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Outline

= Basic ALE multiphysics approach in
Alegra

= Zimpact and issues

" Two step plan for better low density
modeling

" Theory
= Status on remap software component.
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Continuum shock algorithms (“hydrocode”)

AION panels.

Steel plate.

WELOC MY Magnitucls

Fully-formed shaped = ~ tcces0a
charge jet imported
from 2D axisymmetric
Alegra simulation.

;

8

Alegra is an MPI distributed
memory parallel code.
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The code is fundamentally an
“indirect” Arbitrary
Lagrangian-Eulerian (ALE)
technology.

Multiphysics is included as a
first order operator split in the
indirect ALE approach.




We want to give users effective control over
Electromagnetic Continuum Mechanics

p+pV-v=0 Mass
Pg =V T + pb Momentum
pé =V-T'v + pv-b+ ph —div(q+ & x H) Energy

VXxH = J+f),

Vb= Maxwell
VxE& = —-B, Equations
vV-B = 0,
D = E{)E—l—P} E=E+vxB
/’uD J=J—qv

closure relationships for g, T.¢.q,s, M, P and 7
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Alegra Indirect ALE Splitting Today

« Lagrangian Frame
 Mesh moves with material
* No discretization for advection necessary
« Useful for solid mechanics constitutive models
* Mesh deteriorates over time
« Careful attention to Lagrangian integral invariants

« Remesh/Remap
« Create a new mesh, nicer mesh (or choose your new mesh as your
last mesh)
» Local remap can be thought of as an advection operator which
places new data on old mesh

« Static Frame (everything else assuming u=0)
« Magnetic Diffusion
« Circuit Coupling
* Joule Heating
* Heat Conduction




Alegra (FE) - Quasi-static electric field e
approximation to Maxwell Equations

0
berV-V:a—iJrV-(pV):O

pv =V -T +1

pe =ps+T :L—-V-q

V . D — 0 V X E — 0 = E — _v(;b Movie shows an example simulation of a

shock actuated power supply.

V.- D=0=V:(eVp)=V-p D=¢E+P=cE+p
T = T((Sw Ef)) p:l‘:rt::zgn permittivity

D = p(S)+eSE

remnant, permanent or spontaneous
polarization 2




Resistive Magnetohydrodynamic (MHD) Equations ()&

(Neglect displacement current =quasi-static magnetic field approximation)

p+pV-v=0 A
t
pv =1V - (( | TM)) + £ .
- - ﬂ[ - left state right state
pe=ps+T:L—-V-q+-J-J >
a X
+ 0B 1
B= — + Vx(Bxv) +v(V-B) = —-Vx—(VxB) Ideal MHD wave
ot Hoo speeds

B V-B=0
Vx—=1] L1 .

1o ™= (RBT - Q-B%j)

Closure relations for the stress, T = —p(p, e)I, electrical conductivity, J = o(p, 0) E, and
heat flux, g = —k(p,08)V0 , are required to solve the equations.
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Faraday’s Law (Natural operator splitting) oS

A straightforward B-field update is possible using Faraday’s law.

0B
VXxE+—=0 E=E+vxB S(t) B

ot
Integrate over time-dependent surface S’@) apply

Stokes theorem, and discretize in time: K
& S(t+At)

i/ B.da 1 £.dx— 0
dt Js() aS(t)

1 i ~ n+1 n+1  Zero forideal MHD b
s O I 5 et N e ) . y
A / (CBV B )) da T E dX frozen-in flux theorem:

o St ) 85 (t+At) . *
— B .da= B da=0
1 dt St S
nnil j.nil
+ < [ f B*+l.da — 0
S(t+AtL)

Terms in red are zero for ideal MHD so nothing needs to be done if fluxes are degrees of freedom.
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Laboratories
Solve magnetic diffusion using edge/face elements
which preserve discrete divergence free property
OB

VxH=J —+VxE=0 Exact relationship
weakly enforced ot

VelJ=0 VeB=0

B=uH J=0cE

o Exn=E, xn on I'|(Dirichlet),
boundary conditions :
Hxn=H, xn on I',(Neumann) Edge element

curlE™* ocurlE % _[ urlE

IGE””OdeﬂtJ VIH xn e EdA

B = magnetic flux density E =electric field H = magnetic field
L = permeability o = conductivity J = current density
Lt and o positive and finite everywhere in W 10




Z Science with Alegra

1. Using DFT models to produce
material properties for Alegra in
conjunction with appropriate circuit
coupled magnetohydrodynamic
(MHD) models, predictive design of Z
dynamic materials experiments was
enabled.

