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Abstract— It is essential to improve the resiliency of power 

distribution systems (PDS) given the increase in extreme weather 

events, number of malicious threats and consumers’ need for 

higher reliability. This paper provides a formal approach to 

evaluate the operational resiliency of PDS, and quantify the 

resiliency of a system using a code-based metric. A combination 

of steady state and dynamic simulation tools is used to determine 

the resiliency metric. Dynamic simulation tools help with 

analyzing impact of short-term events, which might affect 

operational resiliency in long term. A dynamic optimization 

algorithm for changing operating criteria to increase the 

sustainability of the most critical loads has been proposed. The 

proposed theoretical approach is validated using a simple power 

distribution system model and simulation results demonstrate the 

ability to quantify the resiliency using the proposed code-based 

metric.  The time-dependent quantification of resiliency has been 

demonstrated on a test system of two connected CERTS 

microgrids.  

Keywords— Distribution Systems, Distributed Energy 

Resources, Power System Operations, Renewable Integration, 

Resilience 

I.  INTRODUCTION  

omplex infrastructure networks, such as the electric power 
grid, are functional due to number of factors: real time 

balance of generation and demand, automated control, complex 
human in the loop control, component level availability and 
system level hierarchal interaction. Disruption of any scale at 
any hierarchical level can possibly threaten the continuity of 
the power grid services. Resilience of Power Distribution 
System (PDS) has gained significant traction after impact of 
super storm Sandy (2012) on the power grid reliability. 
However, inadequate theoretical foundations in the definition 
and metrics relevant to PDS resilience challenge the practical 
implementation of resilience in electric utilities. PDS resilience 
is the ability of the network to resist discontinuity of power 
supply to critical loads during stressful operating conditions, 
and recover from any damages during the event [1-3]. PDS 
resilience metrics are important: (i) to justify investments in 
infrastructural upgrades for higher resilience and (ii) evaluate 
the suitability of a particular approach to be taken by an 
operator to adequately enhance the resilience during a 
contingency or attack.  

Threats to normal operations of PDS (i.e., power quality 

events, momentary interruptions, sustained outages, brownouts, 
blackouts) are diverse, and have a wide range on the time-scale 
(i.e., a time-scale of milliseconds to several weeks). It is the 
objective of resilience-enabling efforts in PDS to maintain 
power supply to critical loads during emergencies, and 
maximize the time duration for which this supply can be 
maintained. Resilience metrics serve to capture the 
effectiveness of the strategy adopted to meet this objective of 
utilities. Several authors have proposed PDS resilience 
enhancements using networked microgrids [4, 5].  
Technologies that augment advanced resource sharing between 
microgrids in anticipation of unfavorable events [6-8], or 
partitioning a PDS have also being actively researched and 
implemented across the industry [9, 10]. Several new 
improvements to control and operation of microgrids have been 
reported by researchers: such as resiliency-driven optimal 
scheduling [11], stochastic scheduling [12], and, hierarchical 
outage management [13]. However, these approaches – though 
aimed at enhancing resilience – fall short of developing a tool 
in quantifying the resilience enhancements achieved by these 
technologies. 

Resilience metrics developed from network topology can 
give us an approximate resiliency measure, but do not capture 
availability of distributed energy resources to critical loads 
accurately in real-time. The approach proposed in [15] requires 
exhaustive information about PDS infrastructure, and 
implicitly assumes infallibility of these resources during 
contingencies affecting a PDS. Physical infrastructure 
resources, as well as state variables are susceptible to rapid and 
unforeseen changes [16]. Events in the distribution system - 
such as, (i) pole damage due to a car accident, (ii) sudden phase 
imbalance due to large current drawn by customers charging 
their electric vehicles, (iii) lightning strike, (iv) heavy rain 
followed by sudden drop in temperature, (v) transients due to 
variable power injections by photovoltaic generation connected 
to the power grid, voltage spikes, etc. – affect the resiliency of 
the network indirectly. Most PDS enable resiliency in response 
to an unfavorable event, and not in anticipation of an event. 
There are some approaches that emphasize on resilience-
driven, adaptive restoration strategies [17, 18]. However, the 
approach is also not proactive and leverages a multi-microgrid 
approach, similar to [19, 20]. Any reactive restoration approach 
results in system downtime, leading to financial losses, safety 
hazards and public inconvenience [21-23]. There are several 
computation and data-related challenges to a prognostic 
approach of quantifying and enabling resilience, such as – 
weather and consumer uncertainties, large meteorological data 
requirement, expense of processing that data, incorporating 
artificial intelligence to enable proactive response, and lack of 
visibility into state parameters of the PDS [24].  
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We present an approach to quantify and monitor resiliency 
of PDS to an ongoing contingency, and proactively look ahead 
into the resiliency of the network to prolonged outages. The 
proposed approach enables the operator to have intuitive 
understanding into the long-term energy balance profile given 
the network’s diverse backup energy resources and 
responsibility towards critical loads, without requiring detailed 
knowledge of the network model [25, 26]. Unlike a decision-
theory based resiliency quantification tool [19, 27] – the 
proposed method in this work quantify the resiliency of the 
network towards a broad range of possible scenarios instead of 
a singular pre-defined contingency addressed in other existing 
work. 

