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Simple spring-mass-dashpot system
— Piston moves vertically in housing
— Spring supports it against gravity
— Viscous liquid provides damping
— Small amount of gas is present

Housing is vibrated vertically
— Gas moves down below piston
— Piston moves down against spring
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Some gas moves down below piston!
* Bjerknes forces push bubbles down
* Create & stabilize a lower gas region
Two gas regions: upper and lower
* Both are quasi-stable (stationary)
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Gas regions form pneumatic spring
* One expands, the other compresses
« Stiffness is ~100x helical spring
Enables new mode with low damping
* Piston and interfaces move together
* No liquid is forced through inner gap
Low damping gives strong resonance
* Piston + liguid mass and gas spring
Gap nonlinearity produces net force
« Damping depends on piston position
* Piston moves down to shorten gap
K
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Gas regions are hard to analyze

* Upper/lower split of gas is not known
* Motion Is transient and complicated
So replace gas regions with bellows

« Compressibility is well characterized
* Choose to be similar to gas regions
Well suited for theory & simulation

* Liquid: incompressible Navier-Stokes
equations with moving boundaries

 Solids: Newton’s 2" Law (“F = ma”)
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Theory gives 2-DOF nonlinear damped harmonic oscillator
* Quasi-steady Stokes & Newton’s 2"d Law: PDEs — ODEs
* Liquid added mass & damping depend on piston position
Piston motion agrees with Navier-Stokes ALE simulation
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Navier-Stokes Eqns.
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Jg g_ Interaction with stop is complicated
7 be"c’f"s 7 - Flat surfaces with liquid in between
] gravity [ . . .
1 : * Squeeze-film damping from liquid
spring| | outer| * Asperities control solid-solid contact

gap . .
4 | damper 4~ I So replace stop with a second spring

——————

inner * Two-spring suspension holds piston

4 |'i:/gap * Spring force is well characterized
A] I Well suited for analysis & experiment
|| +Focus on rectification nonlinearity
e Study stop interaction subsequently
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Two-Spring System i) et
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Piston positions of significance
 Full-aligned: maximum damping
- Half-aligned: zero net force

* Anti-aligned: minimal damping
Quasi-steady equilibrium analysis

Navier-Stokes and Newton’s 2" Law
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Full ODE (quasi-steady Stokes)
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Oscillation + drift model
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Equilibrium piston position versus amplitude & frequency

 Two stable states: up, down (unstable state between: mid)

 Up & down regions separated by multi-state regions

Position is multi-valued versus frequency at fixed amplitude

* Quasi-steady equilibrium agrees well with full ODE
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Servometer FC-16 Bellows “A”
(like a bigger gas bubble)

Piston position

« Equilibrium

- Bellows “A”

Stable states

* Regime maps

* Fixed-amplitude
frequency slices
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Servometer FC-13 Bellows “B”
(like a smaller gas bubble)

Piston position

« Equilibrium

* Bellows “B”

Stable states

* Regime maps

* Fixed-amplitude
frequency slices
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gas above + vibration = gas below

below

G : piston
gas above + gas below = gas spring | : spring
G E> no gas

gas spring + total mass = resonance

2

:[resonance + nonlinearity = net motion |

some gas
below

Vibration off Vibration on
Spring supports piston Piston compresses spring

Cause of vibration-induced piston motion determined

« Clear physical picture of route to net motion (rectification)
« Good agreement between theory & experiment (bellows)
Much work remains to obtain a complete understanding

* Investigate effects of friction & contact forces (the stop)

« Study how gas divides between upper and lower regions



