
Characterizing MPI Matching via Trace-based Simulation
Kurt B. Ferreira, Scott Levy, Kevin Pedretti and Ryan Grant∗

Center for Computing Research
Sandia National Laboratories

[kbferre,slevy,ktpedre,regrant]@sandia.gov

ABSTRACT
With the increased scale expected on future leadership-class sys-
tems, detailed information about the resource usage and perfor-
mance of MPI message matching provides important insights into
how to maintain application performance on next-generation sys-
tems. However, obtaining MPI message matching performance data
is often not possible without significant effort. A common approach
is to instrument an MPI implementation to collect relevant statis-
tics. While this approach can provide important data, collecting
matching data at runtime perturbs the application’s execution, in-
cluding its matching performance. In this paper, we introduce a
trace-based simulation approach to obtain detailed MPI message
matching performance data for MPI applications without perturb-
ing their execution. Using a number of key parallel workloads, we
demonstrate that this simulator approach can rapidly and accu-
rately characterize matching matching behavior. Specifically, we
use our simulator to collect several important statistics about the
operation of the MPI posted and unexpected queues. For example,
we present data about search lengths and the duration that mes-
sages spend in the queues waiting to be matched. Data gathered
using this simulation-based approach have significant potential
to aid hardware designers in determining resource allocation for
MPI matching functions and provide application and middleware
developers with insight into the scalability issues associated with
MPI message matching.
ACM Reference format:
Kurt B. Ferreira, Scott Levy, Kevin Pedretti and Ryan Grant. 2017. Char-
acterizing MPI Matching via Trace-based Simulation. In Proceedings of
EuroMPI/USA, Chicago, Illinois USA, September 2017 (EuroMPI’17), 10 pages.
DOI: 10.475/123_4

1 INTRODUCTION
With the increased scale expected on future leadership-class sys-
tems, understanding the resource usage and performance of MPI
message matching is critical to to the development of MPI im-
plementations. A detailed understanding of current match queue
performance informs the design of algorithms and data structures

∗Sandia National Laboratories is a multi mission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EuroMPI’17, Chicago, Illinois USA
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123_4

that will be used to implement matching internally on future sys-
tems (e.g., whether to implement match queues as a linear queue
or a hash table [11]). MPI hardware designers require match queue
data to determine how to allocate hardware resources to the mes-
sage matching task in order to balance performance benefit and
cost. Finally, application developers may use this data to identify
scalability bottlenecks due to MPI message matching overhead.

MPI [12] message matching is performed on a tuple containing:
(1.) communicator , a communication context; (2.) message source
ID, the MPI rank ID of the sending process within the communi-
cator’s context; and (3.) message tag, a message ID created by the
application. When the application performs a receive operation,
the source and/or the tag of the request can be wildcarded. A wild-
card source (MPI_ANY_SOURCE()) indicates that the receive operation
will match to incoming messages from any source ID. Similarly, a
receive operation with a wildcard tag value (MPI_ANY_TAG()) will
match to any tag value in the incoming message. When a message
is received, the MPI library searches the posted receive queue (PQ),
a list of receives the application has posted (through for example,
MPI_Irecv()) that is yet to be received. If no matching receive oper-
ation is found, this message is appended to the unexpected message
queue (UQ). When a receive operation is posted by the applica-
tion, the MPI library must first search the UQ to see if a matching
message was already received. If no entry is found on the UQ, the
receive descriptor is appended to the PQ, awaiting a future match.
MPI matching semantics guarantees that messages sent between
process-pairs are matched in program order.

While matching information is useful, it is often difficult to ob-
tain. MPI matching behavior is typically not tracked or exposed
by current MPI implementations. To obtain this information, de-
velopers typically must instrument the MPI implementation and
export the statistics of interest. While the required instrumentation
is straightforward, it is time consuming and adds overhead which
can potentially impact application execution, possibly affecting the
quality of the information obtained.

In this work, we introduce a trace-based simulation approach
to obtain MPI matching information without the pitfalls of this
implementation-based approach. This validated simulation toolkit
utilizes application traces to characterize the MPI matching behav-
ior. This approach has a number of advantages. First, it is possible
to gather more detailed information in the simulator since there
is no impact on application performance (i.e., the matching instru-
mentation is performed outside of simulated time). Second, results
can typically be gathered more rapidly and at larger scales than
with the empirical approach. There is no need to instrument an
MPI implementation and gathering a trace for this simulator is a
well-known process. Many of these traces are already freely avail-
able to the community as a whole. Finally, the simulator provides
the capability to change coarse-grained system behavior, such as

SAND2017-7378C

EuroMPI’17, September 2017, Chicago, Illinois USA K.B. Ferreira et al.

slow network links, slow compute nodes, and different hardware
configurations than of that was used when the trace was collected.
These scenarios have the potential to impact MPI matching behav-
ior and are critical to predicting performance as they typically occur
frequently on large-scale HPC systems.

