

Bayesian Model Calibration with an Embedded Statistical Characterization of Model Error

Xun Huan, Khachik Sargsyan, Habib N. Najm

Sandia National Laboratories

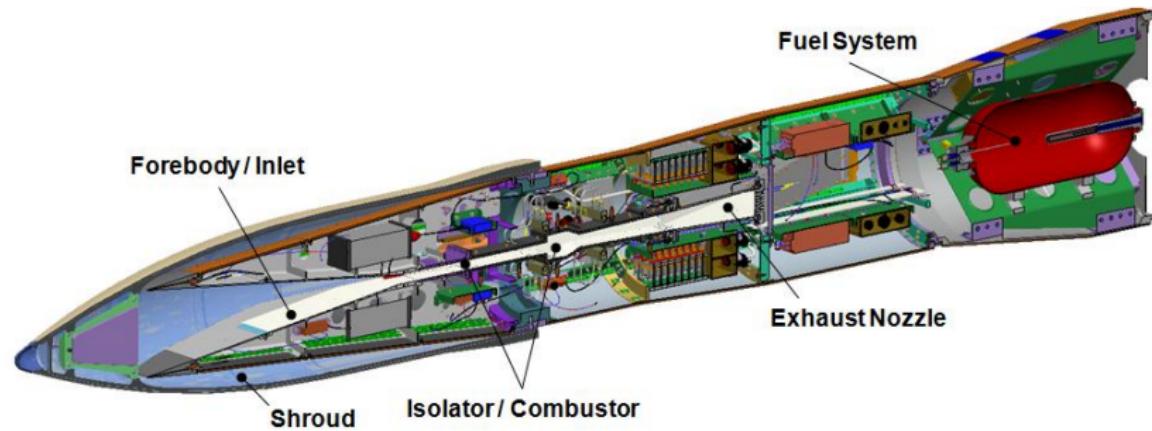
July 19, 2017

Acknowledgement

- Defense Advanced Research Projects Agency (DARPA)
Enabling Quantification of Uncertainty in Physical Systems (EQUiPS)
- Sandia National Laboratories¹

¹Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Motivation

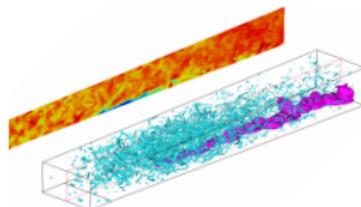
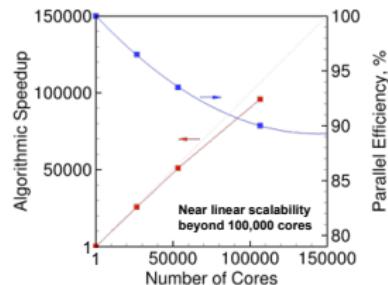
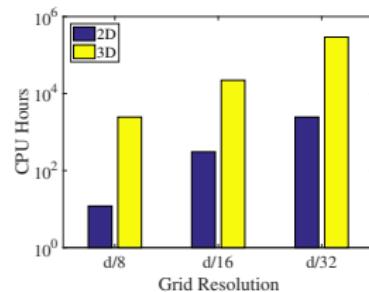


Design of scramjet engine involves many expensive flow simulations for

- uncertainty quantification (UQ)
- design optimization

Reactive turbulent flow

We use **RAPTOR**, a LES solver by Oefelein *et al.* at Sandia [Oefelein 06]



Highly-scalable but still **very expensive** for 3D high-resolution grids

“Model variants” trade off between solution accuracy and cost:

- Different grid resolutions
- Emulation using 2D geometry
- Modeling of near-wall properties
- ...

