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Acoustoelasticity studies the coupling
between structural and acoustic modes

Acoustoelasticity is a subset of the field of structural acoustics

Structures and acoustics are coupled through the velocity at the interface
surface

Structures and fluids propagate sound waves that form standing waves with
specific patterns (mode shapes) at specific frequencies (resonance)

Structural mode shape Acoustic mode shape

Acoustoelastic Coupling!




Acoustoelastic coupling generates unexpected
peaks in the frequency response

Structural Frequency Response Function (FRF)

4.
107 10% -
_ 10
= I
S
5’1o° s 10"
L =
L 2. g
102 =
TR
7 o 40°-
107 ‘ ‘ ‘ L. i
1000 1200 1400 1600 1800 2000 2200 |
Freq. [Hz]
10-1 I I I | |
1700 1750 1800 1850 1900 1950 2000
Freq. [Hz]

Acoustic mode shape

Structural mode shape

Y

P




Presence of coupling causes difficulty in validating
analytical models (e.g., finite element)

= One of the main goals of modal testing is to supply experimental
data for analytical model correlation

= Finite element models typically assume zero interaction with the
surrounding air (in-vacuo, structure-only state)

= Running coupled analyses increase model complexity and
computational expense
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How can we approach this problem from the
experimental side?

We seek to develop methods to...

= Quickly identify when acoustic coupling occurs

= Decouple the structural response by altering
boundary conditions of:
= Acoustic volume
= Structure
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ACOUSTOELASTICITY THEORY




Coupling occurs when mode shapes are
similar and frequencies are close in proximity

Modal Equations of Motion:

Structural: Acoustic:
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Acoustoelastic coupling terms

Coupling coefficient measures the degree of similarity between mode shapes

1 . .
an = j Wn¢m dA v, : Acoustic shape
Ap Ay ¢, : Structuralshape

For excitation at the structural resonance frequency, the acoustic modal amplitude is:
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[1] Dowell E.H. et al. (1977) “Acoustoelasticity: General Theory, Acoustic Natural Modes and Forced Response to Sinusoidal Excitation, Including
Comparison with Experiment,” Journal of Sound and Vibration, 52(4), 519-542. 7




A system with acoustoelastic coupling behaves
similar to a tuned mass damper

Tuned mass damper
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Parameters:
M,: structural mass
M,: air mass
k,: structural stiffness
k,: air stiffness
c¢,: structural damping
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[2] Schultz R., Pacini B. (2017) “Mitigation of Structural-Acoustic Mode Coupling in a Modal Test of a Hollow Structure,” Conference Proceedings of the
Society for Experimental Mechanics Series, 8
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Adjusting air properties can decouple the
structural system

Vary air “stiffness” k,

=== SDOF: M1
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Increasing air stiffness causes the
coupled acoustic frequency to shift
away from structural frequency

FRF Mag. [G/N]

Vary air damping c,

0 I | ! ! |
1q| 700 1750 1800 1850 1900 1950 2000
Freq [Hz] === SDOF: M1
102 I % —(=0.2%
i —=2%

g =20%

z- —_—=50%
g

Increasing air damping causes the %

structural response to first decrease, ;1"1
L

then increase towards SDOF response

l 1 1 |
1700 1750 1800 1850 1900 1950 2000

10°

Freq [Hz]
[2] Schultz R., Pacini B. (2017) “Mitigation of Structural-Acoustic Mode Coupling in a Modal Test of a Hollow Structure,” Conference Proceedings of the
Society for Experimental Mechanics Series, 9




HARDWARE AND TEST SETUP




A hollow aluminum cylinder provided a test
article that exhibits acoustoelastic coupling

Cylinder suspended from soft bungee cords

Cylinder dimensions:
Length L: 24 in.

Inner diameter, D, = 7 in.
Outer diameter, D, = 8 in.
Wall thickness, t = 7z in.

Measurements: __
Accelerometers bonded to surface p sem IR
measure the structural response [ c— l "'-2’.'