The specific contributions of this paper are:
• We introduce a lightweight and efficient trace-based simu-

lation approach to obtain MPI match queue information
(§2).

• Using this validated simulator, we characterize the match
length performance for the posted and unexpected queues
for a number of key high-performance computing work-
loads. This characterization includes the cummulative dis-
tribution function, the mean values, and the maximimum
search traversals and queue sizes (§§3.1–3.4)

• We characterize the time-in-queue for each of these queues
(§3.5).

• Finally, we analyze the match queue scaling performance
for each of these workloads (§§3.3,3.6).

2 APPROACH
This section describes the experimental framework we used to
measure match queue characteristics. We also describe the set of
applications used for this study.

2.1 Simulating Application Performance
We use trace-based simulation to study how MPI match queues are
affected by application behavior. As stated previously, the principal
benefit of using simulation in this context is it allows us to care-
fully characterize match queue performance without perturbing
the performance of the application under study. An alternative
approach to characterizing match queue performance is to instru-
ment the MPI library implementation. However, modifying the
match engine to capture statistical information has the potential to
perturb the observed results (e.g., delays introduced by collecting
performance data may change how match queue depths change
over time). Simulation allows us to delay the simulation and record
detailed information about how MPI messages are matched with-
out affecting the timing of any operations that occurs within the
simulation. In addition, our simulation approach can accurately
predict application and match queue lengths and times, while using
significantly fewer resources and in less time [23] than running on
a actual large-scale system. For example, we can simulate a 10 hour
LAMMPS SNAP Problem at 1024 nodes in less than 10 minutes.
Our simulation-based approach also allows for greater flexibility in
perturbing application performance and investigating how these
perturbation potentially impact match queue performance.

Our simulation framework is based on LogGOPSim [16]. LogGOP-
Sim is a trace-based simulator of MPI applications. The extensive
validation of LogGOPSim has been documented elsewhere [15, 16,
23]. To simulate the execution of an application, a trace is collected
during the application’s execution. The trace records details about
the sequence of MPI operations for each MPI process, including
when each operation began and when it completed. The simulator
uses the information contained in the trace to reproduce all commu-
nication dependencies, including indirect dependencies between

processes which do not communicate directly. The temporal cost
of communication events are modeled with the the LogGOPS com-
munication model, an extension of the well-known LogP model [6].
LogGOPSim is also capable of extrapolating traces from small ap-
plication runs; a trace collected by running the application with
p processes can be extrapolated to simulate performance of the
application running with k ·p processes. However, none of the data
that is presented in this paper was collected using extrapolation.

To accurately simulate MPI application execution, LogGOPSim
must perform the same set of matching functions (and follow the
same rules of matching semantics) as an actual MPI implementation
(e.g., MPICH, OpenMPI). To examine how match queue character-
istics are affected by application behavior, we instrumented the
LogGOPSim matching engine to record details about the length of
the match queues and about when messages arrive at, and depart
from, the match queues. Because MPI message matching is typically
very fast, LogGOPSim does not currently model the temporal cost
of message matching. Instead, it assumes that the application’s exe-
cution is effectively unaffected by the cost of matching operations.
As a result, we can instrument the LogGOPSim message matching
engine without perturbing the application’s execution in any way.
In the future, a more realistic model of match engine performance
would not likely depend on the performance of the simulator, so
we anticipate that this advantage will persist.

As mentioned previously, our simulation framework allows for
the potential of investigating match queue performance under per-
formance perturbation scenarios. These perturbations can come
from a number of sources: OS noise or jitter [9, 15], resilience
activities [10], and in situ data analytics [22]. To simulate these
perturbations, the simulator has the ability to take away CPU cy-
cles from the application during execution. For these performance
variations, LogGOPSim accepts an execution trace of the perturba-
tion: an ordered list of an execution, expressed as the start time and
duration of each of these interrupts.