To use results from different models, need to **capture the error due to their model structure and assumptions**

Objective: capture uncertainty due to model error resulting from using lower-fidelity models

Plan: represent the model error **stochastically**, by **embedding** a discrepancy term in the low-fidelity model parameters in a **non-intrusive** manner

Traditional “external” representation of model error

Traditional additive form: [Kennedy & O'Hagan 01]

$$q_k = f_k(\lambda) + \delta_k + \epsilon_{d_k} \quad \text{for } k\text{th QoI}$$

- Applies corrections on model output
- Flexible for fitting model error
- δ_k not transferable for prediction of QoIs outside calibration set
- Push-forward predictions generally no longer satisfy governing equations
- Difficult to distinguish uncertainty contributions between model error and measurement noise

Embedded model error representation

Embedded approach: [Sargsyan *et al.* 15]

$$q_k = f_k(\lambda + \delta_k) + \epsilon_{d_k}$$

⇒ physically-meaningful predictions that auto-satisfy governing equations

⇒ safer extrapolations of δ_k to other Qols (to other k) since they all involve corrections on the same input parameter λ

Represent the discrepancy term δ in a stochastic manner:

$$\lambda + \delta(\alpha, \xi)$$

- α —calibration parameters for discrepancy term δ
- ξ —aleatoric source (representing model error)
- $\tilde{\alpha} \equiv (\lambda, \alpha)$ —all parameters to be calibrated

$f_k(\lambda + \delta(\alpha, \xi))$ is now a **stochastic** model

Representing discrepancy via polynomial chaos expansion

Polynomial chaos expansion (PCE) in a nutshell:

an expansion for random variable:

$$\theta(\xi) = \sum_{\beta \in \mathcal{J}} c_{\beta} \Psi_{\beta}(\xi)$$

- c_{β} : PCE coefficients
- ξ : “germ” random vector (e.g., uniform, Gaussian)
- Ψ_{β} : multivariate orthonormal polynomial (e.g., Legendre, Hermite)
- β : multi-index, reflects order of polynomial basis

Embedded model becomes:

$$f_k(\lambda + \delta(\alpha, \xi)) = f_k \left(\lambda + \sum_{\beta \neq 0} \alpha_{\beta} \Psi_{\beta}(\xi) \right)$$

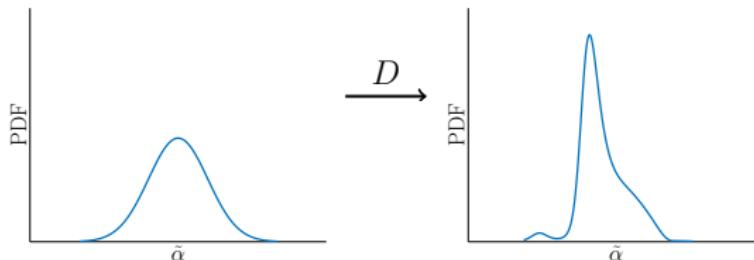
PCE convenient for uncertainty propagation and moment estimation

Bayesian calibration of model error

Calibrate model by performing statistical inference for $\tilde{\alpha} \equiv (\lambda, \alpha)$ via

Bayesian inference:

$$\underbrace{p(\tilde{\alpha}|D)}_{\text{posterior}} \propto \underbrace{p(D|\tilde{\alpha})}_{\text{likelihood}} \underbrace{p(\tilde{\alpha})}_{\text{prior}}$$



Calibration data D from higher-fidelity model simulations
⇒ capturing discrepancy between **low- and high-fidelity models**

Posterior explored via **Markov chain Monte Carlo (MCMC)**

- adaptive Metropolis [Haario 01]
- efficient Gaussian proposal constructed from chain samples

MCMC requires likelihood evaluations $p(D|\tilde{\alpha})$, but **no analytical form**

True likelihood is intractable

Gauss-marginal approximation to likelihood:

$$p(D|\tilde{\alpha}) \approx \frac{1}{(2\pi)^{\frac{N}{2}}} \prod_{k=1}^N \frac{1}{\sigma_k(\tilde{\alpha})} \exp \left[-\frac{(\mu_k(\tilde{\alpha}) - D_k)^2}{2\sigma_k^2(\tilde{\alpha})} \right]$$

$\mu_k(\tilde{\alpha})$, $\sigma_k^2(\tilde{\alpha})$: mean and variance of $f_k(\lambda + \delta(\alpha, \xi))$ given $\tilde{\alpha}$

