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Abstract— It is essential to improve the resiliency of power
distribution systems (PDS) given the increase in extreme weather
events, number of malicious threats and consumers’ need for
higher reliability. This paper provides a formal approach to
evaluate the operational resiliency of PDS, and quantify the
resiliency of a system using a code-based metric. A combination
of steady state and dynamic simulation tools is used to determine
the resiliency metric. Dynamic simulation tools help with
analyzing impact of short-term events, which might affect
operational resiliency in long term. A dynamic optimization
algorithm for changing operating criteria to increase the
sustainability of the most critical loads has been proposed. The
proposed theoretical approach is validated using a simple power
distribution system model and simulation results demonstrate the
ability to quantify the resiliency using the proposed code-based
metric. The time-dependent quantification of resiliency has been
demonstrated on a test system of two connected CERTS
microgrids.

Keywords—  Distribution ~ Systems, Distributed Energy
Resources, Power System Operations, Renewable Integration,
Resilience

I. INTRODUCTION

Complex infrastructure networks, such as the electric power
grid, are functional due to number of factors: real time
balance of generation and demand, automated control, complex
human in the loop control, component level availability and
system level hierarchal interaction. Disruption of any scale at
any hierarchical level can possibly threaten the continuity of
the power grid services. Resilience of Power Distribution
System (PDS) has gained significant traction after impact of
super storm Sandy (2012) on the power grid reliability.
However, inadequate theoretical foundations in the definition
and metrics relevant to PDS resilience challenge the practical
implementation of resilience in electric utilities. PDS resilience
is the ability of the network to resist discontinuity of power
supply to critical loads during stressful operating conditions,
and recover from any damages during the event [1-3]. PDS
resilience metrics are important; (i) to justify investments in
infrastructural upgrades for higher resilience and (ii) evaluate
the suitability of a particular approach to be taken by an
operator to adequately enhance the resilience during a
contingency or attack.

Threats to normal operations of PDS (i.e., power quality
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events, momentary interruptions, sustained outages, brownouts,
blackouts) are diverse, and have a wide range on the time-scale
(i.e., a time-scale of milliseconds to several weeks). It is the
objective of resilience-enabling efforts in PDS to maintain
power supply to critical loads during emergencies, and
maximize the time duration for which this supply can be
maintained. Resilience metrics serve to capture the
effectiveness of the strategy adopted to meet this objective of
utilities. Several authors have proposed PDS resilience
enhancements using networked microgrids [4, 5].
Technologies that augment advanced resource sharing between
microgrids in anticipation of unfavorable events [6-8], or
partitioning a PDS have also being actively researched and
implemented across the industry [9, 10]. Several new
improvements to control and operation of microgrids have been
reported by researchers: such as resiliency-driven optimal
scheduling [11], stochastic scheduling [12], and, hierarchical
outage management [13]. However, these approaches — though
aimed at enhancing resilience — fall short of developing a tool
in quantifying the resilience enhancements achieved by these
technologies.

Resilience metrics developed from network topology can
give us an approximate resiliency measure, but do not capture
availability of distributed energy resources to critical loads
accurately in real-time. The approach proposed in [15] requires
exhaustive information about PDS infrastructure, and
implicitly assumes infallibility of these resources during
contingencies affecting a PDS. Physical infrastructure
resources, as well as state variables are susceptible to rapid and
unforeseen changes [16]. Events in the distribution system -
such as, (i) pole damage due to a car accident, (ii) sudden phase
imbalance due to large current drawn by customers charging
their electric vehicles, (iii) lightning strike, (iv) heavy rain
followed by sudden drop in temperature, (v) transients due to
variable power injections by photovoltaic generation connected
to the power grid, voltage spikes, etc. — affect the resiliency of
the network indirectly. Most PDS enable resiliency in response
to an unfavorable event, and not in anticipation of an event.
There are some approaches that emphasize on resilience-
driven, adaptive restoration strategies [17, 18]. However, the
approach is also not proactive and leverages a multi-microgrid
approach, similar to [19, 20]. Any reactive restoration approach
results in system downtime, leading to financial losses, safety
hazards and public inconvenience [21-23]. There are several
computation and data-related challenges to a prognostic
approach of quantifying and enabling resilience, such as —
weather and consumer uncertainties, large meteorological data
requirement, expense of processing that data, incorporating
artificial intelligence to enable proactive response, and lack of
visibility into state parameters of the PDS [24].



