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Social	Media…

2

Day Top	trends

Monday #mondaymotivation, #blackoutday,	#NationalOreoCookieDay,	
#SXSWEdu,	#ARMYSelcaDay

Tuesday #Vault7, #NationalPancakeDay,	#Trumpcare,	Tom	Price,	
#TuesdayMotivation,	#WhileWaitingForYourTextBack

Wednesday #InternationalWomensDay,	#GoogleNext17,	#SheInspiresMe,	
#EmbarrassedToAdmitIveNever,	#wednesdaywisdom

Thursday #RIPBIG, #ThursdayThoughts,	#NationalMeatballDay,	
#WeirdThingsToCompliment,	Torrey	Smith

Friday #buffyslays20,	#SXSW,	#FridayFeeling,	#MakeAFilmUpbeat,
Purdue,	#FlashbackFriday
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I	like	#carrots

We	like	#carrots

Social	Media…



Textual	analysis	of	social	media

Instance-based	approaches:
• Physical	(velocity)
• Statistical	(chi-squared)
•Automaton	(meme-tracker)

Bayesian	approaches:
• Topics	over	time
•Dynamic	topic	models
•Online	LDA
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Given	timestamped	documents,	what	can	we	discover	about	
the	time	intervals from	latent	trends	or	topics?
• Even	if	our	sampling	is	not	entirely	reliable?



Our	approach	– PAKL

• Study	information	theoretic	differences	between	current	
term	distributions	and	the	baseline	term	distribution.
• There’s	always	something trending,	but	more	significant	
trends	will	cause	a	greater	divergence	from	baseline.



Our	approach	– PAKL
•Assume	that	the	baseline	term	distribution	is	!,	and	that	the	
current	term	distribution	is	".	The	Kullback-Leibler	divergence	
is	defined	as	

#$("| ! =(" ) log " )! )
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.
• Each	summand of	#$("| ! measures	how	much	information	
) carries	relative	to	baseline.
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current	term	distribution	is	".	The	Kullback-Leibler	divergence	
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.
• Problem:	for	either	" ) ≈ !()) or	" ) ≈ 0,	the	summand	
corresponding	to	) is	approximately	0.
•We’d	like	to	capture	both	increases	and decreases	in	usages	
of	terms.
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• Define	a	pointwise	antisymmetric	Kullback-Leibler	score	via:

23#$.("| ! = " ) + ! ) ln " )
! ) 	

• Words	for	which	23#$.("| ! is	very	positive are	being	
used	more frequently	in	" than	in	!.

• Words	for	which	23#$.("| ! is	very	negative	are	being	
used	less	frequently	in	" than	in	!.

• There	is	signal	in	the	sum	of	the	n highest	PAKL	scores	for	
each	time	period.
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PAKL	scores	are	robust	to	size	of	dataset.
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Paris	attacks



Extraction	of	important	documents
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Important	terms	(articles	and	prepositions	removed):
Nov	13:	paris,	#prayforparis,	#madeintheam,	prayers,	attacks
Nov.	26:	Thanksgiving,	thankful,	happy,	#mtvstars,	britney

Important	documents:
Nov	13:	Sending	prayers	to	the	people	in	Paris	#PrayForParis
Nov.	26:	thankful	for	everything	<emoji>	Happy	Thanksgiving	!!



Our	approach	– Cluster	coherence

Algorithm:
• For	each	document,	create	a	vector	by	taking	a	tf-idf-weighted	
average	of	term	vectors	(e.g.,	GloVe,	word2vec).
• Perform	spherical	clustering	on	the	resulting	document	vectors.
•Measure	cluster	coherence.

Higher	cluster	coherence	indicates	that	the	topics	being	
discussed	are	more	tightly	focused,	indicating	heightened	state.
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Cluster	scores	are	robust	to	size	of	dataset
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Paris	attacks

Oct 09 Oct 16 Oct 23 Oct 30 Nov 06 Nov 13 Nov 20 Nov 27
Date

114

116

118

120

122

124

Sc
or

e

10k
20k
30k
40k
50k



Probabilistic	Feature	Fusion
It	is	best	to	fuse	the	scores	produced	by	each	weak	indicator	in	
order	to	create	a	more	robust,	more	accurate	system.
• To	fuse	scores	78,	generated	during	time	period	9,	with	
weight	)8 into	a	final	(fused)	score,	we	compute:

Γ =()8 log 1 − =8 78
�

8
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order	to	create	a	more	robust,	more	accurate	system.
• To	fuse	scores	78,	generated	during	time	period	9,	with	
weight	)8 into	a	final	(fused)	score,	we	compute:

Γ =()8 log 1 − =8 78
�

8
Γ is	modeled	as	a	gamma	distribution	whose	parameters	can	be	
calculated.	This	underlying	gamma	distribution	can	then	be	
used	to	assess	significance.
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Fused	Scores	(Olympics)

19Dataset:	a	collection	of	tweets	from	Olympians	and	Olympics	professionals.
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Fused	Scores	(Universities)

20Dataset:	a	collection	of	tweets	from	US	universities.
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