The novel contributions of the paper compared to the 
existing work are as follows: 

(1) Developed algorithm provides a time dependent 
definition of resilience and a generic code-based 
framework for evaluating operational resilience of a 
Power Distribution System (PDS).  

(2) Developed algorithm demonstrates the use of a linear 
programming based dynamic optimization that can be 
adopted by utilities to maximize the resiliency of the 
most critical load following a contingency. 

(3) Developed algorithm can quantify and monitor 
resiliency in real time and proactively provide help in 
decision support to the PDS operator to maximize 
resiliency for broader range of possible contingencies 
and events. 

(4) The developed resilience does not require complete, 
low-level knowledge of the system infrastructure for 
computation - thus simple enough for operators to 
understand and use during contingencies. 

(5) The proposed approach makes a new contribution  
towards development of a universal and easy to 
compare resiliency analysis metric for different 
distribution networks of variable sizes, capacity served, 
and critical priorities. 

II. TIME-DEPENDENT DEFINITION OF RESILIENCE 

There are several working definitions of PDS resilience. 
Some authors have defined resilience as a function of the 
probability of attack and the consequence of that attack [28]. 
Resilience of PDS has also been defined based on the nature of 
attack on the system [23, 24, 29]. A framework to determine 
resilience based on evaluation of infrastructure, and time taken 
to restore to service has been proposed in [16, 30]. However, 
metrics based on inventory assumes all resilience-enabling 
infrastructures will operate during or after contingency, and 
cannot be used in real-time. Cost metrics of damages incurred 
due to an attack has been commonly used to report a lack of 
resilience in the PDS [2]. The fundamental drawback of each 
of these definitions of resilience is that these definitions do not 
consider the durations of unfavorable events affecting the PDS. 
Consequently, the resilience metric derived using these 
definitions are meaningful only in the context of a specific 
attack, network topology, or data availability.  

The importance of time to measure resilience of power 
distribution system has been discussed in detail in [16]. 
However, the inclusion of time as a factor of quantifying 
resilience is specific to one isolated event and the time taken to 
recover from that event. The network designer assumes that the 
system can be recovered after a certain amount of time. Power 
system events have a wide range of events. In practical 
scenario, the recovery time may vary greatly as the event 
progresses. In the proposed resilience metric, there is no such 
assumption. Using the he proposed algorithm, the resilience of 
the network can be computed for a wide time scale of events, 
ranging from a magnitude of 10

0
seconds to 10

6
 seconds, in a 

single computation step. Thus, using a single, easy-to-
understand metric, the operator working through a contingency 
can be informed about the ‘service potential’ of the network 
across a broad range of worst-case scenarios and optimize 
decision about seeking external resources to improve the 
operating condition of an affected distribution system or 
microgrid. Many resilience metrics proposed in the literature, 
do not consider quantifying resilience across a wide-range of 
events in the power system considering duration of critical load 
affected. Thus, the proposed metric is novel contribution.  

The proposed metric is derived from empirical equations 
that capture the impact of an unfavorable event to the network 
for a given time-scale. The result of the equation is mapped to 
integer value between 1 to 10, representing low to high 
resiliency of the network for the assessed time scale. The same 
equation is used to evaluate the impact of events lasting from 
seconds to weeks. After all these computations are completed, 
the derived integral values are combined and represented as a 
single number. This single number representation is essentially 
a ‘code’, representing a state of resilience of the network, and 
does not correspond to any numerical value.  

