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Motivation

Design of scramjet engine involves many expensive flow simulations for

uncertainty quantification (UQ)

design optimization
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Reactive turbulent flow

We use RAPTOR, a LES solver by Oefelein et al. at Sandia [Oefelein 06]
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Highly-scalable but still very expensive for 3D high-resolution grids

“Model variants” trade off between solution accuracy and cost:

Different grid resolutions

Emulation using 2D geometry

Modeling of near-wall properties

. . .

To use results from different models, need to capture the error due to
their model structure and assumptions
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Overview

Objective: capture uncertainty due to model error resulting from using
lower-fidelity models

Plan: represent the model error stochastically, by embedding a discrep-
ancy term in the low-fidelity model parameters in a non-intrusive manner
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Traditional “external” representation of model error

Traditional additive form: [Kennedy & O’Hagan 01][Kennedy 01]

qk = fk(λ) + δk + εdk for kth QoI

Applies corrections on model output

Flexible for fitting model error

δk not transferable for prediction of QoIs outside calibration set

Push-forward predictions generally no longer satisfy governing
equations

Difficult to distinguish uncertainty contributions between model error
and measurement noise
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Embedded model error representation

Embedded approach: [Sargsyan et al. 15][Sargsyan 15]

qk = fk(λ+ δk) + εdk

⇒ physically-meaningful predictions that auto-satisfy governing equations

⇒ safer extrapolations of δk to other QoIs (to other k) since they all
involve corrections on the same input parameter λ

Represent the discrepancy term δ in a stochastic manner:

λ+ δ(α, ξ)

α–calibration parameters for discrepancy term δ

ξ–aleatoric source (representing model error)

α̃ ≡ (λ, α)–all parameters to be calibrated

fk (λ+ δ(α, ξ)) is now a stochastic model
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Representing discrepancy via polynomial chaos expansion

Polynomial chaos expansion (PCE) in a nutshell:
an expansion for random variable:

θ(ξ) =
∑
β∈J

cβΨβ(ξ)

cβ: PCE coefficients

ξ: “germ” random vector (e.g., uniform, Gaussian)

Ψβ: multivariate orthonormal polynomial (e.g., Legendre, Hermite)

β: multi-index, reflects order of polynomial basis

Embedded model becomes:

fk (λ+ δ(α, ξ)) = fk

λ+
∑
β 6=0

αβΨβ(ξ)


PCE convenient for uncertainty propagation and moment estimation
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Bayesian calibration of model error

Calibrate model by performing statistical inference for α̃ ≡ (λ, α) via

Bayesian inference: p(α̃|D)︸ ︷︷ ︸
posterior

∝ p(D|α̃)︸ ︷︷ ︸
likelihood

p(α̃)︸︷︷︸
prior

α̃

P
D
F

D

α̃

P
D
F

Calibration data D from higher-fidelity model simulations
⇒ capturing discrepancy between low- and high-fidelity models

Posterior explored via Markov chain Monte Carlo (MCMC)

adaptive Metropolis [Haario 01]

efficient Gaussian proposal constructed from chain samples

MCMC requires likelihood evaluations p(D|α̃), but no analytical form
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True likelihood is intractable

Gauss-marginal approximation to likelihood:

p(D|α̃) ≈ 1

(2π)
N
2

N∏
k=1

1

σk(α̃)
exp

[
−(µk(α̃)− Dk)2

2σ2
k(α̃)

]

µk(α̃), σ2
k(α̃): mean and variance of fk(λ+ δ(α, ξ)) given α̃

Estimate them by constructing PCE (e.g., using NISP)

fk(λ+ δ(α, ξ)) = fk

λ+
∑
β 6=0

αβΨβ(ξ)

 ≈∑
β

fk,β(α̃)Ψβ(ξ)

and so µk(α̃) ≈ fk,0(α̃) and σ2
k(α̃) ≈

∑
β 6=0 f

2
k,β(α̃)
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Surrogate acceleration for tractable likelihood

A PCE needs to be constructed at every α̃ encountered in the MCMC, can
be expensive using fk

