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Abstract—Extreme-scale applications (i.e., Big-Compute) are
becoming increasingly data-intensive, i.e., producing and con-
suming increasingly large amounts of data. The HPC systems
traditionally used for these applications are now used for Big-
Data applications such as data analytics, social network analysis,
machine learning, and genomics. As a consequence of these
trends, the system architecture should be flexible and data-
centric. This can already be witnessed in the pre-exascale systems
with TBs of on-node hierarchical and heterogeneous memories,
PBs of system memory, low-latency, high-throughput networks,
and many threaded cores. As such, the pre-exascale systems
suit the needs of both Big-Compute and Big-Data applications.
Though the system architecture is flexible enough to support
both Big-Compute and Big-Data, we argue there is a software
gap. Particularly, we need data-centric abstractions to leverage
the full potential of the system, i.e., there is a need for native
support for data resilience, the ability to express data locality
and affinity, mechanisms to reduce data movement, the ability
to share data, and abstractions to express User’s data usage
and data access patterns. In this paper, we (i) show the need
for taking a holistic approach towards data-centric abstractions,
(ii) show how these approaches were realized in the SHARed
data-structure centric Programming abstraction (SharP) library,
a data-structure centric programming abstraction, and (iii) apply
these approaches to a variety of applications that demonstrate its
usefulness. Particularly, we apply these approaches to QMCPack
and the Graph500 benchmark and demonstrate the advantages
of this approach on extreme-scale systems.

[. INTRODUCTION

During the petascale era, the architectures of the extreme-
scale systems made a transition from the use of only Cen-
tral Processing Units (CPUs) to the use of both CPUs and
manycore compute accelerators. This allowed researchers to
significantly increase the computational performance of a
system. Additionally, this extended the memory hierarchy and
allowed for a heterogeneous hierarchy. As we transition to
the pre-exascale era, this heterogeneous memory hierarchy is
deepening as the architectures are now being composed of
multiple high performing CPUs and manycore accelerators
as well as non-volatile random access memory (NVRAM).
Examples of this include the upcoming systems to be installed
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With the hierarchical and heterogeneous memories in ad-
dition to the multiple CPUs and manycore compute accel-
erators, there are additional implementation and optimization
challenges for scientific researchers. These challenges stem
from the hierarchy no longer being flat, but being deep with
differing latencies between memories as well as memories with
affinities to specific devices [1]. While there has been much
work over the years to adapt many scientific applications’
algorithms to suite the addition of compute accelerators in
the petascale systems [2], [3], many of these adaptations did
not account for the latencies and affinities of the memories of
these devices.

The adaptation of applications to best utilize these memories
is imperative for applications to fully leverage the compu-
tational resources of these systems [4]. Effective adaptation
of the algorithms can be accomplished by focusing on the
application with a data-centric point of view. More clearly,
understanding the current data layout, organization, and usage
in order to provide data locality and affinity with the devices
accessing the data, provide data resilience for commonly
accessed data, and reduce data movement between memories
on a single node and across a cluster.

The SharP library [5] was designed and developed to
help accomplish these goals by creating and managing data
structures including arrays and hashes on heterogeneous and
hierarchical memories throughout a cluster. The creation and
management of the application’s data structures is completed
based on User-defined Hints and Constraints, which inform
SharP on how the memory is used. However, the Hints and
Constraints originally defined in SharP did not holistically
express an application’s data-centric usage.

In this work, we define our view of data-centric com-
puting and enhance the SharP library to be fully capable
of expressing that view. We then analyze both a petascale
capable application, QMCPack, and a petascale benchmark,
the Graph500 benchmark, in terms of data locality, affinity,
movement, and resilience. Through this analysis, we have
identified multiple areas in which the applications can be op-
timized, and implemented these optimizations with the use of



the enhanced SharP library. To demonstrate the value of these
modifications, we performed an experimental evaluation and
found using a data-centric approach can significantly reduce
checkpoint latency for data resilience, reduce the CPU cache
miss rate, decrease the load balancing overhead in QM CPack,
and increase the Traversed Edges Per Second (TEPS) of the
Graph500 benchmark by decreasing the latency of network
operations. This work makes the following contributions:

o« We identify and motivate four areas of data-centric
computing that are of importance as we transition to next-
generation systems and use these to enhance the SharP
library such that it can express these areas for use with
user’s data structures. Then, we analyze two petascale
capable applications, QM CPack and the Graph500 bench-
mark, in these four areas.