We present an approach to quantify and monitor resiliency
of PDS to an ongoing contingency, and proactively look ahead
into the resiliency of the network to prolonged outages. The
proposed approach enables the operator to have intuitive
understanding into the long-term energy balance profile given
the network’s diverse backup energy resources and
responsibility towards critical loads, without requiring detailed
knowledge of the network model [25, 26]. Unlike a decision-
theory based resiliency quantification tool [19, 27] — the
proposed method in this work quantify the resiliency of the
network towards a broad range of possible scenarios instead of
a singular pre-defined contingency addressed in other existing
work.

The novel contributions of the paper compared to the
existing work are as follows:

(1) Developed algorithm provides a time dependent
definition of resilience and a generic code-based
framework for evaluating operational resilience of a
Power Distribution System (PDS).

(2) Developed algorithm demonstrates the use of a linear
programming based dynamic optimization that can be
adopted by utilities to maximize the resiliency of the
most critical load following a contingency.

(3) Developed algorithm can quantify and monitor
resiliency in real time and proactively provide help in
decision support to the PDS operator to maximize
resiliency for broader range of possible contingencies
and events.

(4) The developed resilience does not require complete,
low-level knowledge of the system infrastructure for
computation - thus simple enough for operators to
understand and use during contingencies.

(5) The proposed approach makes a new contribution
towards development of a universal and easy to
compare resiliency analysis metric for different
distribution networks of variable sizes, capacity served,
and critical priorities.

Il. TIME-DEPENDENT DEFINITION OF RESILIENCE

There are several working definitions of PDS resilience.
Some authors have defined resilience as a function of the
probability of attack and the consequence of that attack [28].
Resilience of PDS has also been defined based on the nature of
attack on the system [23, 24, 29]. A framework to determine
resilience based on evaluation of infrastructure, and time taken
to restore to service has been proposed in [16, 30]. However,
metrics based on inventory assumes all resilience-enabling
infrastructures will operate during or after contingency, and
cannot be used in real-time. Cost metrics of damages incurred
due to an attack has been commonly used to report a lack of
resilience in the PDS [2]. The fundamental drawback of each
of these definitions of resilience is that these definitions do not
consider the durations of unfavorable events affecting the PDS.
Consequently, the resilience metric derived using these
definitions are meaningful only in the context of a specific
attack, network topology, or data availability.

The importance of time to measure resilience of power
distribution system has been discussed in detail in [16].
However, the inclusion of time as a factor of quantifying
resilience is specific to one isolated event and the time taken to
recover from that event. The network designer assumes that the
system can be recovered after a certain amount of time. Power
system events have a wide range of events. In practical
scenario, the recovery time may vary greatly as the event
progresses. In the proposed resilience metric, there is no such
assumption. Using the he proposed algorithm, the resilience of
the network can be computed for a wide time scale of events,
ranging from a magnitude of 10%econds to 10° seconds, in a
single computation step. Thus, using a single, easy-to-
understand metric, the operator working through a contingency
can be informed about the ‘service potential’ of the network
across a broad range of worst-case scenarios and optimize
decision about seeking external resources to improve the
operating condition of an affected distribution system or
microgrid. Many resilience metrics proposed in the literature,
do not consider quantifying resilience across a wide-range of
events in the power system considering duration of critical load
affected. Thus, the proposed metric is novel contribution.

The proposed metric is derived from empirical equations
that capture the impact of an unfavorable event to the network
for a given time-scale. The result of the equation is mapped to
integer value between 1 to 10, representing low to high
resiliency of the network for the assessed time scale. The same
equation is used to evaluate the impact of events lasting from
seconds to weeks. After all these computations are completed,
the derived integral values are combined and represented as a
single number. This single number representation is essentially
a ‘code’, representing a state of resilience of the network, and
does not correspond to any numerical value.