Conventionally, reliability metrics (such as SAIDI, SAIFI, 
and MAIFI) were adequate to describe the performance of a 
utility in providing service to consumers. Due to increase in (i) 
number of reported weather-based or human-induced physical 
events on the PDS [31], (ii) energy mix of renewable and 
conventional power sources, and (iii) cybersecurity breaches 
across the power grid [32] – it has become indispensable to 
make the PDS resilient to these events/ attacks. Though power 
system reliability and resilience are different concepts [20], 
they share an inherent dyadic relationship as metrics for 
evaluating system performance. Irrespective of the nature of 
the attack, impact is best assessed by the time taken by a 
system to recover from the consequences of the attack. A time-
domain mathematical formulation of resilience will facilitate 
mapping between the quantification of system performance by 
the two independent concepts. There are several other desirable 
properties in a resilience metric: 

 a) The resilience metric (say R) should be easily 

comprehensible and interpretable by operators, so that quick 

decisions can be made during ongoing contingencies. 

b) R should be simple, robust, flexible, scalable, and 

applicable to any distribution system with minimal 

modification. 

c) Computation of R should not exceed response time of 

distribution system control actions.  



d) Interpretation of sensitivity of R should corroborate to 

physical changes in the network. 

e) Attacks on the power system can disrupt both quality 

and continuity of service, for varying durations of time. It is 

important for R to capture both attributes of the effect of the 

attack on the power system. R should preserve maximum 

information about all the non-commensurate factors that affect 

PDS resilience. 

f) R must be characterized by low barrier to entry, easy 

to implement in Distribution Management Systems (DMS), 

and compatible with existing and future data acquisition 

hardware. The format for R metric data exchanged should also 

follow common data exchange protocols.   
Using [30], it can be deduced that PDS system interruptions 

follow a long-tailed distribution, and impact of resilience 
inadequacy grows exponentially with outage duration. Thus, 
resilience of a PDS is function of time duration of outage, as 
well as the number of loads that are affected by an outage 
event. In order to capture these two factors, let us propose that 
the resilience metric of a distribution system be represented as 
a coded numeric value:  

where A, B, …, F are all variables. R is defined as such in 
Fig. 1, since it is proportional to power outage duration and 
power outage magnitude. Each variable corresponds to a time-
scale of a power system event corresponding to the magnitude 
of its duration in seconds. Each variable in the definition of R 
in Fig. (1) represents the resilience of the system for 
corresponding duration of time outage in orders of 10.  

The proposed approach considers such small time-scale 
events into resilience evaluation in order to accommodate 
transient power interruptions can stop or reset operations, 
leading to lost productivity for long outage durations. In 
context of resilience, we will consider the fraction of load (f) 
unaffected by voltage or current distortion. 

Load Unaffected by PDS Event(kW)

Total Load of PDS (kW)
f   (1) 

where, for events that disrupt power continuity in f fraction 
of load in the magnitude of 10

0
 seconds, the resilience value is 

computed on an integer scale of 0 to 9, and stored in the 
variable F. Similarly, for events lasting in the magnitude of 
minutes (i.e., 10

1
 seconds), the resilience value is computed on 

an integer scale of 0 to 9, and stored in the variable E, and so 
forth for variables D, C, B and A. 

Let us demonstrate the computation of each constituent 
variable of R, by considering a generic variable m, to compute 
the resilience of a network lasting to an event lasting α seconds. 
We propose an empirical equation for unscaled resilience 
metric as: 

' ( )(1 )fm c e f    (2) 

where m’ is the unscaled value of the resilience value, c is a 
binary variable, which stores whether an event happened in the 
considered time frame, and f is the fraction of load unaffected 
by the PDS event, determined from Eq. (1). Eq. (3) is 
formulated because resilience of a PDS is proportional to the 
time duration of impact it can sustain, and the fraction of loads 
unaffected because of the event in the network. The fraction of 
loads (or any other factor representing the network 
infrastructure) that remain intact after a contingency is 
represented as an exponential function. The term (1+f) has 
been used to denote the proportionality of the resilience metric 
to the fraction of unaffected loads. (1+f) is used instead of f to 
make the resiliency metric scale from one to nine.  

Each constituent factor used to represent R is a function of 
time duration of the impact as well as m’. which itself is 

another function of time duration of outage (), and dependent 
proportionally and exponentially on fraction of unaffected 
loads. It can be observed from Eq. (2) that the fraction of 
unaffected load affects the value of resilience significantly; 

and, time scale of the event is captured through the range of . 
In case of a detected PDS event, the most resilient systems will 
have: 

1

max max( )(1 1) 25.41im e     (3) 

0

min min( ) 1im e     (4) 

The unscaled m’ maximum and minimum resilience value 
is resolved to an integer value m between 1 and 9 (1 for least 
resilient, 9 for most resilient), as shown in Table I. If f = 0, m is 
forced to store 1. Any case of no event affecting the PDS in the 

order of seconds under evaluation, m is represented as 0. In 
Eq. (4),  f = 0+ is used instead of 0 for the most resilient state 
of the PDS. Otherwise, it would be impossible to distinguish an 
unfavorable event from non-occurrence of any unfavorable 
event in the PDS.  