We adapt QM CPack and the Graph500 benchmark to
leverage a data-centric approach by porting them to the
SharP library. For QMCPack, we develop a lightweight
and flexible Checkpoint/Restart (C/R) mechanism as well
as provide data locality and affinity with respect to its
computation and networking capabilities. For Graph500,
we are able to provide data locality and affinity as well.
We evaluate and demonstrate the utility of our modifica-
tions to both QMCPack and the Graph500 benchmark.
In our evaluation, we found that QMCPack with our
modifications showed up to a 72% reduction in time
required for the load balancing Walkers and up to a
9.9% improvement in performance for the Graph500
benchmark.

II. DATA-CENTRIC TAXONOMY

In this section, we will detail various, well-known aspects
of data-centric computing that we see as important concepts
that should be easily enabled for Users of modern and
future extreme-scale systems. These aspects include (i) data
resilience, (ii) data locality, affinity, and movement, (iii) data
sharing, and (iv) abstractions to capture User intent.

A. Data Resilience

As systems move toward increasingly larger scales, the
amount of data used for computation is increasing. This
increase in size allows for many potential failures or faults
that may affect an application’s data structures. Examples of
these failures include catastrophic failures, transient failures,
and silent data corruption [6]. This increases the need for
providing resilience for the application’s data structures.

B. Data Locality, Affinity, and Movement

Providing data locality has long been a technique to increase
performance by keeping the data used by the application
near the computation. With the addition of the hierarchical
and heterogeneous memories with differing latencies between
memories and multiple devices that can perform computation
(i.e., CPUs and accelerators), providing data locality to multi-
ple computing devices will be challenging. In addition, there is
also a need to provide locality to devices such as the NIC [1],

171

[7], which may be near a subset of the node’s computing
devices. Providing this locality often results in an increase
in communication performance.

C. Data Sharing

The convergence of Big-Data and Big-Compute coupled
with the growing data size of applications has made data-
sharing an important topic. Data sharing can exist in two
forms: (i) between processes of a single application and (ii)
between processes of multiple applications.

For (i), sharing data between processes within the same ap-
plication is a commonly used technique to reduce the amount
of duplicated data existing in the global state of an application.
On a single node, this can be accomplished through the use
of shared-memory or other constructs that would allow for
multiple processes or threads to access the data local to the
node concurrently. For sharing remote data between multiple
nodes executing the same application, globally shared memory
can be used and was demonstrated in [8]. Globally shared
memory allows for the data elements to span evenly across
nodes within a system while allowing for used elements of data
to be cached local to the Processing Element (PE) using the
elements. This allows for the consumption of fewer resources.

In (ii), the amount of data generated by exascale applications
will likely become exceedingly large. To provide the proper
analytics necessary to process the data, converging Big-Data
with Big-Compute is one methodology to keep the data to be
studied local and perform in-situ techniques to provide data
analytics or visualization without moving the data.

D. Intent-based Data Allocation

Another aspect of providing a data-centric approach for
applications and libraries on extreme-scale systems is the
thought process of the developer of high-performance scien-
tific and analytic applications in Big-Compute and Big-Data
environments. One method to provide this is to have the user
determine the proper data structure and its intended usage with
respect to the potential memories used. The user can define
these through usage hints, which implicitly define how a user
will make use of their data structure. Along with usage hints,
the user can also define access hints to specify how the data
will be accessed. Both of these hints will allow a data-centric
library to optimize a data structure’s organization and access.