2.2 Workload Descriptions
In this paper, we examine the results from eight HPC workloads.
These workloads, described in Table 1, include two important DOE
production applications (LAMMPS and CTH), a proxy application
(LULESH) from the Department of Energy’s Exascale Co-Design
Center for Materials in Extreme Environments (ExMatEx), a proxy
application (MCCK) from the Department of Energy’s Center for
Exascale Simulation of Advanced Reactors (CESAR), a proxy appli-
cation (AMG2013) used for co-design at Lawrence Livermore Na-
tional Laboratories, and twomini-applications (HPCCG andminiFE)
from Sandia’s Mantevo suite. This set of workloads captures a wide
range of computation techniques and application behaviors and
therefore represents a significant cross-section of highly scalable
high-performance applicators which are run on extreme-scale sys-
tems.

2.3 Limitations of this study
While we believe this work makes an important contribution in the
study of matching for scalable applications, there are a number of
limitations that we outline here and must be aware of while draw-
ing conclusions. First, while the application included in this study

Characterizing MPI Matching via Trace-based Simulation EuroMPI’17, September 2017, Chicago, Illinois USA

Application Description

LAMMPS
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). A classical molecular dynamics simulator from
Sandia National Laboratories [19, 25]. The data presented in this paper are from experiments that use the Lennard-Jones
(LAMMPS-lj) potential that is included with the LAMMPS distribution, and the SNAP (LAMMPS-snap) potential.

CTH
A multi-material, large deformation, strong shock wave, solid mechanics code [8, 24] developed at Sandia National
Laboratories. The data presented in this paper are from experiments that use an input that describes the simulation of the
detonation of a conical explosive charge (CTH-st).

LULESH

Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH). A proxy application from the Department
of Energy Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx). LULESH approximates the
hydrodynamics equations discretely by partitioning the spatial problem domain into a collection of volumetric elements
defined by a mesh [20].

MCCK Monte Carlo Communication Kernel (MCCK) [5] is a proxy application that approximates the communication of the
domain decomposed particle algorithm.

miniFE A proxy application that captures the key behaviors of unstructured implicit finite element codes [14].

HPCCG A Mantevo mini-application [21] designed to mimic finite element generation, assembly and solution for an unstructured
grid problem.

AMG2013 A parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids [13].

Table 1: Descriptions of the workloads used for evaluating memory compression.

represent a number of key representative HPC workloads, this list
is by no means exhaustive. For example, in this work we exclude
from the analysis a number of applications with extremely long
match queue entries (c.f. the Fire Dynamics Study (FDS) in [11]).
Also, while the simulator is proven to be highly accurate [15, 16, 23],
the simulator may not accurately reflect all possible scenarios. For
example, the current version of the simulator does not accurately
model network contention. Therefore, in scenarios of high network
contention, the simulator may not accurately predict matching per-
formance. Lastly, in this current study we only consider the match
queue performance of single-threaded applications. Use of multiple
threads per MPI process may increase queue lengths. Analysis of
these multi-threaded workloads is beyond the scope of the current
work and is slated for future work

3 RESULTS
In this section, we analyze the match queue results from our simu-
lation framework. Again, we display statistics from the two MPI
match queues the posted receive queue (PQ) and the unexpected
receive queue (UQ), described previously. These results will focus
on two properties of each match operation, the number of entries
searched in the queue before a match is found and the amount of
time each entry spent in the queue before being matched. To display
the queue behavior we will use the cumulative distribution function
(CDF) of the population considered. For a value x , the CDF (x) is
the probability that a value X will take a value less than or equal
to x . We will also use a quartiles plot to represent the distribution
of data considered. This can be viewed as compact representation
of the cumulative distribution function. The range of the whiskers

of the plot show the minimum and maximum values, the extent
of the box shows the 25% and 75% quartiles, and a line (i this case
red) within the box representing the arithmetic mean. We will also
display maximum queue lengths and other summary properties of
the matching process. This summary statistics are over all processes
within the application. These summary statistics are likely most
useful to the MPI system designers as they specify, for example,
how many bins might needed for an efficient hash-based match
queue implementation [11], while the CDFs are likely most useful
to application designers as they specify the efficiency of the match
queues in terms of search depths and queue time durations.

3.1 Search length CDFs
Figure 1 shows the CDF for the PQ over all processes in the mea-
sured application (128 nodes for all expect LULESH which is 125
processes). The first thing we notice from this figure is that match
search lengths can vary dramatically across applications, from less
than 5 entries for applications like LAMMPS to well over 400 en-
tries for AMG. Also we see from this figure that for many of the
applications the majority of searches only traverse a small portion
of the queue. In most cases, half of the searches match in less than
5 entries. This demonstrates that many applications pre-post their
receives in an effort to increase performance.

