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Introduction

Motivation

Computational Model

Navier-Stokes Equation Wetting Line Model

_ _ V.u=0 . o (cos(6y)t,, + sin(6;)m,,) - w;dl
Moving Contact Line (MCL) problems are o ) /C [y w) war Capillary Number, Ca = 1 x 10~°
important to model the migration of px) (a““‘v) “) ==V V- (ux) (Vut V') gt B ’ . . . .
wetting/non-wetting fluids through reservoir i HEEAT L s = 2trongly Wefting (65 = 9°)
g g nu ug Level Set Equation v

rocks. 9 e —0

ot

Interface Boundary Conditions

Scientific Objective:

Understand and control emergent behavior
arising from coupled physics in
heterogeneous geomaterials associated with
injection for CCS, especially at intermediate
length scales (cm to m) where geologic
variability plays a decisive role. Processes
and strategies are based on mesoscale
science from which non-equilibrium and
emergent behaviors arise over a large range
of time and length scales.
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Phase 1

Finite Element Method (FEM) is used to model the interface dynamics

« Conformal decomposition FEM (CDFEM) uses the level-set method to model two-
phase interface

- CDFEM allows for a sharp-interface between the immiscible phases, providing exact
location of the contact line

« Contact line model determined completely by equilibrium properties (must fit a slip

coefficient)

Brine — blue phase CO, - white phase

Wetting Angle 8 = 80° (Weakly Wetting)

Capillary Number, Ca =1 x 10~ Capillary Number, Ca =1 x 10>

Verification & Validation

Capillary Injection

Contact Line Modeling

Ca=52e-3 Ca=44e-2 Sancitizer 405 (6, = 67°) Amdex 760 (6, = 69°)

Moving Contact Lines (low) (high) . .
 Two immiscible fluids in contact with a solid surface in Temeae e ] T
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Capillary Rise 3D Interfaces Brine drainage by COZ injection
Hydrodynamic Models Molecular Models R L |  Wetting model captures viscous and capillary fingering
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NP fingering, lowers final saturation (lower sweep efficiency)
* For weakly wetting brine, increasing capillary number promotes

— viscous fingering
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Three length scales near the contact line:

. . , , » Two length scales: macroscopic and molecular m
MEIEEREA, [ISEPEEsflis, CInel MIEEErlE - Contact line motion is determined by the 5000 . . . o n c u I n g e m a r s

Changes in experimentally observed statistical dynamics of the molecules at the AT }Eﬁi
macroscopic dypamlc con.tact anglg is attributed molecular scale — ——AP=2ycos(O)r_ .« | t . MCL d | b d t t | d t CO
to viscous bending of the interface in the Driving force of contact line is proportional to S mproyemgn 1 . mMoaels Can pe used 10 accurately predic 2
rl\r/l‘iecs;gzggg;g ;en%?enis usually assumed as the . gllzlijeist:;ggd and equilibrium contact angles. % il mlgratlon IN reservoir rOCkS
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’ T wegees - Mixed-wettability within a pore-network may impact sweep efficiency
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