TABLE I: SCALING OF RESILIENCE METRICS 

10n

Figure 1: Proposed Resiliency Metric 

Figure 2: Visual representation of energy deficit under different operation 

methods 



 
Example: Consider that a transient surge affects two-thirds of 
entire PDS customer demand for 6.12×10

3
 seconds. However, 

Since the event lasts 10
3
 seconds, we have to calculate C. 

Using Eq. (2), C’ = 1(6.12+e
0.333

) (1+0.333) = 10.01. From 
Table I, C is resolved to be 4. In a second event, if only one-
third of the PDS customer demand is affected for the same 
duration due to a transient surge, C’ = 1(6.12+e

0.667
) (1+0.667) 

= 13.44. From Table I, C is resolved to be 5. Thus, we can 
clearly see the improvement in resilience due to greater 
percentage of unaffected loads.  

 Let us assume that for a utility PDS, the resilience metric 
has been determined to be R1 = 112578. It means that 
distribution system has low resilience to outages lasting in 
order to 10

4
 to 10

6
 seconds, but moderate to high resilience to 

outages lasting 10
3
 to 10

1
 seconds. If another PDS is to be 

compared, or another configuration of the same PDS is 
evaluated for resilience using the proposed method, let’s say R2 
= 113689. The new metric shows that the resilience in 
continuity of service in the second PDS is higher for events 
lasting in order of 10

1
 to 10

4
 seconds, but the resilience to 

power quality events in the power system has declined. The 

change in resilience could be computed as (R1-R2).   

Evaluating resilience of a PDS is challenging because 
multiple non-commensurate factors determine resilience of a 
network. Variety of tools are used to enable the resilience of a 
PDS, such as: (i) advanced DMS algorithms based on artificial 
intelligence; and, (ii) devices such as smart switches, reclosers, 
fault-detection and isolation devices, auto-transfer switches, 
onsite distributed generation (diesel, natural gas, renewables), 
and battery storage. However, without a real-time resilience 
evaluation framework for quantification, it is not possible to 
gauge the effectiveness of the resilience-enhancement method 
adopted by the utility. 

The essential difference between using the proposed code-
based metric and computing resiliency over time are:  

1. The code-based metric is derived by computing resilience 
of the network several times for all possible outage 
durations, and not all possible outage scenarios (which 
may be done by computing all possible edges in which an 
overhead line can be damaged). On the other hand, any 
other resiliency metric may be computed on several 
possible outage scenarios and putting them together 
coherently will result in a large look-up table. However, 
the code-based metric is concise (6 digits) and conveys 
information about system resilience over a large time scale 
conveniently.  

2. The code-based metric is a temporal representation of 
resilience, and abstracts the availability of infrastructure 
and associated probabilistic parameters in the 
representation. Thus, it can quickly provide approximate 
losses to be incurred in terms of Energy Not Served (or 
utility revenue lost by multiplying by cost per kWh), 

unlike other resilience metrics that can be computed by 
combinatorial investigation of all possible failures specific 
to and eventually collated. Since the proposed metrics 
considers encodes the network resilience upon time taken 
to restore the network, it makes the proposed resilience 
metric representation universal and easy to compare 
different distribution networks with diverse capacities and 
priorities. For example, if operator reports that the 
resilience metric of Network A is ‘114899’ and another 
operator of Network B says that resilience of Network B is 
‘135999’, it clearly implies that Network B is more 
resilient to Network A for outages lasting in the scale of 
10

3
 seconds.  