Figure 2 shows the search length CDF for the UQ. Similar to
the PQ data, UQ search length sizes can vary dramatically from
application to application. When compared to the PQ data, we also
see that for those application with longer posted receive queues
match lengths, the unexpected receive queue match lengths are
also typically longer. The lengths of the UQ in comparison to the

EuroMPI’17, September 2017, Chicago, Illinois USA K.B. Ferreira et al.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv

e
Pr
ob

ab
ilit

(P
(x
≤
X)
)

CDF(x)

(a) LAMMPS LJ

1 2 3 4 5 6
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv

e
Pr
ob

ab
ilit

(P
(x
≤
X)
)

CDF(x)

(b) LAMMPS SNAP

0 5 10 15 20 25
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv
e
Pr
ob
ab
ilit
y
(P
(x

X)
)

CDF(x)

(c) LULESH

1.0 1.2 1.4 1.6 1.8 2.0
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(d) HPCCG

0 100 200 300 400
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv
e
Pr
ob
ab
ilit
y
(P
(x

X)
)

CDF(x)

(e) AMG

1 2 3 4 5 6 7
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
ti

e
Pr
ob

ab
ilit

y
(P
(x
≤
X)
)

CDF(x)

(f) CTH-ST

0 20 40 60 80 100 120
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(g) MCCK

0 5 10 15 20 25
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv
e
Pr
ob
ab
ilit
y
(P
(x

X)
)

CDF(x)

(h) miniFE

Figure 1: Cumulative distribution functions for the search length of the posted receive queue (PQ) over all 128 (125 for lulesh)
processes

PQ, however, are not consistent across applications. For some appli-
cations (i.e. LAMMPS, miniFE, LULESH, etc) the UQ search length
is less that or equal to PQ search length, but for other applications
the UQ length can be significantly larger. For example, for AMG
the UQ search length is over a factor 2 longer in some cases. These
longer UQs can lead to significant slowdowns in the application
due to additional memory consumption or increased latency due to
the rendezvous protocol typically used to handle long unexpected
messages.

3.2 Per-node mean search lengths CDFs
In this section we examine the mean search lengths for each node
of the application. For each node the mean match search length
across the entire run of the application is calculated. The CDF of
those means is displayed. This metric gives us an idea of the average
search length for each of the queues. It also will point out if some
nodes have significantly longer match lengths that other nodes.

Figures 3 and 4 show the CDF for the PQ and UQ, respectively.
From these figures we see that for the majority of the applications,
the average match traversal is close to 1, the exception being AMG
which has very large traversals in comparison and a significant
degree of variation in those traversals across processes.

3.3 Search length scaling
Next, we look at how the traversals changewith increase application
scale. In these figures we display the quartiles of the distribution.
The red line in the figure represents the arithmetic mean of the
values. Figures 5 and 6 displays this data for the PQ and UQ, respec-
tively. From the figures we see that for nearly all of the applications
the search traversals do increase with scale for both the PQ and
UQ. This has significant implications as system sizes continue to

increase. While typically not a bottleneck currently, this demon-
strates that matching time may limit application scalability going
forward and application designers may want to take steps to ensure
queues are kept small.

3.4 Match queue statistics
Lastly, we look at some summary statistics of the PQ and UQ
traversals. In Table 2, we show the maximum total size of each
of the queues through the run of the application (max | |PQ | | and
max | |UQ | |), the longest match in each queue (max |match(PQ) |,
max |match(UQ) |), and the total number of entries matched for each
queue (PQentr ies matched andUQentr ies matched).

From this table, we see that for all of the applications the vast
majority of messages match on the PQ, which typically leads to bet-
ter performance. Again, we also see from this table that application
can vary dramatically in terms of the maximum traversal in the Q
and the maximum sizes. Finally, we see that for both the PQ and
UQ the maximum queue traversal does not go the end of the list.

3.5 Time in queue CDFs
In the remainder of this section we will focus our attention on the
amount of time an entry spends in each of the queues, from the
time it is added to a successful match. Figures 7 and 8 show the
CDFs for each of the queues. Minimizing time spent in a queue can
also help minimize the length of a queue. From this figure we note
that for the majority of the applications, the amount of time in a
queue is low and long periods of times in the queue are outliers,
with the exceptions being LAMMPS and LULESH. For LULESH, the
PQ times are bi-model with half of the entries remaining in the
queue for around 5 microseconds and the other half for about 15
microseconds. Overall, the lifetime of each entry in the queue has
a short lifetime, even for queues that can be quite long (e.g. AMG).

