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Spring-mass-dashpot system
— Piston moves vertically in housing
— Spring supports it against gravity
— Viscous liquid provides damping
— Small amount of gas is present
Housing iIs vibrated vertically
— Gas moves down below piston
— Piston moves down against spring
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Spring supports piston Piston compresses spring
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Make a cylindrical housing
 Stainless steel, completely rigid
*|ID ~1inch (25 mm)

* Height ~2 inch (50 mm)

Fill it with incompressible liquid

* Typically silicone oil (20-cSt PDMS)
* Density ~ water density

* Viscosity ~20x water viscosity
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Piston is basically cylindrical
 Stainless steel, ~8x liquid density

* Real piston complex but same mass
Piston and housing define outer gap

* Outer gap is ~0.001x piston diameter
— Typically ~0.001 inch (0.025 mm)

* Piston can move only vertically
Piston has hole along axis
* Hole diameter varies with position
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Piston wants to sink to bottom

» Gravity pulls down on everything
 Buoyancy is much less than weight
Support it from below with a spring

* Helical coil of very narrow wire

* Diagram shows slice through coils
Here, piston freely suspended in liquid
* Reality: piston pressed against stop
*Ignore preload and stop for now



_ '
% Add a Post to Specify the Damping

gravity

|

piston

spring |

liquid

post

i

outer

gap
>

inner

Sandia
m National
Laboratories

Post is fixed firmly to housing
* Post diameter varies with position
Piston and post define inner gap

*Inner gap ~4x as wide as outer gap
— Typically ~0.004 inch (0.1 mm)

* Flow resistance: inner ~0.01x outer
Damping depends on piston position
« Damping proportional to gap length
* Gap shortens as piston moves down
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Try to Move the Piston i) fonat

Piston and liquid motions are coupled
e Suppose piston moves down
 Liquid flows up through inner gap
Resistance to piston motion is large

* Inner gap has small cross section

* Liquid velocity in gap is very large

* Opposing pressure drop is large
Liquid-filled system is overdamped

* Acting as intended: a dashpot
Piston-spring “resonance” irrelevant

o= |—2" js highly overdamped

piston
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Now Add Some Gas
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Air, nitrogen, argon; oil vapor minimal
* Gas is filtered, humidity is controlled
Gas prevents housing from bursting

* Liquid has large thermal expansion

« Solids have small thermal expansion
Gas Is generally at top of system
 Buoyancy and minor agitation

* Dissolves and diffuses in liquid
Some gas might be under piston

* Recesses on piston bottom surface
* FOor now, suppose no gas underneath
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Piston and liquid motions still coupled
e Suppose piston moves down

 Liquid still must flow up through gap
Gas volume cannot change, no effect
 Liquid and solids are incompressible
Resistance to piston motion still large
* Inner gap has small cross section
 Liquid velocity in gap still very large
* Opposing pressure drop still large
Gas-at-top system still overdamped

« Acting as intended: still a dashpot
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Some gas moves down below piston!
* Bjerknes forces push bubbles down
* Create & stabilize a lower gas region
Two gas regions: upper and lower
* Both are quasi-stable (stationary)
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Gas regions form pneumatic spring
* One expands, the other compresses
« Stiffness is ~100x helical spring
Enables new mode with low damping
* Piston and interfaces move together
* No liquid is forced through inner gap
Low damping gives strong resonance
* Piston + liguid mass and gas spring
Gap nonlinearity produces net force
« Damping depends on piston position
* Piston moves down to shorten gap
K

gas

has very low damping
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Gas regions are hard to analyze
l§ bellows é

v v * Upper/lower split of gas is not known
gravity outer * Motion Is transient and complicated
l o auid | M| S0 replace gas regions with bellows
piston inner I « Compressibility is well characterized

|@| jap * Choose to be similar to gas regions
spring Well suited for theory & simulation

* Liquid: incompressible Navier-Stokes
equations with moving boundaries

 Solids: Newton’s 2" Law (“F = ma”)

i
J

bellows I
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Theory gives 2-DOF nonlinear damped harmonic oscillator
* Quasi-steady Stokes & Newton’s 2"d Law: PDEs — ODEs
* Liquid added mass & damping depend on piston position
Piston motion agrees with Navier-Stokes ALE simulation

upper
bellows

Navier-Stokes Eqns.

Newton's 2™ Law
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Jg g_ Interaction with stop is complicated
7 be"c’f"s 7 - Flat surfaces with liquid in between
] gravity [ . . .
1 : * Squeeze-film damping from liquid
spring| | outer| * Asperities control solid-solid contact

gap . .
4 | damper 4~ I So replace stop with a second spring

——————

inner * Two-spring suspension holds piston

4 |'i:/gap * Spring force is well characterized
A] I Well suited for analysis & experiment
|| +Focus on rectification nonlinearity
e Study stop interaction subsequently
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Piston positions of significance
 Full-aligned: maximum damping
- Half-aligned: zero net force

* Anti-aligned: minimal damping
Quasi-steady equilibrium analysis

Navier-Stokes and Newton’s 2" Law

Du ap 2
—=——+4Vu+ a), V-u=0, u=u_,;
p Dl‘ ax ,LI p(g ) wall
MZ =-BZ-KZ+M(g-a)+F, . u,=u,|ZZ]
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Full ODE (quasi-steady Stokes)

(M+M[Z])Z+(B+B[Z])Z+KZ=F, F=F,sin[o(]

T
Oscillation + drift model
( Zdnft ) (B+B[Zdnft])z 1+I~(Zosci1 ~ Loscil
( V M|Z0 ) drift (B+B[Zdﬂf‘])zdﬁﬂ +1~(Zd“ﬁ:Fdﬁ

B .
F. ., =F sm[a)t] i = <Zoscﬂa—Zoscﬂ> Quasi-steady
OZ equilibrium
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Equilibrium piston position versus amplitude & frequency

 Two stable states: up, down (unstable state between: mid)

 Up & down regions separated by multi-state regions

Position is multi-valued versus frequency at fixed amplitude

* Quasi-steady equilibrium agrees well with full ODE
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Servometer FC-16 Bellows “A”
(like a bigger gas bubble)
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Servometer FC-13 Bellows “B”
(like a smaller gas bubble)
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Apply model to determine regime maps of stable states
and piston position versus frequency for fixed amplitude
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gas above + vibration = gas below

above
G : piston
gas above + gas below = gas spring | : spring
G E> no gas
: below
gas spring + total mass =resonance | : some gas
G B below
: . . — . Vibration off Vibration on
:|fesonance + non“nea”ty = het motion : Spring supports piston Piston compresses spring

Cause of vibration-induced piston motion determined

« Clear physical picture of route to net motion (rectification)
« Good agreement between theory & simulation (bellows)
Much work remains to obtain a complete understanding

* Investigate effects of friction & contact forces (the stop)

« Study how gas divides between upper and lower regions
Next talk will compare results from theory and experiment