III. DYNAMIC ADJUSTMENT OF OPERATING CONDITION TO 

MAXIMIZE RESILIENCY 

      Dynamic optimization of operating criteria is required to 

ensure maximum sustainability of limited resources after a 

contingency. Many authors have proposed that resiliency be 

enabled by only keeping the critical loads on during the  

contingency. In the simplest sense, the operating curve of a 

distribution system can be represented by Curve A’ in Fig. 2.- 

where storedE  represents the backup energy available in the 

system at the time of contingency. The most commonly used 

utility practice includes shedding a certain fraction of load and 

continue to supply the residual grid until power is restored, or 

the grid under contingency runs out of power. Curve A shows 

an ideal response in which the power grid can completely 

maintain all loads until the outage inducing event has been 

overcome. Curves B and C show different approaches that can 

be adopted for power consumption when the grid is in an 

islanded mode. Curve B shows exponential decay, in which 

the energy supplied any of the critical loads will not be able to 

meet the energy demand over the duration of the outage. 

Curve C shows the benefit of dynamic optimization based 

operating practice that ensures high sustainability of resources 

that out lasts duration of the outage. 

     Under ideal circumstances, the time for which the 

secondary resources should be available to feed the critical 

loads (i.e., backupt ) should equal or be more than restoredt . 

However, in many practical scenarios,  

 backup restoredt t   

- necessitating further investigation into dynamic optimization 

of operating set-points such that maximum load is picked up, 

for the maximum amount of time.  

The resilient energy requirement of the grid may be written as: 

  

( ).
repair

event

t
reqd

crit
t

E P t dt   (5) 

The energy available for a grid that is undergoing a contingent 

situation is given by: 

1 1

( ) ( )
outage outage

event event

t t
avail

gen batt
t t

g b

E P t dt P t dt
 

     (6) 



where g  is the number of generators in the microgrid, b  is 

the number of battery installations in the microgrid, genP  is 

the power delivered from individual diesel generators and 

battP  is the power delivered from batteries. The power 

delivered by the generator and the battery can be modeled 

using the Eqs. (7) and (8).  
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where, 1   is the time constant of the generator to reach steady 

state rated power generation capacity after being brought 

online, 2  is the time constant of the power availability decay 

curve of the battery after it threshold state-of-charge required 

for constant power delivery is reached, 1r  is the rate at which 

power ramping rate of the diesel generator, 2r  is the power 

decay rate of the battery, fuelt  is the time at which fuel supply 

of the generator falls below critical values. The time taken for 

a battery to be discharged to a level beyond which it fails to 

act as a constant power source is represented by SOCt .It may 

be recalled that 
2

1r Ap Bp C    corresponds to the fuel 

consumption curve of the generators, where , ,A B  and C  

correspond to specific parameters of a generator.  

 

Assuming less than ideal industrial operating conditions, let us 

define an energy deficit optimization function such as: 

 

1 2

min max

1 1 1
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2 2

x

2
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1.00

. .

deficit reqd availE aE E r r

a

b

r r

r

s
r

b

t

r r



 





   

 





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where, ,a b  are adjustable parameters of the deficit function.  

A linear programming model is created to optimize the use of 

limited resources available to serve the most important loads 

for the longest duration of time during a contingency to 

maximize the resilience of the grid.   

 

Application of Dynamic Adjustment of Operating Conditions 

 

Since distribution systems serve communities – some loads, 

such as those committed for law enforcement and public 

service, are higher priority loads compared to residential 

loads. Thus, if not already available, it is relatively in 

expensive to create load priority lists for all distribution 

systems. At the discretion of the operator, loads are labeled 

‘High Priority’, others are classified as ‘Medium Priority’ or 

‘Low Priority’. Among each of these categories, further sub-

divisions are possible – though such sophisticated 

classification is less than practical. During contingencies, it is 

practical to continually monitor the situation and evolve the 

operating set-points. The dynamic optimization problem 

requires the estimated time left to repair, and optimizes the 

fuel consumption rate of diesel generators and the connected 

critical loads, so as to maximize the time for which the most 

critical load can be served.  

 

Algorithm 1: Dynamic Adjustment of Operating 

Conditions for Longer Service of Most Critical Load 

Input: , , , ,gen bre att gen bati tpa r Pt P    ,  

Output: 1 2, ,  and ra rb   

Initial Conditions: 1, 1,init inita b ra r     

1:  reqdE   Compute energy required 

2:  availE    Compute available energy 

3: deficitE    Compute energy deficit at start of the event 

4: while 0:deficitE   

5:        Run Linear Programming 

6:        Reduce 1,
optimal newr b b   

7:        Forward-Backward Power flow to check for                      

convergence 

8:        if convergence = true: 

9:                Compute 
deficitE  

10:                End while 

11:        else: reset to initial conditions 

                 

12: End while 

 

 

Relationship with Proposed Resiliency Metric 

 

The proposed code-based resiliency metric is inadequate to 

quantify and compare the impact of unfavorable events that 

last in the order of 10
4
 to 10

6 
seconds on several networks, 

because for most networks the value is close to 1 for such long 

duration events. The dynamic optimization of operating 

conditions is aimed at increasing the sustainability of the most 

critical load in a distribution grid, and thereby the resiliency of 

the grid to unfavorable events that last in the order than 10
4
 to 

10
6 

seconds. Dynamic optimization of the operating criteria of 

the energy resources in the islanded grid is suitable for 

formally studying the impact of time-intensive forced repairs 

on the power grid.  