III. THE SHARP PROGRAMMING ABSTRACTION

The SharP programming abstraction provides a solution
for researchers with respect to data-centric software abstrac-
tions [5]. The contributions SharP provides as a linkable
library include (i) abstractions of the hierarchical and hetero-
geneous memories within a node as well as across a cluster,
(ii) a simple, intuitive interface for the creation, modification,
and management of distributed data structures, and (iii) an
implementation that provides interoperability with the many
popular programming models currently used in scientific ap-
plications (e.g., MPI, OpenSHMEM, etc.) through a commu-
nication layer that can leverage MPI, Unified Communication
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X (UCX) [9], and OpenSHMEM as communication conduit.
UCX is the default conduit. The usage of UCX allows SharP to
provide high-performance, one-sided communication for data
manipulation of SharP managed data structures. Meanwhile,
optimized collective communication and point-to-point com-
munication are handled through other communication libraries
such as MPIL. Thus, MPI+SharP and OpenSHMEM-+SharP
are both possible, which limits the porting effort of existing
applications. The various components composing the SharP
library can be seen in Figure 1.

In future exascale systems, it is anticipated that many hier-
archical and heterogeneous memories will be used including
DRAM, High-bandwidth Memory (HBM) (i.e., GPU HBM
or Intel KNL HBM), and NVRAM. To remove the expert
knowledge requirement to use these memories, SharP is com-
posed of many data constructs including Memory Domains,
Data Tiers, and a Unified Memory Allocator (UMA). Memory
Domains are a representation of the physical memories present
in the system, while Data Tiers are logical abstractions of
the Memory Domains based on User Hints and Constraints,
which define how the allocation of memory will be used by
the application. The resulting Data Tier would then be used
by the UMA to collectively allocate memory on a particular
memory or set of memories throughout a cluster. For example,
the user may wish to allocate memory on a NUMA node with
an affinity to an accelerator to reduce the distance between the
memory and the accelerator, thus improving the latency of the
data movement between the CPU and the accelerator.

After memory is allocated as data objects, data layout
mappings may be used to create data structures (i.e., arrays and
hashes) from the allocated data objects. These data structures
are flexible and allow for users to easily manipulate the
data layout and organization to optimize performance for the
application or allow for a simple transition from computation
to analysis (e.g., in-situ visualization). The mappings include
a uniform mapping, which uniformly distributes the data
among all of the PEs within a network group (e.g., MPI
Communicator and OpenSHMEM Active Sets), and a custom
mapping, which allows the user to specify the data layout
(e.g., strided chunking). As an example, the implicit tiling and
block-cyclic data layouts that are used by [10] and [11] can
be explicitly defined through the custom mappings.
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IV. SHARP SUPPORT FOR DATA-CENTRIC APPROACHES

Currently, the SharP library provides varying levels of
support for the aspects of data-centric computing detailed in
Section II. In this section, we will detail the support and where
the support is lacking for (i) data resilience, (ii) data locality,
affinity, and movement, (iii) data sharing, and (iv) intent-based
data allocations.

The SharP library natively enables data resilience. This
support is provided by the allocations of data objects and
distributed data structure interfaces attached to these data
objects, which keeps memory in contiguous buffers. Overall,
this allows applications using SharP to (i) reduce checkpoint
latency through fine-grained or coarse-grained checkpoints, (ii)
provide sequential and non-sequential checkpoints, and (iii)
support coordinated and uncoordinated checkpoints. However,
this requires the User to use NVRAM rather than any stable
storage through the persistent usage hint or constraint. This
limits the usability of the approach as not all systems will be
equipped with NVRAM.

The SharP library has many enabling data constructs for
data locality and affinity, as well as reducing data movement
between devices. These constructs were explained in detail and
demonstrated in [5], and included concepts such as explicitly
and implicitly allocating memory near devices. However, while
a User could allocate memory explicitly near a NIC, the User
was not capable of allocating memory implicitly, which limited
the performance portability of the approach and required users
to determine the hardware architecture of their cluster to
improve communication performance.

