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Different	samples	every	time

Same	samples	every	time

Cheap	for	a	small	#	of	samples!

1 Introduction/Overview
Given a tensor, a CP decomposition is formed by finding a low-rank
tensor approximation that has good fit as measured by the total
entry-wise square difference. However, different fit/loss functions may
be more appropriate in some cases. For example, logistic loss is a
natural choice for binary tensors.

We propose a new generalized tensor decomposition method that
allows users to select a generic loss function. To solve the resulting
optimization problem, we use a stochastic gradient algorithm from
machine learning to exploit the fact that approximate gradients can be
computed efficiently from small samples of the entries.
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Different																capture	different	statistical	assumptions:f(x,m)
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Find	a	low-rank	tensor

3	Proposed	Algorithm:	Stochastic	Gradient	Methods
Solving	(★)	is	challenging	in	general,	but	it	turns	out	that	sub-sampled	
gradients	can	be	computed	efficiently/cheaply!

Idea: Use	stochastic	gradient	methods	(Adam)	from	machine	learning.

2	Proposed	Method:	Generalized Tensor	Decomposition

Want:	A	fast and flexible algorithm	to	try	all of	the	above.
...many	other	options

Bernoulli	odds
is	Bernoulli	with	odds											.

Logistic/Bernoulli	log-odds
is	Bernoulli	with	log-odds	 .

“Standard”	least	squares/Gaussian
is	Gaussian	with	mean												and	variance					.
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4	An	illustrative	example:	Senate	voting
Consider	the	following	tensor	(i.e.,	block)	of	data

Item	voted	on
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Senate	vote	tensor

The													th	entry	is
• if	senator			on	item			casted	vote
• otherwise

Question: Are there some latent factors that
could explain the data? (e.g., political party)
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Data	from	1989-2016
271 Senators
• Two	per	state
• Six-year	term

(can	serve	multiple	terms)
• Two	main	parties:

Republicans	and	Democrats

9044 items	voted	on	(roll	call	votes)

3 possible	votes:	yea,	nay,	no	vote

63%	entries	not	observed
(2.7	million	observed	/	7.4	million)

Supported	by	a	majority	of	both	parties
Supported	by	a	majority	of	Republicans	only
Supported	by	a	majority	of	Democrats	only
Not	supported	by	a	majority	of	either	party

Republican
Democrat
Independent

Senator	Color Item	Color Parameter	selection
Defaults	used	for

(approx.	10%	of	observed	entries)
(approx.	the	sum	of	dimensions)
(chosen	experimentally)
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> cp_adam(T,2,'mask',W,'objfh',@(x,m) (x-m).^2,'gradfh',@(x,m) -2*(x-m))

Objective	function	and	its	gradientBinary	tensor	indicating	missing	entries	with	zeroRankData	tensor

> cp_adam(T,3,'mask',W,'objfh',@(x,m) log(exp(m)+1)-x.*m,'gradfh',@(x,m) exp(m)./(exp(m)+1)-x) 

> cp_adam(T,5,'mask',W,'objfh',@(x,m) log(m+1)-x.*log(m+1e-7),'gradfh',@(x,m) 1./(m+1)-x./(m+1e-7),'lowbound',1e-6) 
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