

Diagnosing the Stagnation Conditions of MagLIF Implosions Using Co and Kr dopants^{*}

E.C. HARDING, S.B. HANSEN, A. HARVEY-THOMPSON, W.R. WEIS, K.D. HAHN, M.R. GOMEZ, P.F. KNAPP, S.A. SLUTZ, M. GEISSEL, D.J. AMPLEFORD, C.A. JENNINGS, K. PETERSON, G.A. ROCHAU

Sandia National Laboratories, Albuquerque NM

Y. MARON

Weizmann Institute, Rehovot, Israel

I. GOLOVKIN

Prism Computational Sciences, Madison, WI, 53704 USA

Recent experiments on the Z-machine tested several new diagnostic techniques for investigating the stagnation conditions and the origins of the mix present in a Magnetized Liner Inertial Fusion (MagLIF) target. For the first time we have collected K-shell spectra from a low-concentration, Kr dopant placed in the gaseous D₂ fuel. In addition, thin Co coatings were strategically applied to three different internal surfaces of the target in order to assess which surfaces actively contribute to the contamination of the fuel. Both imaging spectroscopy and narrow-band crystal imaging were used to identify the location of He-like Co ions. The T_e and n_e of the Co is inferred by fitting the He-alpha lines and the near-by Li-like satellites. The experimental measurements and the challenges associated with the analysis will be discussed.

*Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.