 

IV. SIMULATION RESULTS & CASE STUDIES 

A. Simple One-Substation, Three Load Case Study 

The proposed resiliency evaluation approach of a 
distribution network is demonstrated on a PDS using 
MATLAB/Simulink (shown in Fig. 3). Solar power generation 
(maximum 5kW) is a renewable energy source. Power sources 
are system power, solar power generation, and a storage battery 
(150 V, 30 Ah). The storage battery is controlled by a battery 
controller, and it absorbs surplus power (if there is surplus 
power in the PDS) or it supplies insufficient power (if there is a 

power deficit in the PDS). Three Feeders consume power 
(2.5kW peak load) as electric loads. 

B. Simulation Results of Simple System 

In assumed load profile, from 8pm to 4am, solar power 
generation is 0W. It reaches the peak amount (5kW) between 
2pm and 3pm. As a typical load change in ordinary Feeders, 
the amount of electric power load reaches peak consumption at 
9h (6,500W), 19h, and 22h (7,500W). From midnight until 
noon and from 6pm until midnight, battery control is 
performed by battery controller. The battery control performs 
tracking control of the current so that active power, which 
flows into system power from the secondary side of the pole 
transformer, is set to 0. Then, the active power of secondary 
side of the pole-mounted transformer is always around zero. 
The storage battery supplies the insufficient current when the 
power of the PDS is insufficient and absorbs surplus current 
from the PDS when its power surpasses the electric load. From 
noon until 6pm, battery control is not performed. SOC (State of 
Charge) of the storage battery is fixed to a constant and does 
not change since charge or discharge of the storage of the 
example PDS.  

Resilience results from different PDS operating conditions 
are summarized in Table II. In Table II, by comparing R1 and 
R2, it can be concluded that addition of PV and Battery to the 
PDS increases the resilience of the network to long power 
outage events.  

 

TABLE II: RESILIENCE METRICS OF SIMPLE SYSTEM CASE STUDY 

 

Duration 

of Event 

(seconds) 

Affected Loads in simulation scenario Code 

With No PV, but only Battery With PV and Battery 

Resilience 

Value (m) 

Scaled 

Value 

(R1) 

Resilience 

Value 

Scaled 

Value 

(R2) 

106 

Feeder 1, Feeder 2, Feeder 3 

[Simulation method: Disconnected from the utility 

for indeterminate time] 

A 1.67 1 6.53 3 

105 

Feeder 1, Feeder 2, Feeder 3 

[Simulation method: trip breaker on Feeder 3 and 

eliminate the section for subsequent simulations] 

B 1.86 1 23.78 9 

104 
Feeder 2, Feeder 3 

[Simulation method: trip breaker on Feeder 3] 
C 23.78 9 23.78 9 

103 
Feeder 1, Feeder 2, Feeder 3 [Simulation method: 

disconnection of all feeders from substation] 
D 18.56 7 23.78 9 

102 

Feeder 3 

[Simulation method: timed disconnection and 

reconnection to PDS of feeder 3 load – battery 

brought online immediately after disconnection 

from utility] 

E 1.00 1 21.84 8 

101 

Feeder 3 

[Simulation method: Rapid application and 

clearing of fault within few cycles] 

F 1.67 1 1.67 1 

Figure 3: Simple Power Distribution System 



C. Simulation Results on Multiple Microgrid CERTS System 

CERTS Microgrid concept was defined as a group of 
distributed generators and storage with the ability to separate 
and island itself from the utility grid seamlessly with minimal 
disruption to the connected loads. Two microgrids, located 
adjacent to each other (shown in Fig. 3), can be operated 
together to take advantage of shared resources and maintaining 
power to critical loads of both microgrids. 

TABLE III: CERTS MICROGRID LOAD & GENERATION 
PARAMETERS 

The concept of multiple microgrids (or ‘multi-microgrids’) was 
introduced by the EU MORE Microgrid projects with the 
objective of enhancing the resiliency of distribution systems 
[34].  