To accelerate PCE construction, pre-build surrogate for fk (e.g., regression)

fk(·) ≈ f̂k(·) + εk,LOO

εk,LOO ∼ N (0, σ2
k,LOO) models the discrepancy between f̂k and fk ,

σ2
k,LOO approximated from leave-one-out cross validation
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Attribution of total predictive variance

A nice result: attribute total predictive variance to different sources

Var [qk ] = Eα̃
[
σ2
k(α̃)

]︸ ︷︷ ︸
model error

+ Varα̃ [µk(α̃)]︸ ︷︷ ︸
posterior uncertainty

+ σ2
k,LOO︸ ︷︷ ︸

surrogate error

+ σ2
dk︸︷︷︸

data noise
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Dynamic-vs-Static Smagorinsky turbulence model

Calibrate static Smagorinsky model with dynamic simulations

3D geometry

Combustion turned off for initial demonstration

Calibrate using TKE y -profile (t-averaged, at fixed x , centerline z)
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1st-order expansion for δ = αξ (i.e., Gaussian)

Surrogates: 500 regression points, 3rd-order PCEs
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Dynamic-vs-Static Smagorinsky turbulence model
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2D-vs-3D: choice of embedding parameters

Calibrate 2D model using 3D model simulations

Calibrate using χ profile
λ = (CR ,Pr

−1
t ,Sc−1

t , Ii , Ir , Li )
We do not want to embed δ for all λ, too many terms

Embed δ in select parameters
Target parameters where embedding is most “effective”

Global sensitivity analysis on calibration QoIs
Bayesian model selection (evidence computation)

4 3 2 1 0
y/d

0.0

0.5

1.0

1.5

2.0

S
e
n
si

ti
v
it

y
 I
n
d
e
x

CR Pr−1
t Sc−1

t Ii Ir Li
4 3 2 1 0

y/d

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Huan et al. (Sandia) USNCCM, Montréal, Canada July 19, 2017 15 / 17



2D-vs-3D: choice of embedding parameters

Calibrate 2D model using 3D model simulations

Calibrate using χ profile
λ = (CR ,Pr

−1
t ,Sc−1

t , Ii , Ir , Li )
We do not want to embed δ for all λ, too many terms

Embed δ in select parameters
Target parameters where embedding is most “effective”

Global sensitivity analysis on calibration QoIs
Bayesian model selection (evidence computation)

Embed Param GSA S̄Ti
Log-evidence

CR 5.24× 10−1 2.82× 102

Pr−1
t 1.58× 10−2 −2.55× 103

Sc−1
t 4.90× 10−1 2.30× 102

Ii 3.63× 10−2 −9.68× 102

Ir 2.24× 10−3 −3.74× 103

Li 5.32× 10−2 −4.15× 102

CR , Sc
−1
t 2.79× 102
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2D-vs-3D: choice of embedding parameters

Calibrate 2D model using 3D model simulations

Calibrate using χ profile
λ = (CR ,Pr

−1
t ,Sc−1

t , Ii , Ir , Li )
We do not want to embed δ for all λ, too many terms

Embed δ in select parameters
Target parameters where embedding is most “effective”

Global sensitivity analysis on calibration QoIs
Bayesian model selection (evidence computation)

⇒ embed in CR and Sc−1
t , employ triangular multivariate PCE form

(λ+ δ(α, ξ)) =



CR + α(1)ξ1

Pr−1
t

Sc−1
t + α(1,0)ξ1 + α(0,1)ξ2

Ii

Ir

Li
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2D-vs-3D: predictive quantities
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Conclusions

Conclusions:

Introduced a framework for characterizing uncertainty from model error

embed discrepancy in model parameters; non-intrusive
predictions automatically satisfy governing equations

Attributed total predictive variance to different contributing sources

Demonstrated method in a non-reactive demonstration unit problem
in scramjet design involving expensive LES:

Static vs. dynamic Smagorinsky turbulence treatments
2D vs. 3D geometry

Illustrated good capturing of model-to-model discrepancy, and also
limitations when models are too different

Future work:

Bayesian model selection for optimal model error embedding

More sophisticated forms of embedding

Combine with multifidelity and multilevel methods
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	Model Error
	Conclusions and Future Work