Conventionally, reliability metrics (such as SAIDI, SAIFI,
and MAIFI) were adequate to describe the performance of a
utility in providing service to consumers. Due to increase in (i)
number of reported weather-based or human-induced physical
events on the PDS [31], (ii) energy mix of renewable and
conventional power sources, and (iii) cybersecurity breaches
across the power grid [32] — it has become indispensable to
make the PDS resilient to these events/ attacks. Though power
system reliability and resilience are different concepts [20],
they share an inherent dyadic relationship as metrics for
evaluating system performance. Irrespective of the nature of
the attack, impact is best assessed by the time taken by a
system to recover from the consequences of the attack. A time-
domain mathematical formulation of resilience will facilitate
mapping between the quantification of system performance by
the two independent concepts. There are several other desirable
properties in a resilience metric:

a) The resilience metric (say R) should be easily
comprehensible and interpretable by operators, so that quick
decisions can be made during ongoing contingencies.

b) R should be simple, robust, flexible, scalable, and
applicable to any distribution system with minimal
modification.

c) Computation of R should not exceed response time of
distribution system control actions.



d) Interpretation of sensitivity of R should corroborate to
physical changes in the network.

e) Attacks on the power system can disrupt both quality
and continuity of service, for varying durations of time. It is
important for R to capture both attributes of the effect of the
attack on the power system. R should preserve maximum
information about all the non-commensurate factors that affect
PDS resilience.

f) R must be characterized by low barrier to entry, easy
to implement in Distribution Management Systems (DMS),
and compatible with existing and future data acquisition
hardware. The format for R metric data exchanged should also
follow common data exchange protocols.

Using [30], it can be deduced that PDS system interruptions
follow a long-tailed distribution, and impact of resilience
inadequacy grows exponentially with outage duration. Thus,
resilience of a PDS is function of time duration of outage, as
well as the number of loads that are affected by an outage
event. In order to capture these two factors, let us propose that
the resilience metric of a distribution system be represented as
a coded numeric value:

Resilience
during events
of magnitude . , .
10° 10°10* 10 10°10" seconds

-

Overall System Resilience
for all time durations

Figure 1: Proposed Resiliency Metric

where 4, B, ..., F are all variables. R is defined as such in
Fig. 1, since it is proportional to power outage duration and
power outage magnitude. Each variable corresponds to a time-
scale of a power system event corresponding to the magnitude
of its duration in seconds. Each variable in the definition of R
in Fig. (1) represents the resilience of the system for
corresponding duration of time outage in orders of 10.

The proposed approach considers such small time-scale
events into resilience evaluation in order to accommodate
transient power interruptions can stop or reset operations,
leading to lost productivity for long outage durations. In
context of resilience, we will consider the fraction of load (f)
unaffected by voltage or current distortion.

- Load Unaffected by PDS Event(kW) (1)
Total Load of PDS (kW)

where, for events that disru(pt power continuity in f fraction
of load in the magnitude of 10” seconds, the resilience value is
computed on an integer scale of 0 to 9, and stored in the
variable F. Similarly, for events lasting in the magnitude of
minutes (i.e., 10" seconds), the resilience value is computed on
an integer scale of 0 to 9, and stored in the variable E, and so
forth for variables D, C, B and A.

Let us demonstrate the computation of each constituent
variable of R, by considering a generic variable m, to compute
the resilience of a network lasting to an event lasting a seconds.
We propose an empirical equation for unscaled resilience
metric as:

m'=c(a+e" )1+ f) (2
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Figure 2: Visual representation of energy deficit under different operation
methods

where m’ is the unscaled value of the resilience value, c is a
binary variable, which stores whether an event happened in the
considered time frame, and f is the fraction of load unaffected
by the PDS event, determined from Egq. (1). Eq. (3) is
formulated because resilience of a PDS is proportional to the
time duration of impact it can sustain, and the fraction of loads
unaffected because of the event in the network. The fraction of
loads (or any other factor representing the network
infrastructure) that remain intact after a contingency is
represented as an exponential function. The term (1+f) has
been used to denote the proportionality of the resilience metric
to the fraction of unaffected loads. (1+f) is used instead of f to
make the resiliency metric scale from one to nine.