SharP is capable of natively sharing data between processes
of the same application (i.e., (i) from II-C) through the creation
and management of global and local data structures. This was
demonstrated in [5]; however, SharP’s capability for sharing
data between applications was not clearly defined and requires
users to implement this feature themselves.

For SharP, user intent was captured through usage hints
and Constraints. These were flexible enough to allow the user
to easily define how memory allocations should occur across
multiple PEs within a cluster, which allowed for portability
of the application between different computing architectures.
However, the Hints and Constraints were limited to the use of
a data structure for computation and not how the data structure
will be accessed by other PEs within the same application or
in another application. By providing these access Hints and
Constraints, the user would be able to more clearly define a
data structures usage and how the data structure should be
allocated.

V. EXTENSIONS TO SHARP’S DATA CONSTRUCTS

To best provide the support necessary to enable the many
data-centric approaches that have been discussed thus far,
extensions to SharP’s User Hints and Constraints can be
made to provide a more thorough mapping between the User’s
intent and the physical memories present in the system. These
extensions include information on how the User’s data will
be accessed by the application. More specifically, we can



extend the Hints and Constraints to provide Access Hints and
Constraints.

Access hints can be used by the User to provide SharP
with information concerning data affinity to particular devices,
which will provide data locality and reduce data movement.
Such hints can be specified with:

SHARP_HINT_LATENCY_OPT: When this access hint
is provided SharP will provide a best-effort approach to
identify and construct a mapping between the User’s data
structure and memory with an affinity to the NIC or
fabric. It will accomplish this by attempting to maximize
both the compute and latency performance characteristics
by utilizing a matrix of relative distances between devices
and finding a NIC with an affinity to the calling PE’s
processing location (i.e., NUMA node) and the NIC.

SHARP_HINT_COMPUTE_OPT: This usage hint is used
to suggest to SharP that the memory allocated should be
as close as possible to the calling PE. This will result in
a memory allocation that is also bound to that memory.

In addition to access hints, access constraints can be used
to better specify how data will be used by the application
and require SharP to provide memory allocations enabling this
usage. The added constraints can be seen below:

SHARP_ACCESS_INTRAP: Requires SharP to allocate
memory for a data object such that it is at least accessible
to threads of the calling process.

SHARP_ACCESS_INTERP: Requires SharP to allocate
memory that is accessible between processes within the
same job through RDMA operations.

SHARP_ACCESS_INTERJ: Requires SharP to allocate
memory that is accessible between processes of multiple
jobs through RDMA operations or file operations.

With these new access Hints and Constraints, SharP
will be capable of enabling the features that were lack-
ing in Section IV. For data resilience, applications can
now implicitly make use of the parallel file-system instead
of only NVRAM through the combination of the Hints
and Constraints: SHARP_CONSTRAINT_PERSISTENT and
SHARP_ACCESS_INTERJ, which will allocate a persistent
data object accessible across jobs. In addition, the same
access constraint may be used to enable data sharing be-
tween applications. For Data locality and affinity, support
for communication-based locality is provided through the
SHARP_HINT_LATENCY_OPT Hint.

VI. DATA-CENTRIC ANALYSIS OF APPLICATIONS

In this section, we will analyze applications and benchmarks
such as QM CPack and the Graph500 benchmark regarding the
topics listed in Section II. This will begin with an assessment
of their current implementation followed by a description of
the modifications we performed enable a data-centric approach
with SharP.

A. Analysis of QMCPack

For the analysis of QM CPack, we will focus on the follow-
ing areas: data resilience, locality, affinity, and movement. In
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each area, the focus will be narrowed to the Variational Monte
Carlo (VMC) and Diffusion Monte Carlo (DMC) methods
supported by OMCPack. The analysis will be followed by a
description of the modifications made to QMCPack.

