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Motivation

Fuel System

Forebody/ Inlet

Shroud Isolator/ Combustor

Design of scramjet engine involves many expensive flow simulations for
@ uncertainty quantification (UQ)

@ design optimization
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Reactive turbulent flow

We use RAPTOR, a LES solver by Oefelein et al. at Sandia [Oefelein 06]
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Highly-scalable but still very expensive for 3D high-resolution grids

“Model variants” trade off between solution accuracy and cost:
@ Different grid resolutions
@ Emulation using 2D geometry
@ Modeling of near-wall properties
o
To use results from different models, need to capture the error due to

their model structure and assumptions
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Overview

Objective: capture uncertainty due to model error resulting from using
lower-fidelity models

Plan: represent the model error stochastically, by embedding a discrep-
ancy term in the low-fidelity model parameters in a non-intrusive manner
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Traditional “external” representation of model error

Traditional additive form: [Kennedy & O'Hagan 01]

qx = fk()\) + 0k + €dy for kth Qol

Applies corrections on model output

Flexible for fitting model error

Ok not transferable for prediction of Qols outside calibration set

Push-forward predictions generally no longer satisfy governing
equations

Difficult to distinguish uncertainty contributions between model error
and measurement noise
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Embedded model error representation

Embedded approach: [Sargsyan et al. 15]

qkx — fk(/\ + 5k) -+ edk
= physically-meaningful predictions that auto-satisfy governing equations

= safer extrapolations of dx to other Qols (to other k) since they all
involve corrections on the same input parameter \

Represent the discrepancy term ¢ in a stochastic manner:
A+0(a, )

@ a—calibration parameters for discrepancy term ¢
e ¢—aleatoric source (representing model error)
@ & = (A, «)-all parameters to be calibrated

fx (A + 0(a, €)) is now a stochastic model
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Representing discrepancy via polynomial chaos expansion

Polynomial chaos expansion (PCE) in a nutshell:
an expansion for random variable:

0(6) = caV¥s()
BeJ
@ cg: PCE coefficients
e & “germ” random vector (e.g., uniform, Gaussian)
@ Wg3: multivariate orthonormal polynomial (e.g., Legendre, Hermite)

@ [: multi-index, reflects order of polynomial basis

Embedded model becomes:

fie A+ 0(,€)) = fi [ A+ D apWis(€)
B#0

PCE convenient for uncertainty propagation and moment estimation
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Bayesian calibration of model error

Calibrate model by performing statistical inference for & = (A, «) via

Bayesian inference: p(&|D) o« p(D|a) p(&)

posterior likelihood prior
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Calibration data D from higher-fidelity model simulations
= capturing discrepancy between low- and high-fidelity models

Posterior explored via Markov chain Monte Carlo (MCMC)

@ adaptive Metropolis [Haario 01]

o efficient Gaussian proposal constructed from chain samples
MCMC requires likelihood evaluations p(D|&), but no analytical form
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True likelihood is intractable

Gauss-marginal approximation to likelihood:

a1 7T [ (@) - D?
p(D| )N(27r)gk1_[:1“k(5‘) p[ 207(d) ]

1k(@), 07(&): mean and variance of fx(A + (av, &)) given &

Estimate them by constructing PCE (e.g., using NISP)

AN+ 0(0,€)) = i | A+ agWp(€) | = ) fip(@)Ws()
B#0 B

and so 11(&) & fio(&) and 02(A) & Y540 2 5(6)
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Surrogate acceleration for tractable likelihood

A PCE needs to be constructed at every & encountered in the MCMC, can
be expensive using fy

To accelerate PCE construction, pre-build surrogate for fy (e.g., regression)
fi(-) ~ () + exLoo

€k,LOO ~ N(0, O'i’l_oo) models the discrepancy between fk and f,
0% Loo approximated from leave-one-out cross validation
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Attribution of total predictive variance

A nice result: attribute total predictive variance to different sources

Var[gu] = E [0%(&@)] + Vara[(@)] + oko0 + 05,
~ —— N

model error posterior uncertainty  surrogate error  data noise
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Dynamic-vs-Static Smagorinsky turbulence model

Calibrate static Smagorinsky model with dynamic simulations

@ 3D geometry

@ Combustion turned off for initial demonstration

o Calibrate using TKE y-profile (t-averaged, at fixed x, centerline z)
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@ Embed in parameter A = Cgr
o lst-order expansion for 6 = af (i.e., Gaussian)

@ Surrogates: 500 regression points, 3rd-order PCEs
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Dynamic-vs-Static Smagorinsky turbulence model
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2D-vs-3D: choice of embedding parameters

Calibrate 2D model using 3D model simulations
o Calibrate using x profile
o \= (CR7 Prt_lasct_17 Ii7 lr7 LI)
@ We do not want to embed ¢ for all A\, too many terms
o Embed 0 in select parameters
o Target parameters where embedding is most “effective”

o Global sensitivity analysis on calibration Qols
o Bayesian model selection (evidence computation)

Sensitivity Index

) -3 -2 -1 o

Huan et al. (Sandia) USNCCM, Montréal, Canada July 19, 2017 15 / 17



2D-vs-3D: choice of embedding parameters

Calibrate 2D model using 3D model simulations
o Calibrate using x profile
-1 -1
o \= (CR7 Prt 75Ct )Il'u lr7 LI)
@ We do not want to embed ¢ for all A\, too many terms
o Embed 0 in select parameters
o Target parameters where embedding is most “effective”
o Global sensitivity analysis on calibration Qols
o Bayesian model selection (evidence computation)

Embed Param GSA S, Log-evidence
Cr 524 x 101 2.82 x 102
Pt 1.58 x 1072 —2.55 x 10°

S¢; ! 490x10-1 230 x 102

I; 3.63x 1072  —9.68 x 102

I 224 x 1073  —3.74 x 103

L; 532 x 1072  —4.15 x 102

Cr, Sc; 2.79 x 102
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2D-vs-3D: choice of embedding parameters

Calibrate 2D model using 3D model simulations
o Calibrate using x profile
-1 -1
o \= (CR7 Prt 75Ct )Il'u lr7 LI)
@ We do not want to embed ¢ for all A\, too many terms
o Embed 0 in select parameters
o Target parameters where embedding is most “effective”
o Global sensitivity analysis on calibration Qols
o Bayesian model selection (evidence computation)

= embed in Cgr and Sct_l, employ triangular multivariate PCE form

CR + 04(1)51
Prt_1
—1
A+ 8(r, ) = ISCt + apoé + apé
Ir
L;
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2D-vs-3D: predictive quantities
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Conclusions

Conclusions:

@ Introduced a framework for characterizing uncertainty from model error

e embed discrepancy in model parameters; non-intrusive
e predictions automatically satisfy governing equations

@ Attributed total predictive variance to different contributing sources

@ Demonstrated method in a non-reactive demonstration unit problem
in scramjet design involving expensive LES:

e Static vs. dynamic Smagorinsky turbulence treatments
e 2D vs. 3D geometry

@ lllustrated good capturing of model-to-model discrepancy, and also
limitations when models are too different

Future work:
@ Bayesian model selection for optimal model error embedding
@ More sophisticated forms of embedding

@ Combine with multifidelity and multilevel methods
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