Characterizing MPI Matching via Trace-based Simulation EuroMPI’17, September 2017, Chicago, Illinois USA

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv

e
Pr
ob

ab
ilit

(P
(x
≤
X)
)

CDF(x)

(a) LAMMPS LJ

1 2 3 4 5 6
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv

e
Pr
ob

ab
ilit

(P
(x
≤
X)
)

CDF(x)

(b) LAMMPS SNAP

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv

e
Pr
ob

ab
ilit

(P
(x
≤
X)
)

CDF(x)

(c) LULESH

1 2 3 4 5 6
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv

e
Pr
ob

ab
ilit

(P
(x
≤
X)
)

CDF(x)

(d) HPCCG

0 200 400 600 800 1000
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(e) AMG

2 4 6 8 10 12
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(f) CTH-ST

2 4 6 8 10
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(g) MCCK

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv

e
Pr
ob

ab
ilit

(P
(x
≤
X)
)

CDF(x)

(h) miniFE

Figure 2: Cumulative distribution functions for the search length of the unexpected receive queue (UQ) over all 128 processes

1.0000 1.0005 1.0010 1.0015 1.0020 1.0025 1.0030 1.0035
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv

e
Pr
ob

ab
ilit

(P
(x
≤
X)
)

CDF(x)

(a) LAMMPS LJ

1.000 1.002 1.004 1.006 1.008 1.010 1.012 1.014
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(b) LAMMPS SNAP

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv

e
Pr
ob

ab
ilit

(P
(x
≤
X)
)

CDF(x)

(c) LULESH

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(d) HPCCG

15 20 25 30 35 40
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv

e
Pr
ob

ab
ilit

(P
(x
≤
X)
)

CDF(x)

(e) AMG

1.075 1.100 1.125 1.150 1.175 1.200 1.225 1.250
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv

e
Pr
ob

ab
ilit

(P
(x
≤
X)
)

CDF(x)

(f) CTH-ST

8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv
e
Pr
ob
ab
ilit
y
(P
(x

X)
)

CDF(x)

(g) MCCK

2 3 4 5 6 7 8 9
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

C
m
m
lia
tiv
e
Pr
ob
ab
ilit
y
(P
(x
≤
X)
)

CDF(x)

(h) miniFE

Figure 3: Cumulative distribution function for the per-node mean search length for the posted receive queue (PQ).

3.6 Queue time scaling
Finally, we look at how the amount of time an entry spends in queue
varies as we increase process count for the application. Again, we
display quartile plots for each of the tested applications, with the
whiskers displaying the minimum and maximum values, the box
edges denoting the 25% and 75% quartiles, and the red line denoting
the arithmetic mean.

Figures 9 and 10 displays the quartiles data for each of our appli-
cations over a number of process counts. From this figure we see
that, unlike the search length scaling numbers in Section 3.3, the

time spent in the queue decreases as we increase scale for most of
the applications. The exception to this decreasing trend being the
LAMMPS-snap and AMG workloads, whose intervals of time spent
on queue increase with scale.

4 RELATEDWORK
A number of published studies have examined MPI matching per-
formance in HPC systems. Unexpected and posted receive queue
lengths have been studied previously [3, 4, 17, 26]. These works
demonstrate that unexpected message queue lengths can grow with

EuroMPI’17, September 2017, Chicago, Illinois USA K.B. Ferreira et al.

1.00 1.05 1.10 1.15 1.20 1.25
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv
e
Pr
ob
ab
ilit
y
(P
(x

X)
)

CDF(x)

(a) LAMMPS LJ

1.000 1.002 1.004 1.006 1.008 1.010 1.012 1.014
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(b) LAMMPS SNAP

1.0 1.2 1.4 1.6 1.8
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(c) LULESH

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
ti

e
Pr
ob

ab
ilit

y
(P
(x
≤
X)
)

CDF(x)

(d) HPCCG

10 20 30 40 50 60
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv

e
Pr
ob

ab
ilit

(P
(x
≤
X)
)

CDF(x)

(e) AMG

1.025 1.050 1.075 1.100 1.125 1.150 1.175 1.200
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv

e
Pr
ob

ab
ilit

(P
(x
≤
X)
)

CDF(x)

(f) CTH-ST

1.0 1.2 1.4 1.6 1.8 2.0 2.2
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(g) MCCK

1.0 1.2 1.4 1.6 1.8
Entries searched per match

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(h) miniFE

Figure 4: Cumulative distribution function of the per-node mean search length for the unexpected receive queue (UQ)