Each constituent factor used to represent R is a function of
time duration of the impact as well as m’. which itself is
another function of time duration of outage (o), and dependent
proportionally and exponentially on fraction of unaffected
loads. It can be observed from Eq. (2) that the fraction of
unaffected load affects the value of resilience significantly;
and, time scale of the event is captured through the range of a.
In case of a detected PDS event, the most resilient systems will
have:

m_ = (a,, +e)(1+1) =25.41 3

m:nin = (amin + e0+) = 1 (4)

The unscaled m” maximum and minimum resilience value
is resolved to an integer value m between 1 and 9 (1 for least
resilient, 9 for most resilient), as shown in Table I. If f =0, m is

forced to store 1. Any case of no event affecting the PDS in the

order of 10" seconds under evaluation, m is represented as 0. In
Eq. (4), f= 0+ is used instead of O for the most resilient state
of the PDS. Otherwise, it would be impossible to distinguish an
unfavorable event from non-occurrence of any unfavorable
event in the PDS.

TABLE |: SCALING OF RESILIENCE METRICS
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Example: Consider that a transient surge affects two-thirds of
entire PDS customer demand for 6.12x10° seconds. However,
Since the event lasts 10° seconds, we have to calculate C.
Using Eq. (2), C’ = 1(6.12+e**%) (1+0.333) = 10.01. From
Table I, C is resolved to be 4. In a second event, if only one-
third of the PDS customer demand is affected for the same
duration due to a transient surge, C’ = 1(6.12+e%%") (1+0.667)
= 13.44. From Table I, C is resolved to be 5. Thus, we can
clearly see the improvement in resilience due to greater
percentage of unaffected loads.

Let us assume that for a utility PDS, the resilience metric
has been determined to be R; = 112578. It means that
distribution system has low resilience to outages lasting in
order to 10* to 10° seconds, but moderate to high resilience to
outages lasting 10° to 10" seconds. If another PDS is to be
compared, or another configuration of the same PDS is
evaluated for resilience using the proposed method, let’s say R,
= 113689. The new metric shows that the resilience in
continuity of service in the second PDS is higher for events
lasting in order of 10" to 10* seconds, but the resilience to
power quality events in the power system has declined. The
change in resilience could be computed as A(R;-Ry).

Evaluating resilience of a PDS is challenging because
multiple non-commensurate factors determine resilience of a
network. Variety of tools are used to enable the resilience of a
PDS, such as: (i) advanced DMS algorithms based on artificial
intelligence; and, (ii) devices such as smart switches, reclosers,
fault-detection and isolation devices, auto-transfer switches,
onsite distributed generation (diesel, natural gas, renewables),
and battery storage. However, without a real-time resilience
evaluation framework for quantification, it is not possible to
gauge the effectiveness of the resilience-enhancement method
adopted by the utility.

The essential difference between using the proposed code-
based metric and computing resiliency over time are:

1. The code-based metric is derived by computing resilience
of the network several times for all possible outage
durations, and not all possible outage scenarios (which
may be done by computing all possible edges in which an
overhead line can be damaged). On the other hand, any
other resiliency metric may be computed on several
possible outage scenarios and putting them together
coherently will result in a large look-up table. However,
the code-based metric is concise (6 digits) and conveys
information about system resilience over a large time scale
conveniently.

2. The code-based metric is a temporal representation of
resilience, and abstracts the availability of infrastructure
and associated probabilistic parameters in the
representation. Thus, it can quickly provide approximate
losses to be incurred in terms of Energy Not Served (or
utility revenue lost by multiplying by cost per kWh),

unlike other resilience metrics that can be computed by
combinatorial investigation of all possible failures specific
to and eventually collated. Since the proposed metrics
considers encodes the network resilience upon time taken
to restore the network, it makes the proposed resilience
metric representation universal and easy to compare
different distribution networks with diverse capacities and
priorities. For example, if operator reports that the
resilience metric of Network A is ‘114899’ and another
operator of Network B says that resilience of Network B is
‘135999’, it clearly implies that Network B is more
resilient to Network A for outages lasting in the scale of
10® seconds.

I1l. DYNAMIC ADJUSTMENT OF OPERATING CONDITION TO
MAXIMIZE RESILIENCY

Dynamic optimization of operating criteria is required to
ensure maximum sustainability of limited resources after a
contingency. Many authors have proposed that resiliency be
enabled by only keeping the critical loads on during the
contingency. In the simplest sense, the operating curve of a
distribution system can be represented by Curve A’ in Fig. 2.-

where Eg .4 represents the backup energy available in the

system at the time of contingency. The most commonly used
utility practice includes shedding a certain fraction of load and
continue to supply the residual grid until power is restored, or
the grid under contingency runs out of power. Curve A shows
an ideal response in which the power grid can completely
maintain all loads until the outage inducing event has been
overcome. Curves B and C show different approaches that can
be adopted for power consumption when the grid is in an
islanded mode. Curve B shows exponential decay, in which
the energy supplied any of the critical loads will not be able to
meet the energy demand over the duration of the outage.
Curve C shows the benefit of dynamic optimization based
operating practice that ensures high sustainability of resources
that out lasts duration of the outage.