Estimate them by constructing PCE (e.g., using NISP)

$$f_k(\lambda + \delta(\alpha, \xi)) = f_k \left(\lambda + \sum_{\beta \neq 0} \alpha_{\beta} \Psi_{\beta}(\xi) \right) \approx \sum_{\beta} f_{k,\beta}(\tilde{\alpha}) \Psi_{\beta}(\xi)$$

and so $\mu_k(\tilde{\alpha}) \approx f_{k,0}(\tilde{\alpha})$ and $\sigma_k^2(\tilde{\alpha}) \approx \sum_{\beta \neq 0} f_{k,\beta}^2(\tilde{\alpha})$

Surrogate acceleration for tractable likelihood

A PCE needs to be constructed at every $\tilde{\alpha}$ encountered in the MCMC, can be expensive using f_k

To accelerate PCE construction, pre-build **surrogate** for f_k (e.g., regression)

$$f_k(\cdot) \approx \hat{f}_k(\cdot) + \epsilon_{k,\text{LOO}}$$

$\epsilon_{k,\text{LOO}} \sim \mathcal{N}(0, \sigma_{k,\text{LOO}}^2)$ models the discrepancy between \hat{f}_k and f_k ,
 $\sigma_{k,\text{LOO}}^2$ approximated from leave-one-out cross validation

Attribution of total predictive variance

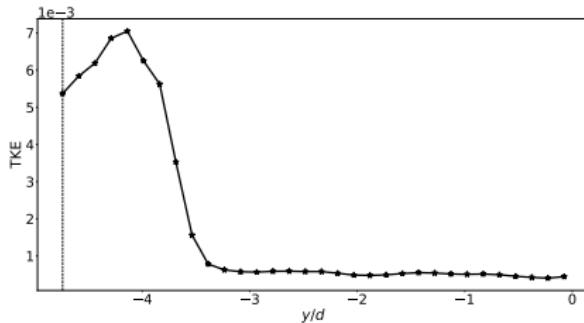
A nice result: **attribute total predictive variance** to different sources

$$\text{Var}[q_k] = \underbrace{\mathbb{E}_{\tilde{\alpha}} [\sigma_k^2(\tilde{\alpha})]}_{\text{model error}} + \underbrace{\text{Var}_{\tilde{\alpha}} [\mu_k(\tilde{\alpha})]}_{\text{posterior uncertainty}} + \underbrace{\sigma_{k,\text{LOO}}^2}_{\text{surrogate error}} + \underbrace{\sigma_{d_k}^2}_{\text{data noise}}$$

Dynamic-vs-Static Smagorinsky turbulence model

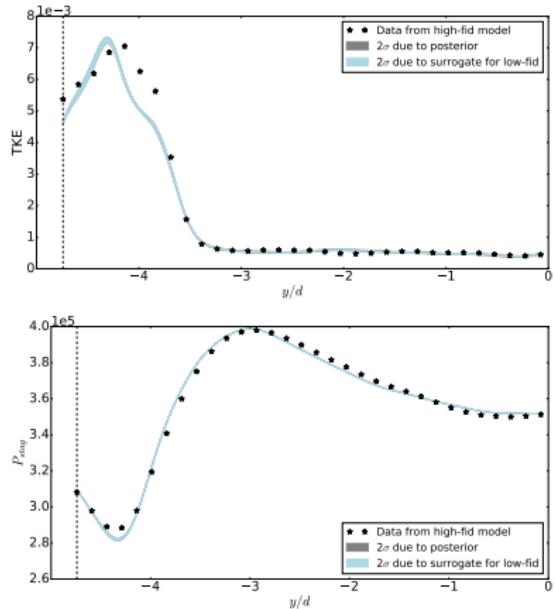
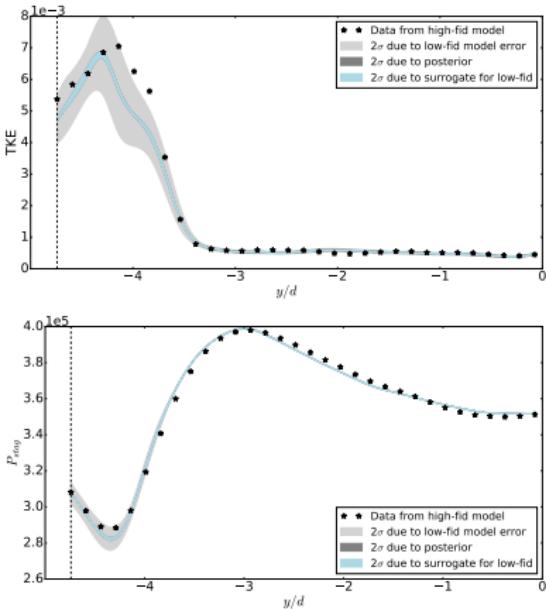
Calibrate static Smagorinsky model with dynamic simulations