32 processes 64 processes 128 processes 256 processes

100

101

102

En
tri

es
 in

 p
os

te
d

qu
eu

e
(P

Q)
 se

ar
ch

ed
 p

er
 m

at
ch

(a) AMG

32 processes 64 processes 128 processes 256 processes

100

2 × 100

3 × 100

4 × 100

6 × 100

En
tri

es
 in

 p
os

te
d

qu
eu

e
(P

Q)
 se

ar
ch

ed
 p

er
 m

at
ch

(b) CTH-st

32 processes 64 processes 128 processes 256 processes

100

2 × 100

En
tri

es
 in

 p
os

te
d

qu
eu

e
(P

Q)
 se

ar
ch

ed
 p

er
 m

at
ch

(c) HPCCG

32 processes 64 processes 128 processes 256 processes

100

2 × 100

3 × 100

4 × 100

En
tri

es
 in

 p
os

te
d

qu
eu

e
(P

Q)
 se

ar
ch

ed
 p

er
 m

at
ch

(d) LAMMPS-lj

32 processes 64 processes 128 processes 256 processes

100

2 × 100

3 × 100

4 × 100

6 × 100

En
tri

es
 in

 p
os

te
d

qu
eu

e
(P

Q)
 se

ar
ch

ed
 p

er
 m

at
ch

(e) LAMMPS-snap

27 processes 64 processes 125 processes 216 processes

100

101

En
tri

es
 in

 p
os

te
d

qu
eu

e
(P

Q)
 se

ar
ch

ed
 p

er
 m

at
ch

(f) LULESH

Figure 5: Quartiles of search length of the posted queue (PQ) for each process count. The red line represents the arithmetic
mean

process counts, in one case reaching over 200 entries at 140 pro-
cesses, and that there can be dramatic variation in queue lengths
across nodes, often showing increased queue lengths on an applica-
tion’s rank 0. In addition, these works demonstrate that the posted
queue lengths are typically smaller than the unexpected queue for
real applications, demonstrating the necessity of analyzing real
applications rather than small benchmarks.

Dang et al. [7], examined a number of DOE exascale proxy ap-
plications and showed similar matching results. This work demon-
strates how MPI tag matching can potentially impact scalability.
This work proposes to address this scalability problem bymodifying
MPI semantics and not allowing wildcards or alternatively having
the sender specify when a message will be used in a wildcard match.
Similarly, Klenk et al. [18] propose relaxing MPI semantics to allow
for efficient message matching on SIMT processors (GPUs).

Characterizing MPI Matching via Trace-based Simulation EuroMPI’17, September 2017, Chicago, Illinois USA

32 processes 64 processes 128 processes 256 processes

100

101

102

103

En
tri

es
 in

 u
ne

xp
ec

te
d

qu
eu

e
(U

Q)
 se

ar
ch

ed
 p

er
 m

at
ch

(a) AMG

32 processes 64 processes 128 processes 256 processes

100

101

En
tri

es
 in

 u
ne

xp
ec

te
d

qu
eu

e
(U

Q)
 se

ar
ch

ed
 p

er
 m

at
ch

(b) CTH-st

32 processes 64 processes 128 processes 256 processes

100

2 × 100

3 × 100

4 × 100

6 × 100

En
tri

es
 in

 u
ne

xp
ec

te
d

qu
eu

e
(U

Q)
 se

ar
ch

ed
 p

er
 m

at
ch

(c) HPCCG

32 processes 64 processes 128 processes 256 processes

100

2 × 100

3 × 100

4 × 100

6 × 100

En
tri

es
 in

 u
ne

xp
ec

te
d

qu
eu

e
(U

Q)
 se

ar
ch

ed
 p

er
 m

at
ch

(d) LAMMPS-lj

32 processes 64 processes 128 processes 256 processes

100

2 × 100

3 × 100

4 × 100

6 × 100

En
tri

es
 in

 u
ne

xp
ec

te
d

qu
eu

e
(U

Q)
 se

ar
ch

ed
 p

er
 m

at
ch

(e) LAMMPS-snap

27 processes 64 processes 125 processes 216 processes

100

101

En
tri

es
 in

 u
ne

xp
ec

te
d

qu
eu

e
(U

Q)
 se

ar
ch

ed
 p

er
 m

at
ch

(f) LULESH

Figure 6: Quartiles of search length of the unexpected queue (UQ) for each process count. The red line represents the arithmetic
mean

Workload max | |PQ | | max | |UQ | | max |match(PQ) | max |match(UQ) | PQentr ies matched UQentr ies matched

LAMMPS LJ 7 9 4 5 179283 (73%) 65647 (27%)
LAMMPS SNAP 8 8 6 6 220008 (74%) 76493 (26%)
CTH-ST 7 22 7 13 5457665 (72%) 2130256 (28%)
LULESH 26 23 26 19 13805773 (90%) 1462396 (10%)
HPCCG 2 6 2 6 1541498 (67%) 776874 (33%)
AMG 505 1357 460 963 2341262 (60%) 1529439 (40%)
MCCK 127 19 127 11 1636809 (94%) 103909 (6%)
miniFE 26 25 26 20 780040 (79%) 203462 (21%)

Table 2: Maximum high-water marks, maximum search depth and total number of successful matches for posted (PQ) and
unexpected (UQ) Q’s at 128 nodes (125 nodes for LULESH).