2. This was a clear demonstration that
multiscale physics modeling could be
extremely effective.

3. In the warm dense matter regime
Alegra is a powerful tool for simulatir
MHD physics

Dense solid
(5glcc)

Log,, o [in (@m)™"]

-0.5 -=-0.25 0 0.25 0.5 0.75 1
Log,, p [in g/cm’]




However, Low Density Regions Matter

Time:3.162e-06

Pseudocolor
Var DEMSITY
1.137e+05
6.0

« Current density and forces in low density
regions have significant effects on the
physics.

— 6193,

| e

— 1836

ll[ID

Max: 1,137e+05
Min: 001000

5.0

* To make Alegra work in low density regions

we presently require many “knobs”

* i.e. density floors, Lorentz force floors, etc which
have to be chosen by an analysis to produce
reasonable results

* How do we know the results are reasonable if
expert judgement is necessary to assign values?

 The standard MHD model has issues...

1.0 2.0 3.0 4.0
X-Axis (x10°-3)

« We have MHD and EM propagation
behavior. We need a better set of equation
options.

“Eddy” experiment on stagnation:
the current flow in low density
regions affects the dynamics

Source: Peterson & Mattson 12
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We desire to move forward toward a more complete coverage of physics modeling
space while allowing users to access simpler variants when useful.

SHOCK DYNAMICS

MHD FE
FMHD->GOL

CIRCUIT
MAGNETIC ELECTRIC

Development Strategy
1. FMHD = Full Maxwell Hydrodynamics
2. GOL = FMHD + current density equation derived from a 2-fluid model 13




FMHD and Generalized Ohm’s Law Equations

(Jp : :
o +%p=0 Conservation of Mass
d _ .
E(pu) + Zu(pu) =divT+ ¢+ J x B Conservation of Momentum
B=—curl& Ohm’s Law Faraday’s Law
D+ J =curlH /\ Ampére’s Law
oJ 1 . nee’ (% 1 . ) : :
B + L + ZLyu— - LT = divT; + ” E— - pJ x B—nJ | Generalized Ohm’s Law
d - . 5 e € T -
51 +divJ =0 Conservation of Charge
divD = ¢ Hall Correction Gauss’ Law
divB =0 Involution Condition
* Features:

* Full Maxwell equation modeling (EM waves)

« GOL includes additional equation for current density with stiff right hand
side.

* Need closures for permittivity, conductivity, electron pressure, and

electron number density.
14




Issues with MHD =

= |deal MHD step requires a
positive density

|B|?
wu+ |a?+ —
Hp F A S E S A F

>

= Magnetic diffusion step
requires a positive conductivity
even in “void”

= \We care about resolving
physics in low density regions. oft state

= We have an explicit Lagrangian >
step which depends on fast X

magnetosonic speeds!

. « fast” opti To push beyond the warm dense
Ale.gra has ‘maxiast” op 'O,n region we will require more physics!
which allows for user fudging to Maxwell-Ampere and Generalized
get problems to complete. Ohm’s Law

15
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Alegra’s Time integration

1. Predictor Corrector for Hydrodynamics/Ideal MHD
2. Split out diffusion solves and joule heating

[deal MHD
Hydro [ n /2 n41 _ n A4 (V‘ nH1/2 _ 1 curl BMHY2 x B"+1/2)
(/2 ntl _ n A gt/ @) Mi+1) = VP F (i) (1)
Py Wivr) = VP(;) ntl _ym o Apytl2
n+1 n n+1/2 ‘ X[H-l) il (|+£) /9 12
: X(iy1) = X +Atug ) P AR _\tp;'::’l) (c “i‘l")")Q div u?:_llf)‘
n+l1 __ - +1/2, n+1/2 n+1/2 n+l __ n+1/2 ;.  n+1/2
Pliy1) = P" Atp( i+1) (o Y(i+1) )* div VUi | Pty = P" — Atpgyy) divug)
} +1/2 n+1/2 +1 n+1/2 n+1/2 n+1/: n+l,f'2
p"(":l) p —Atp( +’ div u, +1/ | Biiiy) = B" — At (B(H-l Vg ) — B div Yi+1) )

Magnetic Diffusion
ucE™ + At curl curl E"* = curl B®
B"t!' = B" — At curl E**!
entl =& 4 Ato|EMH?