 

 

 

 

TABLE IV: RESILIENCE QUANTIFICATION IN MODIFIED CERTS MULTIPLE MICROGRID WITH DIESEL GENERATOR POWER BACKUP 

Duration 

of Event 

(seconds) 

Affected Critical Loads in simulation scenario Code 

With No Distributed Generation 

or Battery backup in any load 

With Non-renewable diesel 

generator Distributed Generation 

Resilience 

Value (m) 

Scaled Value 

(R1) 

Resilience 

Value 

Scaled Value 

(R2) 

106 

CL1, CL2 

Scenario: Islanded from the grid due to transmission line 
problems 

A 1.07 1 11.03 4 

105 
CL1, CL2 
Scenario: Triple line to ground fault in Section 1-2 

B 1.43 1 13.73 5 

104 

CL1, CL2 

Scenario: Single Line to Ground Fault in Section 3-6, and 

Single Line to Ground fault in 14-18 

C 1.43 1 24.71 9 

103 

CL2  
Scenario: Single Line to Ground fault in 14-18. Fault 

caused delay in loads to function again at peak, leading to 

increase in effective fault duration  

D 1.43 1 23.56 9 

102 

CL1 

Scenario:  Single Line to Ground Fault in Section 3-6, 
that required resetting of relay settings 

E 1.43 1 23.09 9 

101 
CL1, CL2: 

Scenario: Fault in Section 1-2 cleared within 5 cycles. 
F 22.71 9 22.71 9 

 TABLE V: RESILIENCE QUANTIFICATION IN MODIFIED CERTS MULTIPLE MICROGRID WITH PV DISTRIBUTED GENERATION 

Duration 

of Event 
Affected Critical Loads in simulation scenario Code 

With PV/Battery based 

Distributed Generation (Day-

time, peak load)  

With PV/Battery based 

Distributed Generation (Night-

time average load) 

Resilience 

Value (m) 

Scaled Value 

(R1) 

Resilience 

Value 

Scaled Value 

(R2) 

106 

CL1, CL2 

Scenario: Islanded from the grid due to transmission line 

problems 

A 16.89 6 11.23 4 

105 
CL1, CL2 
Scenario: Triple line to ground fault in Section 1-2 

B 22.91 9 14.46 6 

Figure 3: Multiple CERTS Microgrid Systems connected to same substation  



 

Thus, a system that is engineered for higher reliability is 
suitable system for studying quantification of resiliency. The 
DGs has been located at nodes 8 and 16, capable of serving 
165.6 kW critical load demand of the network. The remaining 
capacity of the generators are used to feed remainder of the 
normal loads in the same feeder as critical loads. The critical 
loads CL1 and CL2 are identified at nodes 7 and 19, as shown 
in Fig. 3. There are six normally closed sectionalizing switches 
and it is possible to install three tie-lines with normally open 
switches (T1, T2 and T3) in network between nodes 7-11, 17-
21, and 11-21. It has been assumed that a smart reconfiguration 
algorithm has been in the distribution system. If the restoration 
algorithm had not been implemented by default, the resiliency 
values for an events of duration 10

1
 to 10

4
 seconds (i.e., events 

that range in seconds to several hours) would have been 
modified further which is beyond the scope of this paper, and 
can be studied in a future work.  

Several operating and fault conditions have been simulated 
for the multiple CERTS microgrid system. Table IV and V 
summarizes the fault duration, and corresponding resiliency of 
the system depending upon availability of backup power 
resources. Since many microgrids are being designed with a 
focus on high penetration of renewable energy resources, all 
the DGs shown in Fig. 3 have been studied as both 
conventional diesel generators as well as PV panels integrated 
with battery storage. The PV and battery models are the same 
as in [35], and modified to be of equal rating as the diesel 
generator DGs. The differences in resiliency value in systems 
with only diesel DG and systems with PV are computed by 
comparing corresponding columns in Table IV and Table V.  

 Tables IV and V shows the simulation results for 

resiliency values in different operating conditions for CERTS 

microgrid. It can be observed that the proposed approach 

effectively captures the ability of a system to maintain 

acceptable performance, during potential outages that can last 

from seconds to several days. For outages lasting a few hours, 

gas-fired DGs show significantly higher resiliency, however if 

such DGs are replaced with solar PV modules of equivalent 

capacity, the resiliency in such systems are higher during 

outage for longer durations.  