1) Data Resilience for QMCPack: The QMCPack imple-
mentation executes iteratively with multiple blocks. At the end
of each block, all of the PEs will synchronize with a data
exchange and perform a checkpoint based on the user-defined
checkpoint frequency. QM CPack will use either the Adaptable
10 System (ADIOS) library [12] or the HDFS5 library to save
the current configuration and Walker data to stable storage. We
will focus on the ADIOS library as it has been shown to be
more performant [13]. The checkpointing approach is single-
level, coordinated, and sequential, which requires synchro-
nization. The use of coordinated and sequential checkpointing
may lead to significant checkpoint latency. Additionally, the
single-level checkpointing approach will likely suffer from
performance issues as the scale increases into the exascale
era [14].

Focusing on the single-level C/R approach, a reduction
of checkpoint latency and overhead can be accomplished by
keeping data structures in a state ready for checkpointing
without data packing. Additionally, taking advantage of data
affinity to memories and devices would allow for checkpoints
to move efficiently to stable storage and provide capabilities
that would allow for uncoordinated checkpoints, which may
reduce the checkpoint latency.

2) Data Locality/Affinity for QMCPack: The QMCPack
implementation has two primary areas in which data locality is
necessary. These areas include, (i), the abstractions used for the
underlying implementation and, (ii), the methodologies used
to load balance Walkers between PEs during each branching
step of the DMC algorithm.

For (i), the implementation of QMCPack contains many
dynamic, discontiguous data structures, which allow the ap-
plication to support an unbounded amount of Walkers and
data sets. The use of these data structures does not allow
for a simple use of heterogeneous and hierarchical memories
and will lack locality to the devices using them. Additionally,
during the load balancing phase, Walker data is required to be
packed and unpacked, which can diminish performance.

In (ii), the memory used by the communication library to
exchange Walkers during the load balancing phase may not
be allocated near the NIC. Because of this, a data movement
penalty could be seen when exchanging Walkers between PEs.

By moving the Walker’s data from discontiguous data
structures to contiguous data structures, the Walker would no
longer need to be packed or unpacked during an exchange.
Additionally, the control plane (i.e., notification of message
delivery) of the swapping of Walkers is completed by MPI,
which may not be performing its communication with data
near the NIC. Instead, adapting the control plane to use
data near the NIC will decrease the time between the PE
acknowledging the arrival of data and continuing to the next
computational step.



3) Data Movement for QMCPack: Data movement can
be viewed as local and remote. Local data movement refers
to the movement of data from main memory to the CPU.
Remote data movement refers to the movement of data over
the network.

For the data movement between the local memory and
CPU, there is currently a considerable amount of movement.
This is because all of the information stored by QMCPack
is stored within discontiguous data objects as mentioned in
Section VI-A2. By placing the data objects in memory dis-
contiguously, the implementation is removing potential spatial
locality benefits over time.

Data movement between PEs occurs within the DMC
method. This data movement is realized in the branching
step of the DMC algorithm. During this step, the QMCPack
implementation performs a packing operation when sending a
Walker. The receiver will then unpack the Walker into a new
buffer and add this Walker to its list of Walkers.

4) Modifications made to QMCPack: The first modifica-
tion completed was moving the important data structures of
OMCPack to SharP. Placing the data structures in SharP
allows the state of the data structures to be globally and
locally shared. Additionally, usage and access hints can be
used to provide data locality and affinity. This enables the
modifications described in Section VI-Al, VI-A2, and VI-A3.

For data resilience, we modified the C/R functionality of
OMCPack. The approach we utilized retains the semantics
established in QMCPack, however, our approach allows for
flexibile checkpointing. More clearly, our approach does not
keep us from also applying techniques such data deduplication,
compression, migration of data between PEs, or multi-level
checkpointing. Additionally, our approach allows for data
locality between devices and memories.

Our C/R mechanism employs a sequential checkpointing
approach utilizing two globally shared arrays. Both arrays
make use of access hints to enable persistence, which will
have the arrays allocated on some stable storage including the
parallel file-system, NVRAM, etc. The first array contains all
of the Walkers for each PE. The second array contains relevant
information to the simulation including trial energy, reference
variance, etc. Because the checkpoint state is already resident
in SharP arrays, the implementation of the C/R mechanism’s
functionality becomes a simple copy of data between data
structures. This allows the approach to be uncoordinated and
extensible to further enable policy-driven modifications such
as multi-level checkpointing [15] because the checkpoint data
is not abstracted away from the user.