Under ideal circumstances, the time for which the
secondary resources should be available to feed the critical

loads (i.e., t ) should equal or be more than t

backup restored *

However, in many practical scenarios,
tbackup <t

- necessitating further investigation into dynamic optimization
of operating set-points such that maximum load is picked up,
for the maximum amount of time.

The resilient energy requirement of the grid may be written as:

restored

E™ = R ().dt 5)

event
The energy available for a grid that is undergoing a contingent
situation is given by:

avai Loutage toutage
E™ = 1_)2;; J-t I:)gen (t)dt + szj.t Pat (t)dt (6)

event event



where ( is the number of generators in the microgrid, b is

the number of battery installations in the microgrid, Pgen is

the power delivered from individual diesel generators and
P, is the power delivered from batteries. The power

delivered by the generator and the battery can be modeled
using the Egs. (7) and (8).

nr
Re™™  Toent <t <Tgengy
Pgen = 77 'Prated tsteady < tfuel (7)
O tfuel < trepair
nbatt 'Pfated toutage < tsoc
Pat = . (8)
e 22 ¢ <t
part * rated SOC — ‘“repair

where, 7, is the time constant of the generator to reach steady
state rated power generation capacity after being brought
online, 7, is the time constant of the power availability decay
curve of the battery after it threshold state-of-charge required
for constant power delivery is reached, I} is the rate at which

power ramping rate of the diesel generator, I, is the power

decay rate of the battery, t,, is the time at which fuel supply

fue

of the generator falls below critical values. The time taken for
a battery to be discharged to a level beyond which it fails to

act as a constant power source is represented by to,. .It may

be recalled that I, = Ap® +Bp+C corresponds to the fuel

consumption curve of the generators, where A, B, and C
correspond to specific parameters of a generator.

Assuming less than ideal industrial operating conditions, let us
define an energy deficit optimization function such as:

min Edeficit — aEreqd _bEavaiI (rll rz)
0<a<1.0

—0<h <+

Sty i
min max
PR A

I.Zmin < r2 < r2max
where, a,b are adjustable parameters of the deficit function.

A linear programming model is created to optimize the use of
limited resources available to serve the most important loads
for the longest duration of time during a contingency to
maximize the resilience of the grid.

Application of Dynamic Adjustment of Operating Conditions

Since distribution systems serve communities — some loads,
such as those committed for law enforcement and public

service, are higher priority loads compared to residential
loads. Thus, if not already available, it is relatively in
expensive to create load priority lists for all distribution
systems. At the discretion of the operator, loads are labeled
‘High Priority’, others are classified as ‘Medium Priority’ or
‘Low Priority’. Among each of these categories, further sub-
divisions are possible — though such sophisticated
classification is less than practical. During contingencies, it is
practical to continually monitor the situation and evolve the
operating set-points. The dynamic optimization problem
requires the estimated time left to repair, and optimizes the
fuel consumption rate of diesel generators and the connected
critical loads, so as to maximize the time for which the most
critical load can be served.

Algorithm 1: Dynamic Adjustment of Operating
Conditions for Longer Service of Most Critical Load

P...P

|I’lput2 trepair » T'gen? ' batt ? ngen 1 77batt '

Output: a,b,r, and r,

Initial Conditions: @ <—a™,b <11, < r™

L' E™9 « Compute energy required

20 g™ ¢ Compute available energy

30 g%t « Compute energy deficit at start of the event

4 while E*™ > Q:

5: Run Linear Programming

6: Reduce I, b®"™ —b"™"

7: Forward-Backward Power flow to check for
convergence

8: if convergence = true:

9: Compute [ deficit

10: End while

11: else: reset to initial conditions

12:  End while

Relationship with Proposed Resiliency Metric

The proposed code-based resiliency metric is inadequate to
quantify and compare the impact of unfavorable events that
last in the order of 10* to 10° seconds on several networks,
because for most networks the value is close to 1 for such long
duration events. The dynamic optimization of operating
conditions is aimed at increasing the sustainability of the most
critical load in a distribution grid, and thereby the resiliency of
the grid to unfavorable events that last in the order than 10* to
10° seconds. Dynamic optimization of the operating criteria of
the energy resources in the islanded grid is suitable for
formally studying the impact of time-intensive forced repairs
on the power grid.
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Figure 3: Simple Power Distribution System

IV. SIMULATION RESULTS & CASE STUDIES

A. Simple One-Substation, Three Load Case Study

The proposed resiliency evaluation approach of a
distribution network is demonstrated on a PDS using
MATLAB/Simulink (shown in Fig. 3). Solar power generation
(maximum 5kW) is a renewable energy source. Power sources
are system power, solar power generation, and a storage battery
(150 V, 30 Ah). The storage battery is controlled by a battery
controller, and it absorbs surplus power (if there is surplus
power in the PDS) or it supplies insufficient power (if there is a

power deficit in the PDS). Three Feeders consume power
(2.5kW peak load) as electric loads.

B. Simulation Results of Simple System

In assumed load profile, from 8pm to 4am, solar power
generation is OW. It reaches the peak amount (5kW) between
2pm and 3pm. As a typical load change in ordinary Feeders,
the amount of electric power load reaches peak consumption at
9h (6,500W), 19h, and 22h (7,500W). From midnight until
noon and from 6pm until midnight, battery control is
performed by battery controller. The battery control performs
tracking control of the current so that active power, which
flows into system power from the secondary side of the pole
transformer, is set to 0. Then, the active power of secondary
side of the pole-mounted transformer is always around zero.
The storage battery supplies the insufficient current when the
power of the PDS is insufficient and absorbs surplus current
from the PDS when its power surpasses the electric load. From
noon until 6pm, battery control is not performed. SOC (State of
Charge) of the storage battery is fixed to a constant and does
not change since charge or discharge of the storage of the
example PDS.

Resilience results from different PDS operating conditions
are summarized in Table Il. In Table Il, by comparing R1 and
R2, it can be concluded that addition of PV and Battery to the
PDS increases the resilience of the network to long power
outage events.

TABLE Il RESILIENCE METRICS OF SIMPLE SYSTEM CASE STUDY

With No PV, but only Battery With PV and Battery
Duration Scaled Scaled
of Event Affected Loads in simulation scenario Code Resilience Resilience
(seconds) Value (m) Value Value Value
(Ry) (Ry)
Feeder 1, Feeder 2, Feeder 3
10° [Simulation method: Disconnected from the utility 1.67 1 6.53 3
for indeterminate time]
Feeder 1, Feeder 2, Feeder 3
10° [Simulation method: trip breaker on Feeder 3 and 1.86 1 23.78 9
eliminate the section for subsequent simulations]
4 Feeder 2, Feeder 3
10 [Simulation method: trip breaker on Feeder 3] 2378 9 23.78 9
3 Feeder 1, Feeder 2, Feeder 3 [Simulation method:
10 disconnection of all feeders from substation] 18.56 ! 23.78 9
Feeder 3
[Simulation method: timed disconnection and
10? reconnection to PDS of feeder 3 load — battery 1.00 1 21.84 8
brought online immediately after disconnection
from utility]
Feeder 3
10* [Simulation method: Rapid application and 1.67 1 1.67 1
clearing of fault within few cycles]




C. Simulation Results on Multiple Microgrid CERTS System

CERTS Microgrid concept was defined as a group of /& Normally Open Switch Q‘
distributed generators and storage with the ability to separate 1 < Normally Closed Switch | o] -'-r-'-;'*:":
and island itself from the utility grid seamlessly with minimal : (bG)  Distributed Generators 4 8 |9_l L
disruption to the connected loads. Two microgrids, located i Sections T
adjacent to each other (shown in Fig. 3), can be operated ...... Tie oo e e
together to take advantage of shared resources and maintaining 3 Unes .
power to critical loads of both microgrids. R o

TABLE I1l: CERTS MICROGRID LOAD & GENERATION
PARAMETERS

The concept of multiple microgrids (or ‘multi-microgrids’) was
introduced by the EU MORE Microgrid projects with the
objective of enhancing the resiliency of distribution systems
[34].

