 benchmark, to make use

of a data-centric approach in Section VI. We evaluated these

adaptations and found significant improvements for QMCPack
with respect to data resilience with checkpoint latencies de-

creased by as much as 99%. With respect to data locality

and affinity, we increased cache usage and decreased network

latency by as much as 73%. For the Graph500 adaptation, we

had similar results with data locality and affinity to the NIC

providing as much as 9.9% performance improvement when

compared to locality to the PE.
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K. Idrees, M. Maiterth, Y. Mhedheb, and H. Zhou, DASH: Data Struc-
tures and Algorithms with Support for Hierarchical Locality. Cham:
Springer International Publishing, 2014, pp. 542–552.

[11] D. Unat, T. Nguyen, W. Zhang, M. N. Farooqi, B. Bastem, G. Michel-
ogiannakis, A. Almgren, and J. Shalf, TiDA: High-Level Programming
Abstractions for Data Locality Management. Cham: Springer Interna-
tional Publishing, 2016, pp. 116–135.

[12] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible io and integration for scientific codes through the adaptable
io system (adios),” in Proceedings of the 6th International Workshop
on Challenges of Large Applications in Distributed Environments, ser.
CLADE ’08. New York, NY, USA: ACM, 2008, pp. 15–24.

[13] S. Herbein, M. Matheny, M. Wezowicz, J. Krogel, J. Logan, J. Kim,
S. Klasky, and M. Taufer, “Performance impact of i/o on qmcpack sim-
ulations at the petascale and beyond,” in 2013 IEEE 16th International
Conference on Computational Science and Engineering, Dec 2013, pp.
92–99.

[14] F. Cappello, G. Al, W. Gropp, S. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience: 2014 update,” Supercomput. Front. Innov.:
Int. J., vol. 1, no. 1, pp. 5–28, Apr. 2014. [Online]. Available:
http://dx.doi.org/10.14529/jsfi140101

[15] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “Design,
modeling, and evaluation of a scalable multi-level checkpointing sys-
tem,” in Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 1–11.

[16] E. F. D’Azevedo and N. Imam, Graph 500 in OpenSHMEM. Cham:
Springer International Publishing, 2015, pp. 154–163.

[17] B. Goglin and S. Moreaud, “Dodging non-uniform i/o access in hierar-
chical collective operations for multicore clusters,” in 2011 IEEE Inter-
national Symposium on Parallel and Distributed Processing Workshops
and Phd Forum, May 2011, pp. 788–794.

[18] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “hwloc: A generic frame-
work for managing hardware affinities in hpc applications,” in 2010
18th Euromicro Conference on Parallel, Distributed and Network-based
Processing, Feb 2010, pp. 180–186.

[19] Edwards, H. Carter and Sunderland, Daniel, “Kokkos array performance-
portable manycore programming model,” in Proceedings of the 2012
International Workshop on Programming Models and Applications for
Multicores and Manycores, ser. PMAM ’12. New York, NY, USA:
ACM, 2012, pp. 1–10.

[20] T. Fuchs and K. Fürlinger, Expressing and Exploiting Multi-Dimensional
Locality in DASH. Cham: Springer International Publishing, 2016, pp.
341–359.

[21] T. Fuchs and K. Frlinger, “A multi-dimensional distributed array ab-
straction for pgas,” in 2016 IEEE 18th International Conference on High
Performance Computing and Communications (HPCC 2016), Dec 2016,
pp. 1061–1068.

177