For data locality, affinity, and movement, QMCPack was
modified with respect to two aspects: (i) contiguous data
storage and (ii) the control plane and mechanisms for com-
munication when swapping Walkers between PEs.

In (i), the use of discontiguous storage has been replaced
with contiguous allocations. The transition between the data
structures required modification to the data objects of the
Walkers that are commonly used for computation. This mod-
ification allows for increased data locality for computations,
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provides for decreased data movement between memories and
caches, and allows for Walkers to be moved between PEs
without packing and unpacking the data.

In (ii), when changing the control plane for swapping
Walkers, we also modified how the Walkers are swapped.
Because SharP uses one-sided operations, we modified the
swapping of Walkers to be one-sided while retaining the
original semantics of the two-sided approach for the sake
of comparison (i.e., emulated two-sided communication with
one-sided communication). Thus, semantically, only the mes-
sage delivery notification of the swapped Walker is different
from the original QM CPack version. In our approach, we used
the access hints of SharP to place memory near the NIC to
leverage data affinity and reduce data movement.

B. Graph500

Because Graph500 is a benchmark, we will only discuss the
topics of data locality, affinity, and movement.

1) Data Locality/Affinity for Graph500: The Graph500
benchmark performs 64 BFS operations originating from ran-
dom vertices within a generated graph. The MPI one-sided
communication port of the benchmark uses a predecessor map
to determine previously visited nodes within the graph during
each BFS operation. The data structure is allocated near each
PE prior to initiating the BFS operation and is shared globally.
Within each BFS operation, a copy of the predecessor map and
two bitmap queues are allocated and also shared. With these
data structures, one map and queue are used for reading while
the others are used for writing. This is done due to the use
of MPI-2 one-sided semantics, which uses a fence operation
to begin modifications to a shared data structure and another
fence to guarantee completion of the modifications.

In each iteration of the BFS, a series of MPI Accumulate
operations are completed. Whether or not the operation is re-
quired is not known because the operations are not completed
until after the final fence operation. Because the data structure
is primarily used for writing using network operations, placing
these data elements near the NIC may provide increased
performance through decreased latency.

2) Data Movement for Graph500: Currently, the bench-
mark has all of its data structures in memory near the PE.
Because the data is located near the PE and not necessarily
near the NIC, the distance the data is forced to move is large.
Placing data near the NIC will reduce data movement for each
BFS operation.

3) Modifications to Graph500: The first modification made
during the adaptation of the benchmark was to move the
important data structures to the SharP library. These data
structures include the predecessor maps and queue bitmaps.
To obtain data locality and affinity and reduce data movement,
usage and access hints are used.

To obtain similar semantics to the one-sided MPI-2 port,
modifications were made to the BFS implementation. These
modifications replaced the MPI Accumulate operations with
Atomic Memory Operations (AMO) operations similar to those



discussed in [16]. In [16], the authors replaced MPI Accumu-
late operations with AMO operations that would first retrieve
the current value from the map or bitmap being modified
and determine if the modification should take place. This was
accomplished with a fetch-and-add operation, which we
replaced with a Get operation. This improved performance of
the implementation and retained correctness.

VII. EXPERIMENTAL EVALUATION

This Section will present an experimental evaluation of the
data-centric modifications enabled by SharP of both QM CPack
and the Graph500 benchmark and compare these versions with
their vanilla counter parts. The testbed used to perform these
evaluations consisted of the Titan system located at Oak Ridge
National Laboratory (ORNL). The Titan system consists of
18,688 nodes each equipped with a single NVIDIA Tesla K20
GPU, 32 GB of memory, and the Cray Gemini interconnect.

