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1 Introduction/Overview 4 An illustrative example: Senate voting

Given a tensor, a CP decomposition is formed by finding a low-rank  Consider the following tensor (i.e., block) of data

tensor approximation that has good fit as measured by the total o Data from 1989-2016
° 271 Senators

entry-wise square difference. However, different fit/loss functions may
be more appropriate in some cases. For example, logistic loss is a
natural choice for binary tensors.

* Two per state

* Six-year term
(can serve multiple terms)

* Two main parties:

Iltem voted on Republicans and Democrats

The (¢, 4, k)th entry is
e 1if senator zon item 7 casted vote &
e ) otherwise

Senate vote tensor X

Senator

We propose a new generalized tensor decomposition method that
allows users to select a generic loss function. To solve the resulting
optimization problem, we use a stochastic gradient algorithm from
machine learning to exploit the fact that approximate gradients can be
computed efficiently from small samples of the entries.

9044 items voted on (roll call votes)
3 possible votes: yea, nay, no vote

Question: Are there some latent factors that 63% entries not observed

2 Proposed Method: Generalized Tensor Decomposition  ouid explain the data? (e.g., political party) 21 millhen ehsertee 7 e
Find a low-rank tensor

Senator Color ltem Color Parameter selection
Factor aA32 A3, Republican e Supported by a majority of both parties Defaults used for a, €, 51, B2
/ © D e Supported by a majority of Republicans only N =2x10° (approx 10% of observed entries)
| | emocrat e Supported by a majority of Democrats only N = 10* (approx. the sum of dimensions)
M . I - Aoy el 0 az,rl @ Independent e Not supported by a majority of either party T =2 % 10° (chosen experimentally)
Senator Item __ Vote
- i Rank 7 = # factors AN .p,,m wm,g,vw.wg a""‘W"‘v ocsen iy R .
ai] a12 a . /® .
Lr Bernie Sanders

Ted Cruz

—

Mijr = ai1(i)agi (§)asi (k) + a2(i)as(j)asa(k) + - - - + ay.(i)az.(j)as, (k)

that minimizes Shorﬂvand
(%) min F(X, M) Zf xri,m;) st. M :f[[Al,AQ,...,Ad]]\

\}

Different f(x, m) capture dlfferent statistical assumptions:

Rank-2 Gaussian (134s runtime)

0 50 100 150 200 250 '89 '95 '01 '07 "13 Yea Nay NA
> cp_adam(T,2, 'mask',W,'objfh',@(x,m) (x-m)."2, gradfh',6@(x,m) -2*(x-m))
h Objective function and its gradient

f(x,m) = (x — m)2 “Standard” least squares/Gaussian

XCijk is Gaussian with mean V(; % and variance o

Data tensor Rank Binary tensor indicating missing entries with zero

f(z,m) =log(l+e™) —am Logistic/Bernoulli log-odds
Xijk is Bernoulli with log-odds V(i k.

Senator _ Iltem ~ Vote
oo' .o . ke ‘ '

—h

f(z,m) =log(m—+1) —xlogm,m > 0 Bernoulli odds
X ik is Bernoulli with odds V(; .

..many other options

Want: A fast and flexible algorithm to try all of the above.

w
®

3 Proposed Algorithm: Stochastic Gradient Methods

Solving (%) is challenging in general, but it turns out that sub-sampled
gradients can be computed efficiently/cheaply!

0 50 100 150 200 250 '89 '95 '01 '07 "13 Yea Nay NA
> cp_adam(T,3, 'mask’',W, objfh',@(x,m) log(exp(m)+1)-x.*m, gradfh',@(x,m) exp(m)./(exp(m)+1)-x)

Rank-3 Bernoulli log-odds (84s runtime)

Idea: Use stochastic gradient methods (Adam) from machine learning. Senator Vote
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Given data tensor X and initial guess M = [A, Ao, ..., Ayl. = St et et B e @
= A . <
1: {2 < N random entries in the data tensor > . - —— .
2: F (_ Pre I;,Tr; ‘I\n L.-._'.. ‘f..‘- -....W. J ----- .‘ _“bl&_.“" \ T . ,' : _.
0 ZZEQ fzi;my) Cheap for a small # of samples! 1N Aol TN iy | ‘
3: D0,V 0fork=1,...,d \ul |
. —_— 1 1 v U TRR o
4: for £=1,2,... do Different samples every time S 3, e\ ARENS "'--'e o ,'_‘ X ]
50 for t=1,...,T do / S|
6 {2 «+ N random entries in the data tensor Compute = ; g J gt A |
7: Compute G only at entries in 2 (everywhere else is zero) stochastic g A N ol K ol St e ente] - R ]
8 .,d| gradient o
1 S,
9: ...,d| Update R . o —
. 2 (£—1)T+t . g 0 50 100 150 200 250 '89 '95 '01 '07 "13 Yea Nay NA
10: \pk A ,82\Ijk + A]. - ,32 A : 1— ;8 for k = 1, « s ,d moments & > cp adam(T,5, 'mask',W, ' objfh',@(x,m) log(m+l)-x.*log(m+le-7), gradfh',@(x,m) 1./(m+l)-x./(m+le-7), ' lowbound', le-6))
11: Ar +— Ap — a®/( Uy + £) .,d| Take a step - _ _ ——
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