Microphones located on rod
measure the acoustic pressure




Accelerometers located to adequately
capture the structural modes of interest

Axial Locations Circumferential Locations
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207[] 407[] 607[_]
209[_] 409[_] 609[_]

= Uniaxial Accelerometer
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Roving microphone array used to adequately
capture acoustic modes of interest
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REPEATABILITY TESTING




Baseline tests from different days / times altered
the system frequency response

Zoomed FRF
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= Variations in air properties
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Bungee lengths and connection locations alter
amplitudes and shift frequencies

Zoomed FRF
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Cylinder end cap removal / reattachment shifts
coupled acoustic frequencies

Zoomed FRF
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Small temperature changes can shift acoustic
mode frequencies significantly

Temperature effects on acoustic (2,1,1) modal frequency
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» |n a similar manner, static pressure fluctuations can also induce frequency shifts
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COUPLING IDENTIFICATION
AND MEASUREMENT
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Acoustic response is an order of magnitude
larger where coupling exists

Structural Input Structural Response

Acoustic Response

Large coupling
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Location of microphones shows appreciable
effect on the coupled frequency

Axial mic.
20 Acoustic Response location
T |
15 - /’
10 - 4
i
z ° ]
>
5L |
0r m—
_15 | | |
1750 1800 1850 1900 1950

Frequency [Hz]

Requires acoustic modal parameters to be
extracted at each microphone location!
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The two peaks of the coupled structural-acoustic
pairs have opposite phasing
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MITIGATION STRATEGIES




Mitigation strategies analyzed using the coupled
modes in the 1700-2000 Hz frequency range
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Introducing foam into cavity adds a source of
acoustic damping

Foam covered rod
(non-contact approach)

Foam cubes
(contact approach)
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Using the foam road (non-contact), increasing the
foam volume decouples the structural response

Increasing acoustic damping
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Increasing foam causes structural peak to
first decrease, then increase and shift in
frequency; similar to a tuned mass damper
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Foam cubes in contact with cylinder increased
decoupling potential for same volume of foam

Non-contact vs. contact foam comparison
Foam in cavity
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» Foam cubes inserted incrementally through hole in endcap

» Foam cubes are less compressed, leading to more effective
acoustic absorption




Including partitions in the cavity alters the
acoustic mode shape

Axial Cardboard

Cardboard disk Insertion Rod ..
Partition




Locating cardboard disk partition at max
acoustic pressure reduces coupling

Partition |°cat'° comprlson Acoustic (2,1,1) mode shape
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= Single cardboard disk did not adequately remove coupling

= Requires knowledge of mode shape to effectively place
partition to reduce coupling
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Including the axial cardboard partition further
disrupted the coupling behavior

Partition orientation comparison
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= Unexpectedly induced a frequency splitting in structural peak




Crumpled paper towels are most effective
and convenient for decoupling

Crumpled
paper towels
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= Paper towels successfully disrupt acoustic modes
without adding much mass to the system

= Cheap and readily available solution to both quickly

identify and remove coupling 31




Adding mass at anti-nodes shifts structural peaks
but has minimal effect on coupled peak

, Mass modification effects Structural (2,1) Mode Shape
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» Structural modifications may be necessary if cavity is inaccessible

» The frequency shift caused a second acoustic mode to couple with
the structure, though at a small magnitude




Using hose clamps to add stiffness does not have
the desired effect

Clamp configuration comparison
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= Structural peak shifted down in frequency, indicating that more mass than
stiffness was added to the system

» No effect on decoupling the structure
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Summary: Successfully measured acoustoelastic
coupling and decoupled the structural response

= The air inside the cylindrical cavity caused coupling in multiple structural and acoustic modes

= Coupling identified and measured using typical structural impact excitation

= When the cavity is accessible, paper towels offer an effective and cheap method of quickly
identify and mitigating coupling

= |f the cavity is inaccessible, structural modifications have so far been unsuccessful in
removing coupling
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