Figure 3: Multiple CERTS Microgrid Systems connected to same substation

TABLE IV: RESILIENCE QUANTIFICATION IN MODIFIED CERTS MULTIPLE MICROGRID WITH DIESEL GENERATOR POWER BACKUP

With No Distributed Generation | With  Non-renewable  diesel
Duration or Battery backup in any load generator Distributed Generation
(()sfecoE\éi?t Affected Critical Loads in simulation scenario Code Resilience Scaled Value Resilience Scaled Value
Value (m) (Ry) Value (Ro)
CL1, CL2
10° Scenario: Islanded from the grid due to transmission line | A 1.07 1 11.03 4
problems
5 CL1, CL2
10 Scenario: Triple line to ground fault in Section 1-2 B 143 ! 13.73 5
CL1, CL2
10* Scenario: Single Line to Ground Fault in Section 3-6, and | C 1.43 1 24.71 9
Single Line to Ground fault in 14-18
CL2
3 Scenario: Single Line to Ground fault in 14-18. Fault
10 caused delay in loads to function again at peak, leading to D 143 ! 23.56 9
increase in effective fault duration
CL1
10? Scenario:  Single Line to Ground Fault in Section 3-6, | E 1.43 1 23.09 9
that required resetting of relay settings
1 CL1, CL2:
10 Scenario: Fault in Section 1-2 cleared within 5 cycles. F 2271 9 2271 9

TABLE V: RESILIENCE QUANTIFICATION IN MODIFIED CERTS MULTIPLE MICROGRID WITH PV DISTRIBUTED GENERATION

With PV/Battery based | With PV/Battery based
) Distributed Generation (Day- | Distributed Generation (Night-
(l))fulg?/gr?tn Affected Critical Loads in simulation scenario Code time, peak load) time average load)
Resilience Scaled Value Resilience Scaled Value
Value (m) (Ry) Value (R2)
CL1, CL2
10° Scenario: Islanded from the grid due to transmission line | A 16.89 6 11.23 4
problems
5 CL1, CL2
10 Scenario: Triple line to ground fault in Section 1-2 B 2291 9 14.46 6




CL1, CL2
10* Scenario: Single Line to Ground Fault in Section 3-6, and | C
Single Line to Ground fault in 14-18

24.71 9 24.71 9

CL2

Scenario: Single Line to Ground fault in 14-18. Fault
caused delay in loads to function again at peak, leading to
increase in effective fault duration

10°

23.56 9 23.56 9

CL1
10° Scenario: Single Line to Ground Fault in Section 3-6, | E
that required resetting of relay settings

23.09 9 23.09 9

CL1,CL2:

1
10 Scenario: Fault in Section 1-2 cleared within 5 cycles.

22.71 9 22.71 9

Thus, a system that is engineered for higher reliability is
suitable system for studying quantification of resiliency. The
DGs has been located at nodes 8 and 16, capable of serving
165.6 kW critical load demand of the network. The remaining
capacity of the generators are used to feed remainder of the
normal loads in the same feeder as critical loads. The critical
loads CL1 and CL2 are identified at nodes 7 and 19, as shown
in Fig. 3. There are six normally closed sectionalizing switches
and it is possible to install three tie-lines with normally open
switches (T1, T2 and T3) in network between nodes 7-11, 17-
21, and 11-21. It has been assumed that a smart reconfiguration
algorithm has been in the distribution system. If the restoration
algorithm had not been implemented by default, the resiliency
values for an events of duration 10" to 10* seconds (i.e., events
that range in seconds to several hours) would have been
modified further which is beyond the scope of this paper, and
can be studied in a future work.

Several operating and fault conditions have been simulated
for the multiple CERTS microgrid system. Table IV and V
summarizes the fault duration, and corresponding resiliency of
the system depending upon availability of backup power
resources. Since many microgrids are being designed with a
focus on high penetration of renewable energy resources, all
the DGs shown in Fig. 3 have been studied as both
conventional diesel generators as well as PV panels integrated
with battery storage. The PV and battery models are the same
as in [35], and modified to be of equal rating as the diesel
generator DGs. The differences in resiliency value in systems
with only diesel DG and systems with PV are computed by
comparing corresponding columns in Table IV and Table V.