With the expected increase in match queue lengths, a number of
works have examined modifications to howmatching is done, while
keeping current MPI semantics. Flajslik et al. [11] proposed using
hashing rater than list traversal to speed upMPImatching. Bayatour
et al. [2] proposed a method to dynamically switch between a linked
list and a hash table at runtime, The goal of this work is to get the
best of both methods: low space overhead and fast first match time
for linked lists, constant match time with hashing for long lists.

Finally, performing match operations directly in hardware has
also been examined. Brightwell et al. [3] instrumented a hardware
offload engine’s match list implementation to track MPI tag data,
queued times and match list search depths and sizes. Similarly,
Underwood et al. [27] examine the requirements of a hardware
platform to accelerate MPI matching on these systems.

Our work is different from these existing studies in several impor-
tant ways. First, our simulation-based approach does not perturb
the matching performance of the simulated application like what
might be found in an experimental-based approach. Second, our

simulation approach can accurately predict application and match
queue lengths and times, while using significantly fewer resources
and in less time [23] than running on an actual large-scale system.
For example, we can simulate a 10 hour LAMMPS run of the SNAP
problem at 1024 nodes in less than 10 minutes. Our simulation-
based approach also allows for greater flexibility in perturbing the
application to investigate how these perturbations impact match
queue performance. Perturbations can come from a number of
sources: OS noise or jitter [9, 15], resilience activities [10], and in
situ data analytics [22]. Finally, this work has the potential to enable
those who do not have source access to applications to test research
solutions as a small and growing list of application traces become
available [1].

5 CONCLUSIONS & FUTUREWORK
Understanding MPI matching requirements is critical to the scala-
bility of future systems. In this work, we introduced a lightweight,

EuroMPI’17, September 2017, Chicago, Illinois USA K.B. Ferreira et al.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time spent in queue 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(a) LAMMPS LJ

0 1 2 3 4 5 6
Time spent in queue 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(b) LAMMPS SNAP

0 1 2 3 4 5
Time spent in queue 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv
e
Pr
ob
ab
ilit
y
(P
(x

X)
)

CDF(x)

(c) LULESH

0.0 0.2 0.4 0.6 0.8
Time spent in queue 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(d) HPCCG

0.0 0.5 1.0 1.5 2.0 2.5
Time spent in queue 1e10

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(e) AMG

0 1 2 3 4 5
Time spent in queue 1e9

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv
e
Pr
ob
ab
ilit
y
(P
(x

X)
)

CDF(x)

(f) CTH-ST

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time spent in queue 1e10

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(g) MCCK

0.0 0.2 0.4 0.6 0.8 1.0
Time spent in queue 1e10

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(h) miniFE

Figure 7: Cumulative distribution functions for the time-in-queue for each entry of the posted receive queue (PQ) over all 128
processes

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time spent in queue 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(a) LAMMPS LJ

0 1 2 3 4 5 6
Time spent in queue 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(b) LAMMPS SNAP

0 1 2 3 4
Time spent in queue 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(c) LULESH

0.0 0.2 0.4 0.6 0.8
Time spent in queue 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)
CDF(x)

(d) HPCCG

0.0 0.5 1.0 1.5 2.0 2.5
Time spent in queue 1e10

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(e) AMG

0 1 2 3 4 5
Time spent in queue 1e9

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv
e
Pr
ob
ab
ilit
y
(P
(x

X)
)

CDF(x)

(f) CTH-ST

0.0 0.2 0.4 0.6 0.8 1.0
Time spent in queue 1e10

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
lia

tiv
e

Pr
ob

ab
ilit

y
(P

(x
≤
X)

)

CDF(x)

(g) MCCK

0 1 2 3 4 5 6
Time spent in queue 1e9

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
m
lia
tiv
e
Pr
ob
ab
ilit
y
(P
(x

X)
)

CDF(x)