Dynamic Optimization of Resilient Operating Conditions 

In this scenario, the CERTS system with similar PV and diesel 

DGs are used. It has been assumed that 80% of the critical 

loads of the network has been classified as the high priority 

loads among the critical loads. Three scenarios are simulated. 

In the first scenario – the dynamic optimization of resources is 

not implemented. It was observed that for events lasting 

multiple days (10
6 
seconds) – none of the critical load could be 

survived. However, if only the fraction of critical load kept 

alive could be optimized, higher amounts of critical loads 

could be kept on for events lasting several hours (10
4
 and 10

5
 

events). Without optimization only 17.461% of critical loads 

can be maintained for an event lasting more than a day (about 

27 hours).  However, implementing the optimization fraction 

of critical load – the 23.191% of critical loads could remain 

online. When the optimization algorithm was used to optimize 

the synthetic aggregated fuel curve of the DGs, the 4.251% 

critical load could survive an outage lasting 11 days. The 

results have been summarized in Table VI, and the 

interpolated plots of event duration versus fraction of critical 

load served has been shown in Fig. 4. 

 

TABLE VI: RESILIENCY METRICS WITH AND WITHOUT 

DYNAMIC OPTIMIZATION IN MODIFIED CERTS MICROGRID 
Operating 

Scenario  

With Optimization Without 

Optimization 
(only b) 

With 

optimization 
(b and r1) 

With PV and 

Diesel DG 

789999 699999 799999 

With only Diesel 
DG and No PV 

689999 469999 589999 

 

104 

CL1, CL2 

Scenario: Single Line to Ground Fault in Section 3-6, and 
Single Line to Ground fault in 14-18 

C 24.71 9 24.71 9 

103 

CL2  

Scenario: Single Line to Ground fault in 14-18. Fault 
caused delay in loads to function again at peak, leading to 

increase in effective fault duration  

D 23.56 9 23.56 9 

102 

CL1 

Scenario:  Single Line to Ground Fault in Section 3-6, 
that required resetting of relay settings 

E 23.09 9 23.09 9 

101 
CL1, CL2: 

Scenario: Fault in Section 1-2 cleared within 5 cycles. 
F 22.71 9 22.71 9 

Figure 4: Impact of dynamic optimization for very long duration outages  



V. CONCLUSIONS 

This paper presents a novel, and feasible framework for 

quantifying, monitoring and leveraging resilience metrics of 

Power Distribution System (PDS). A comprehensible and 

comprehensive metric has been developed, which provides 

insights into the impact of contingencies across a broad 

spectrum of events. An advantage of such a metric is that it 

can be implemented in field using existing tools, and with no 

learning curve for operators. It is important to highlight that 

the primary use of the metric is to convey the impact of an 

event to an operator or engineer in real time.  When a 

contingent event occurs, the repair/restoration duration is not 

known. In many occasions, repair work done to restore the 

system to pre-contingency state is very quickly followed by a 

subsequent attack or event that may lead to loss of power of 

the restored critical loads. The metric computation algorithm 

quantifies the ability of the network to sustain normal 

functionality of the critical load for a broad range of times in a 

single computation step- from a few seconds to a week. In a 

future work, the proposed algorithm can be formally 

investigated and developed using parallel computation 

techniques to increase the computation efficiency. A metric 

that quantifies the resilience of the system over a wide time 

scale  by appending several calculations into a single 

observable quantity- provides a broader perspective to the 

overall resilience of the network.   

The developed metrics formulation quantifies the ability of the 

system to supply critical loads with reduced resources. Though 

the metrics have been developed for electric utility and power 

system, the metrics can be generalized to any flow networks. 

Based on resilience values under several operating and 

planning scenarios, cost-benefit analysis of distribution system 

investments can be justified. A dynamic optimization 

algorithm that progressively reduces amount of critical load 

served to maximize the sustainability of most critical load is 

proposed. This optimization - when integrated into the 

resilency metric can be implemented to maximize the duration 

for which the most important load in a microgrid can be 

sustained. The information derived from the proposed 

resilience metric can be used to design PDS to serve 

consumers with higher reliability. The proposed time-

dependent resilience metric is scalable to different PDS 

topologies, preserves diverse non-commensurate information, 

and easily interpretable by operators.  The proposed 

optimization algorithm can be further improved in future work 

by improving the parameter identification of the factors that 

influence the duration for which the most critical load can be 

provided, such as fuel cost curve, generator and battery ramp 

up and down rates.  
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