A. OMCPack

To evaluate the data-centric adaptation and the vanilla
OMCPack, we used three different solid structures depending
on the experiment being conducted. These solids include:

1) Body-centered cubic Hydrogen (bccH) 1x1x1 supercell.
This is a very small and simple solid requiring minimal
computation in both the VMC and DMC methods. Each
Walker is near 1 KB in size.

Diamond 2x1x1 supercell. This solid requires more
computation than the bccH solid, but is a light workload.
Each Walker is roughly 20 KB in size.

Graphite 4x2x2 supercell. This solid requires a signif-
icant amount of computation per Walker. Each Walker
is roughly 16 MB in size.

2)

3)

1) Checkpoint/Restart: For an evaluation of data resilience
with QMCPack, we will perform an evaluation with two
compute sizes resulting in small and large checkpoint sizes.
The first workload will consist of the Diamond supercell
and the second workload will be the Graphite supercell.
This will give us an understanding of the behavior of the
C/R mechanisms with differing workloads. For the Diamond
supercell experiment, we used 8 Walkers per PE with 8 PEs
per node. For the Graphite supercell experiment, we used
4 Walkers per PE and 4 PEs per node. The results of this
experiment are shown in Figure 2.

As expected, there is a considerable difference in checkpoint
latency between ADIOS and the data-centric version. This
is due to how the checkpoint is stored and the coordination
between PEs. For ADIOS, the checkpoint is stored in a single,
shared file on the Lustre filesystem, while the data-centric
version used a single file per PE, which does not require
coordination between PEs. Thus, the checkpoints could be
completed asynchronously with PE synchronization occurring
later in execution. For the Diamond supercell experiment, the
data-centric version’s checkpoint latency is less than 1% of the
latency of ADIOS’s with 4 nodes (i.e., 32 PEs) and continues
to be less than 1% regardless of the scaling up to 128 nodes
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Fig. 2. Average checkpoint latency of QMCPack using either ADIOS or
SharP to perform checkpoints. This includes both the Diamond and Graphite
supercell experiments. Lower is better.

(i.e., 1024 PEs). For the Graphite supercell experiment, the
adapted version also outperforms ADIOS by up to 6X.

2) Data Locality, Affinity, and Movement: Two modifica-
tions were made to QMCPack to provide data locality and
affinity: (i) the Walker data structures were modified to be
contiguous and (ii) the control plane’s memory was allocated
near the NIC. Both modifications were previously discussed
in Section VI-A4.

In (i), we evaluated our modifications by exploring the
execution timings of the VMC method. Additionally, we
measured the CPU’s L1 and L2 cache to understand the
affect on data movement and locality. For this experiment,
we used the bccH and Diamond supercells due to their size.
We excluded the Graphite supercell because the size of the
Walkers is larger than the caches on Titan. The results of these
experiments can be seen in Figure 3(a) and 3(b).

For the VMC execution timings, we found that the use of
contiguous data structures improves the overall performance
of small workloads such as bccH by up to 2.1%. For a
Diamond run, which is a larger workload than bccH, we saw
a negligible increase in performance of 0.5%. The reasons
for these performance differences can be seen in Figure 3(b).
The data-centric adaptation lowered the number of accesses
to the L1 and L2 cache for the becH data set by 1.6% and
8.8%, respectively. This suggests there is less data movement
between the CPU and memory. Further, the L1 and L2 miss
rates were lowered by as much as 11.5%. The Diamond
experiment had similar results. With the Diamond experiment,
the cache miss reduction within the L1 cache was up to 4.7%
lower and 1.2% lower with the L2 cache.

For (ii), we used both the bccH and Diamond supercells
for the evaluation. The results of the experiments can be seen
in Figure 4 where Figure 4(a) and 4(b) are the average time
taken to send and receive a Walker. The results for both the
bccH and Diamond experiments were similar. In both, the
data-centric approach outperformed the vanilla approach when
sending and receiving Walkers, which was expected. When
sending Walkers in the bccH experiment, the time to send
a Walker was reduced by up to 72% with 512 PEs. In the
Diamond experiment, the time to send a Walker was reduced
by up to 40% with 1024 PEs. Similarly, the time to receive a
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Walker was reduced by up to 73% for the bccH experiment
and 59% for the Diamond experiment.