- 3D geometry
- Combustion turned off for initial demonstration
- Calibrate using TKE y -profile (t -averaged, at fixed x , centerline z)



- Embed in parameter $\lambda = C_R$
 - 1st-order expansion for $\delta = \alpha\xi$ (i.e., Gaussian)
- Surrogates: 500 regression points, 3rd-order PCEs

Dynamic-vs-Static Smagorinsky turbulence model



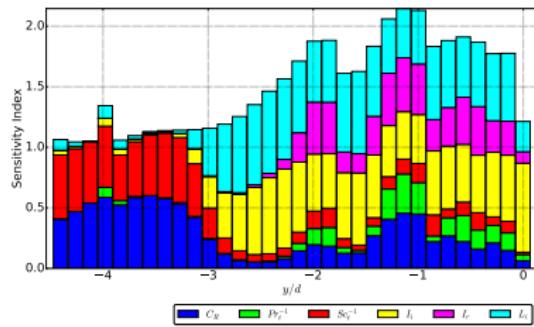
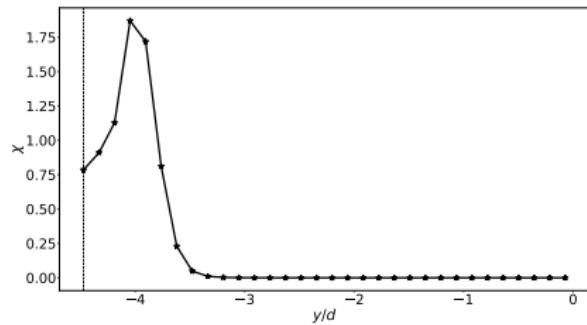
No model error treatment

Embedded model error treatment

2D-vs-3D: choice of embedding parameters

Calibrate 2D model using 3D model simulations

- Calibrate using χ profile
- $\lambda = (C_R, Pr_t^{-1}, Sc_t^{-1}, I_i, I_r, L_i)$
- We do not want to embed δ for all λ , too many terms
 - Embed δ in select parameters
 - Target parameters where embedding is most “effective”
 - **Global sensitivity analysis on calibration Qols**
 - Bayesian model selection (evidence computation)



2D-vs-3D: choice of embedding parameters

Calibrate 2D model using 3D model simulations

- Calibrate using χ profile
- $\lambda = (C_R, Pr_t^{-1}, Sc_t^{-1}, I_i, I_r, L_i)$
- We do not want to embed δ for all λ , too many terms
 - Embed δ in select parameters
 - Target parameters where embedding is most “effective”
 - Global sensitivity analysis on calibration QoIs
 - Bayesian model selection (evidence computation)

Embed Param	GSA S_{T_i}	Log-evidence
C_R	5.24×10^{-1}	2.82×10^2
Pr_t^{-1}	1.58×10^{-2}	-2.55×10^3
Sc_t^{-1}	4.90×10^{-1}	2.30×10^2
I_i	3.63×10^{-2}	-9.68×10^2
I_r	2.24×10^{-3}	-3.74×10^3
L_i	5.32×10^{-2}	-4.15×10^2
C_R, Sc_t^{-1}		2.79×10^2