« We discretize mass, magnetic flux, and energy using Reynold’s Transport
« This is the equivalent Eulerian system

16
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1D, Linear, Time Discrete stability analysis

Stability Analysis

1. Linearize the system

2. Reduce to 1 dimension

3. Fourier Transforms in space

Hyvdro Ideal MHD
[ 1 . At: 1 - +1 '
u?’l:ll} = u® - -«“1]\(]);1;'”1 +p") ru.F:_l-) = u® — —?_Z%ll((p?ﬁ +p")+p IB(](B("'.T + B™))
1 1 ontl _ on, Ate nitl
{ 2l =" + At(“?zin +u”) Ty =T + _( n:+1) +u")
1 ‘ 1 n+l At n+1
p?:_” =p" — ILPﬂ ( n+ +1) +* un) p{r+1] p" ILPO (u( i+1) +u )
+1 _ +1
B(n:+1} 2 StikBy (u"H_l)—!—u )

4. Rewrite as matrix equations
E) = Mgl Ao £ = ALT, A= Ag+ Ai(Ag + Ag)
5. Spectral radius of A less than 1 implies stability

6. Largest wave number supported lowest order FEM is

1
2h

17

This reproduces and extends the analysis found in SAND2009-1127 by Love, Scovazzi, and Rider



Stability of Predictor Corrector

Time discrete analysis requires eigenvalues of an amplification matrix less than 1

T B e

i i
1 __F.--.‘.‘. jl 1 —-r--.‘-" ﬁl
h\ /i \\ /i
— 8 , 1 — . , 1
= \‘ : s \‘ :
v 7 U
1 1
0.5 ‘. 4’ ! 0.5 \. 4’ I
LN A
1 if : 1 it :
T b
i I i I
1 1
P P
i . . o . R I

0 0.5 1 L5 2 2.5 0 0.5 1 15 2 2.5
A 2, B

Note similar stability bounds involving the speed of sound and fast
magnetosonic speed for predictor corrector.

18
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Magnetic Diffusion

/UE”+1 - ® + Atp teurlE"L . curl @ dV = /p_lB" curl® 4V

B"tl — B — Atcurl E*!

Compatible discretization, E on edges and B on faces
Implicit Euler and solve for E
Update B using the strong compatible curl

W=

4. Most of this problem really boils down to preconditioning the matrix

system
o

Ath +pt curl{ M £ curly,

5. When ﬁ « 1 large null space makes the system very |ll
conditioned but this large null space is necessary!

19
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Full Maxwell Hydrodynamics

(

gp-k div(pu) =0
guﬁ-dn(u Qu+lIp)=cE xB
< d_U + div((U+ p)u) =cE-E

» Single Fluid Representation
Classical Ohm’s Law
« Do not neglect electric
displacement
—E+4—E— cZcurl B =0 * Neglect Coulomb force for the
0

ot €
p moment (neutral plasma)
—B +curlE=0
\ Ot
ry u p [p] 0 0 0 0 0 [p]
a | P uo % u 0 0 0 %B %E u
2 | P +d— pa”  u pl—1]10 0 0 o(v—1)(2E—-B) —-o(y—-1FE ¥l =0
By 2| |E 000 —0 0 E
| B] 1 B 000 0 0 B
Characteristic Speeds (+e,u,u+ a)

Dispersion Relation (w— ku)(w — k(u + @) (w — k(u + a))(w? + iZw— c2k?) =0

System has energy decay for every linear perturbation.
No Fast Alvén Speed
Result generalizes to 3D. 20




Predictor Corrector for FMHD

PN

[ n+1/2__n+1 n+1/2 n+1/2 n+1/2
ol Putithy = un — A (Vi - 2D < Bi?)

+1 _ on n+1/2
x?iﬂ) =x"+ Atu(iﬂ)

- A -')

Py = " — Atpp ) divug 2

+1 _ n n+1/2, n+1/2y9 .. _ n+1/2 ‘
Pliv1) = P" — Atpiiyy (i) ) divug ) + (v —
(1+ 22)E7H)) — At curl BiE), = 1D"

+1 +1 _ nn
B?u‘+1) + At curl E?i+l) =B

+1/2
1)§IDjs) 1

+1 +1
[ Disny = By

L.5

~

\ 1
e

)
[ |
]
[]
.

|Al
-,

P o e oo e e omm o omm o o o o o o o

BE.

Operator splitting a la
Alegra MHD leads to an
unstable system.

An implicit field solve in the
Lagrangian step recovers
hydro stability limit!

Requires two fields solves
on the Lagrangian Mesh!