B. The Graph500 Benchmark

To understand the utility of providing both data locality
and affinity to the NIC for the Graph500 benchmark, we
used our adapted Graph500 benchmark and modified the Hints
given to SharP to produce two different implementations: one
with memory allocated near the NIC and one with memory
allocated near the compute (i.e., PE), which is the default
implementation for the Graph500 benchmark. These imple-
mentations were weakly scaled with a initial scale of 15. For
this experiment, we used 8 PEs per node.

As expected, the implementation with memory near the NIC
outperformed the default allocation location as the graph size
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was increased. While the performance is similar for less than
128 PEs (i.e., roughly 1.4%), the difference increases to up
to 9.9%. This suggests that data-intensive applications would
benefit from this type of approach.

VIII. RELATED WORK

This work touches on many aspects of data-centric comput-
ing including topics such as providing data-resilience, data-
locality, and data-affinity as well as reducing data-movement
through abstractions of User intent. There have been many
prior works on locality and affinity also touching on either
(1) the importance of providing locality with current architec-
tures or (ii) automatic provisioning of data locality based on
software hints.

In (i), there are multiple works by Moreaud et al. [1],
[7] and Goglin et al. [17]. In [1], [7], and [17], the authors
discuss the importance of data locality to the NIC. More
specifically, the authors show a roughly 15% improvement in
performance when providing locality to the NIC in NUMA
systems. Much of this work was used to motivate and develop
the hwloc library [18], which is commonly used to obtain
locality information between devices in an individual system.
Each of these works serve as motivation for our work.

For (ii), works providing automatic provisioning of data
locality, there are multiple works including DASH [10],
TiDA [11], and Kokkos [19], which provide some form of
data locality for applications. DASH is a C++, MPI-based
PGAS abstraction implemented with templates executing on



the DASH Runtime (DART). This work gives array data
structures a global view while providing locality for elements
of the array. This work was furthered in [20] and [21] where
the user can specify hints on how the array will be accessed
to assist in the locality of the data placement. TiDA is a
similar work to DASH in that it provides data locality for array
elements based on how the array is used. However, unlike
DASH, the locality also takes into account locality between
NUMA nodes.

Unlike these works, this work takes a holistic approach to
enable many aspects of data-centric computing including data
resilience, locality, affinity, movement, and the abstraction of
User’s intent. Likewise, the discussions in this work do not
relate to a single type of data structure (i.e., an array), but to
many possible data structures and their usage.

IX. CONCLUSION

As we move to the pre-exascale systems and eventually
reach exascale systems, the architectures of extreme-scale
systems will be composed of many high-performing comput-
ing devices, a high-performance NIC, and hierarchical and
heterogeneous memories. With these systems, it is important
to make use of a data-centric approach to fully take advantage
of the future systems.

In this paper, we have enhanced the SharP library to
support a wider range of capabilities to enable data-centric
computing. Additionally, we have explored, discussed, and
demonstrated the importance of using a data-centric approach
for the development of scientific applications. The particular
topics of a data-centric approach that were explored and
discussed include resilience in Section II-A, locality, affinity,
and movement in Section II-B, sharing in Section II-C, and
abstractions capturing User intent in Section II-D.

We analyzed and adapted two petascale capable applica-
tions, QM CPack and the Graph500 benchmark, to make use
of a data-centric approach in Section VI. We evaluated these
adaptations and found significant improvements for QM CPack
with respect to data resilience with checkpoint latencies de-
creased by as much as 99%. With respect to data locality
and affinity, we increased cache usage and decreased network
latency by as much as 73%. For the Graph500 adaptation, we
had similar results with data locality and affinity to the NIC
providing as much as 9.9% performance improvement when
compared to locality to the PE.
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