2D-vs-3D: choice of embedding parameters

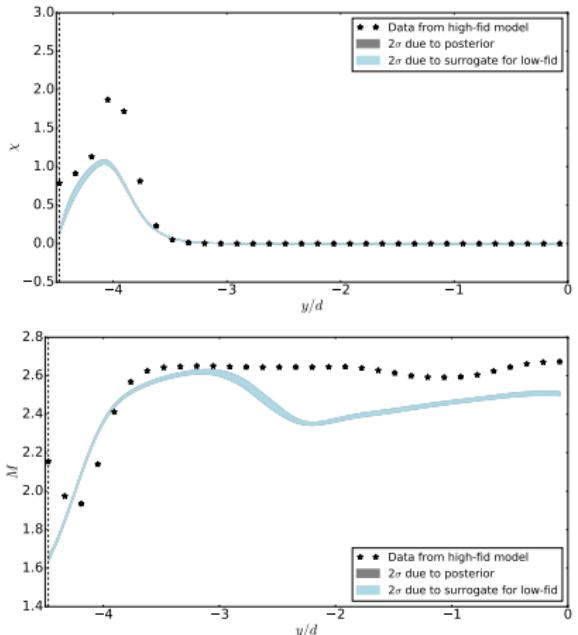
Calibrate 2D model using 3D model simulations

- Calibrate using χ profile
- $\lambda = (C_R, Pr_t^{-1}, Sc_t^{-1}, I_i, I_r, L_i)$
- We do not want to embed δ for all λ , too many terms
 - Embed δ in select parameters
 - Target parameters where embedding is most “effective”
 - Global sensitivity analysis on calibration QoIs
 - Bayesian model selection (evidence computation)

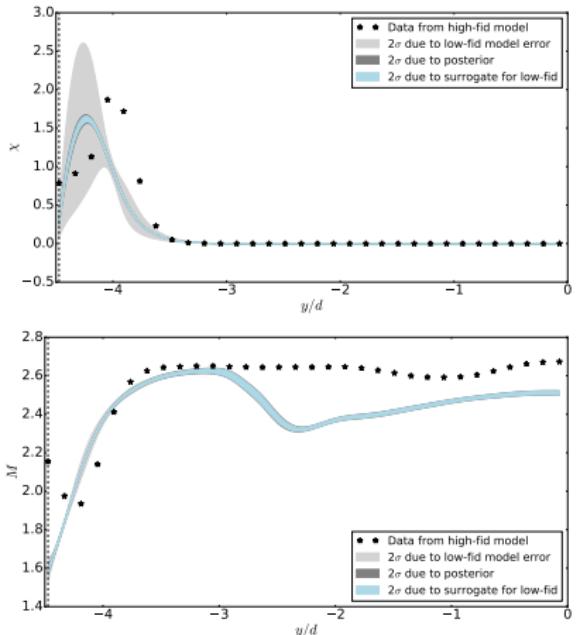
\Rightarrow embed in C_R and Sc_t^{-1} , employ triangular multivariate PCE form

$$(\lambda + \delta(\alpha, \xi)) = \begin{cases} C_R + \alpha_{(1)} \xi_1 \\ Pr_t^{-1} \\ Sc_t^{-1} + \alpha_{(1,0)} \xi_1 + \alpha_{(0,1)} \xi_2 \\ I_i \\ I_r \\ L_i \end{cases}$$

2D-vs-3D: predictive quantities



No model error treatment



Embedded model error treatment

Conclusions

Conclusions:

- Introduced a framework for characterizing uncertainty from model error
 - embed discrepancy in model parameters; non-intrusive
 - predictions automatically satisfy governing equations
- Attributed total predictive variance to different contributing sources
- Demonstrated method in a non-reactive demonstration unit problem in scramjet design involving expensive LES:
 - Static vs. dynamic Smagorinsky turbulence treatments
 - 2D vs. 3D geometry
- Illustrated good capturing of model-to-model discrepancy, and also limitations when models are too different

Future work:

- Bayesian model selection for optimal model error embedding
- More sophisticated forms of embedding
- Combine with multifidelity and multilevel methods

References I

Heikki Haario, Eero Saksman & Johanna Tamminen.

An adaptive Metropolis algorithm.

Bernoulli, vol. 7, no. 2, pages 223–242, 2001.

Marc. C. Kennedy & Anthony O'Hagan.

Bayesian calibration of computer models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 63, no. 3, pages 425–464, 2001.

Joseph C. Oefelein.

Large eddy simulation of turbulent combustion processes in propulsion and power systems.

Progress in Aerospace Sciences, vol. 42, no. 1, pages 2–37, 2006.

Khachik Sargsyan, Habib N. Najm & Roger G. Ghanem.

On the Statistical Calibration of Physical Models.

International Journal of Chemical Kinetics, vol. 47, no. 4, pages 246–276, 2015.