Electric Displacement flux
is the Galilean Invariant.
Simplest approach requires
discrete Hodge Star.

s Seems very similar to ALE-IMEX

2D von Neumann analysis seems prudent 21




Field Solves and Time Step Control

1.  We know how to precondition the Eddy Current Schur Complement
system
s —1 . 1
(M?Aw - curl,i_ M‘} (:.urlh_)lil"’+l —& D™ 4 Curl£ M’} B"

h2 oph? T \vEen+l _ hZ nyn T nn
((Cgmg + =5 ) I+ curly curly) E" = Z5D" + curly B

2. This system can be poorly conditioned. Use time step control to control
ratio of material parameters. Experience with MHD K ~ 106 to 1079

suffices 3 2
" Omaxpihs o i B
Artn'acxi + mfnit . - E(hgllmx — K h'.rznin)
e it o = o 2
A‘;‘%l:Q + mn:ﬁt min A\ N in@min — MpaxTmax

3. We can guess the EM dof from the predictor step for the correction
step. Will this reduce # iterations for the second step? Set up for ML
will probably make this improvement marginal.

22
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Remap Operators

1. Nodal Advection for velocities
2. Mesh intersection for cell centered quantities
3. Constrained Transport for Maxwell fields

Constrained transport (CT)

1. Discrete Lie Derivative on 2-forms

2. Exterior derivative commutes with Lie Derivative so it
preserves the involution condition on B

3. Essentially a finite volume technique on faces




Remap Algorithms Extensions — Reynolds transport (i) i,
notation.

* O-Form i of
af = E-l‘?J'Vf

d DA
ad 1A-da:=/1 X (VXA +V(v-A)-de ,
° 1_Form dt M, My | ot Pl’eVIOUS|y
implemented
d ¢ OB
* 2-Form — [ Beda=[ |77 +v(V-B)-Vx{vx E’Tr for cu.rl free
dt Jn; Mp | 9t and div free

fields

d dp
* 3-Form it s av = erg [5 +V- (’Up)] av

Need to add this
contribution in for
arbitrary fields

For FMHD we only need an extended 2-Form remap.

24




Visual Representation of 2-Form remap

D
{)@t HYV x (D x v)|-Hv(V -D)

Electric displacement flux is the oriented sum of swept edge contributions
which do not change the charge plus swept volume contributions which do.
This is simply the divergence theorem (generalized Stoke’s theorem). 75



General 2-Form Implementation

* We have extended the divergence free remap code to accommodate the
volumetric contribution.

* This volumetric contribution must NOT be a spatially split remap operator
since we are doing constrained transport which is fundamental unsplit.

* This operation is not exactly the same as a volume based remap since it is the
swept volume contribution rather than final intersected cell volumes that are
desired.

 We are using a toolkit in a third party library (r3d) to compute the signed
swept volume.

26




Initial General Face Element Remap Results

* Alow order volume remap contribution is in testing and refinement phase.

* Aninitial test problem has the electric displacement field pointed in the direction
of the periodic domain.

* The volume contribution is associated with the through-face flux rather than the
flux passing through the swept-edge faces in the standard div free CT algorithm.

* High order volume remap contribution algorithms are possible.

X component of electric displacement in periodic x domain




ALE Splitting for GOL

GOL is not generally formulated in Galilean invariants. Starting from GOL not
assuming quasi-neutrality we have derived a frame invariant formulation.

J=J—qu g=—divJ
Galilean Current Density Conservation of Charge

J=—div(J®u- I ®J) — £(Vpe — T x B) + ey —wiJ
[\ J )
o ' '

Material Derivative Stress Tensor “Lorentz Force” + “friction”

GOL - Current Density is a Compressible Fluid! J=J4 € [%]°

Lagrangian Frame: Incorporate J, into midpoint time integrator

Remap: Nodal Remap of J. Constrained transport of D implies cell centered

remap of q.

Charge Density:

Discrete weak Galilean Invariant Ampere-Maxwell implies weak Galilean

invariant Continuity Equation (on nodes)

Do Edge -> Face projection operators (i.e. Discrete Hodge Star) create/destroy

charge? Do we need to enforce charge conservation as an additional

equation? 28
I ——————



Summary

We believe that there is a clear path forward to implementation of a
Full Maxwell hydrodynamic option in Alegra.

This option has promise to significantly improve the required explicit
time step control at the cost of another diffusion solve but should
allow for major elimination of knobs.

Two Solves v. Fast Alven speed: Will it be possible to achieve better
physics AND improvement in overall performance AND robustness?

The approach extends naturally and conveniently to an extended
Ohm’s law model in the same ALE modeling framework which will
allow a new extended MHD option for impact on Z modeling efforts.

We are pushing forward to obtain a full integrated capability for
continuum electrodynamic models of various types and getting
them to work well together with full user control over options.

29