Tables IV and V shows the simulation results for
resiliency values in different operating conditions for CERTS
microgrid. It can be observed that the proposed approach
effectively captures the ability of a system to maintain
acceptable performance, during potential outages that can last
from seconds to several days. For outages lasting a few hours,
gas-fired DGs show significantly higher resiliency, however if
such DGs are replaced with solar PV modules of equivalent
capacity, the resiliency in such systems are higher during
outage for longer durations.

Dynamic Optimization of Resilient Operating Conditions

In this scenario, the CERTS system with similar PV and diesel
DGs are used. It has been assumed that 80% of the critical
loads of the network has been classified as the high priority

0.8 4 &'—"‘-'.T_' = CLP
0.6 R N
0.4 =

0.2 o S

Fraction of Critical Load Demand Met

# No dynamic optimization N,

Only b adjusted a
0.0 * y ) ! e
+ Both b and r; adjusted N

T T T T T T T
10° 10! 10? 103 10* 105 108
Event Duration (s)

Figure 4: Impact of dynamic optimization for very long duration outages

loads among the critical loads. Three scenarios are simulated.
In the first scenario — the dynamic optimization of resources is
not implemented. It was observed that for events lasting
multiple days (10° seconds) — none of the critical load could be
survived. However, if only the fraction of critical load kept
alive could be optimized, higher amounts of critical loads
could be kept on for events lasting several hours (10* and 10°
events). Without optimization only 17.461% of critical loads
can be maintained for an event lasting more than a day (about
27 hours). However, implementing the optimization fraction
of critical load — the 23.191% of critical loads could remain
online. When the optimization algorithm was used to optimize
the synthetic aggregated fuel curve of the DGs, the 4.251%
critical load could survive an outage lasting 11 days. The
results have been summarized in Table VI, and the
interpolated plots of event duration versus fraction of critical
load served has been shown in Fig. 4.

TABLE VI: RESILIENCY METRICS WITH AND WITHOUT
DYNAMIC OPTIMIZATION IN MODIFIED CERTS MICROGRID

Operating With Optimization | Without With

Scenario Optimization optimization
(only b) (b and ry)

With PV and | 789999 699999 799999

Diesel DG

With only Diesel | 689999 469999 589999

DG and No PV




V. CONCLUSIONS

This paper presents a novel, and feasible framework for
quantifying, monitoring and leveraging resilience metrics of
Power Distribution System (PDS). A comprehensible and
comprehensive metric has been developed, which provides
insights into the impact of contingencies across a broad
spectrum of events. An advantage of such a metric is that it
can be implemented in field using existing tools, and with no
learning curve for operators. It is important to highlight that
the primary use of the metric is to convey the impact of an
event to an operator or engineer in real time. When a
contingent event occurs, the repair/restoration duration is not
known. In many occasions, repair work done to restore the
system to pre-contingency state is very quickly followed by a
subsequent attack or event that may lead to loss of power of
the restored critical loads. The metric computation algorithm
quantifies the ability of the network to sustain normal
functionality of the critical load for a broad range of times in a
single computation step- from a few seconds to a week. In a
future work, the proposed algorithm can be formally
investigated and developed using parallel computation
techniques to increase the computation efficiency. A metric
that quantifies the resilience of the system over a wide time
scale by appending several calculations into a single
observable quantity- provides a broader perspective to the
overall resilience of the network.

The developed metrics formulation quantifies the ability of the
system to supply critical loads with reduced resources. Though
the metrics have been developed for electric utility and power
system, the metrics can be generalized to any flow networks.
Based on resilience values under several operating and
planning scenarios, cost-benefit analysis of distribution system
investments can be justified. A dynamic optimization
algorithm that progressively reduces amount of critical load
served to maximize the sustainability of most critical load is
proposed. This optimization - when integrated into the
resilency metric can be implemented to maximize the duration
for which the most important load in a microgrid can be
sustained. The information derived from the proposed
resilience metric can be used to design PDS to serve
consumers with higher reliability. The proposed time-
dependent resilience metric is scalable to different PDS
topologies, preserves diverse hon-commensurate information,
and easily interpretable by operators. The proposed
optimization algorithm can be further improved in future work
by improving the parameter identification of the factors that
influence the duration for which the most critical load can be
provided, such as fuel cost curve, generator and battery ramp
up and down rates.
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