(h) miniFE

Figure 8: Cumulative distribution functions for the time-in-queue for each entry of the unexpected receive queue (UQ) over
all 128 processes

simulation-based approach, based on a previously validated simula-
tion framework to characterize the posted receive and unexpected
queues for a number of key HPC workloads. This work made the
following significant contributions. First, it showed a number of
key characteristics for each of these queues: the cumulative distri-
bution function of both the match traversal and the time spent in
queue waiting for a match, the mean and maximum search length,

and the maximum list size for both the posted receive and unex-
pected queues. In addition, we showed how these queues grow in
size as the process count for an application increases. Lastly this
work showed the duration of time entries spend in each of these
queues as well as how that duration changes with increased scale.
Data gathered using this simulation-based approach has significant
potential in aiding hardware designers in determining resource
allocation for MPI matching functions and providing application

Characterizing MPI Matching via Trace-based Simulation EuroMPI’17, September 2017, Chicago, Illinois USA

32 processes 64 processes 128 processes 256 processes

10−3

10−2

10−1

100

101

102

Ti
m

e
sp

en
t i

n
po

st
ed

 q
ue

ue
 (P

Q)
 (s

)

(a) AMG

32 processes 64 processes 128 processes 256 processes
10−5

10−4

10−3

10−2

10−1

100

101

Ti
m

e
sp

en
t i

n
po

st
ed

 q
ue

ue
 (P

Q)
 (s

)

(b) CTH-st

32 processes 64 processes 128 processes 256 processes

10−1

100

101

102

Ti
m

e
sp

en
t i

n
po

st
ed

 q
ue

ue
 (P

Q)
 (m

s)

(c) HPCCG

32 processes 64 processes 128 processes 256 processes

10−1

100

101

102

103

Ti
m

e
sp

en
t i

n
po

st
ed

 q
ue

ue
 (P

Q)
 (m

s)

(d) LAMMPS-lj

32 processes 64 processes 128 processes 256 processes

10−4

10−3

10−2

10−1

100

Ti
m

e
sp

en
t i

n
po

st
ed

 q
ue

ue
 (P

Q)
 (s

)

(e) LAMMPS-snap

27 processes 64 processes 125 processes 216 processes

100

101

102

Ti
m

e
sp

en
t i

n
po

st
ed

 q
ue

ue
 (P

Q)
 (m

s)

(f) LULESH

Figure 9: Quartiles of search length of the unexpected queue (PQ) for each process count. The red line represents the arithmetic
mean

32 processes 64 processes 128 processes 256 processes

10−3

10−2

10−1

100

101

102

Ti
m

e
sp

en
t i

n
un

ex
pe

ct
ed

 q
ue

ue
 (U

Q)
 (s

)

(a) AMG

32 processes 64 processes 128 processes 256 processes

10−4

10−3

10−2

10−1

100

101

Ti
m

e
sp

en
t i

n
un

ex
pe

ct
ed

 q
ue

ue
 (U

Q)
 (s

)

(b) CTH-st

32 processes 64 processes 128 processes 256 processes

10−1

100

101

102

Ti
m

e
sp

en
t i

n
un

ex
pe

ct
ed

 q
ue

ue
 (U

Q)
 (m

s)

(c) HPCCG

32 processes 64 processes 128 processes 256 processes

10−1

100

101

102

Ti
m

e
sp

en
t i

n
un

ex
pe

ct
ed

 q
ue

ue
 (U

Q)
 (m

s)

(d) LAMMPS-lj

32 processes 64 processes 128 processes 256 processes

10−1

100

101

102

103

Ti
m

e
sp

en
t i

n
un

ex
pe

ct
ed

 q
ue

ue
 (U

Q)
 (m

s)

(e) LAMMPS-snap

27 processes 64 processes 125 processes 216 processes
10−1

100

101

Ti
m

e
sp

en
t i

n
un

ex
pe

ct
ed

 q
ue

ue
 (U

Q)
 (m

s)

(f) LULESH

Figure 10: Quartiles of search length of the unexpected queue (UQ) for each process count. The red line represents the arith-
metic mean

and middleware developers with insight into the scalability issues
associated with MPI message matching in their applications.

While we believe this work makes significant contributions, ad-
ditional work is needed to fully understand matching for future
systems. First, we would like to investigate the impact of multi-
threaded MPI applications on MPI matching performance. Also, we
would like to examine the influence that process performance varia-
tion has on performance. If we slow down certain nodes, how does

that impact queue traversals and the sizes of the respective queues?
Finally, we would like to characterize the impacts MPI matching
has on performance and incorporate this overhead into our current
simulation framework as to better characterize matching influence
on performance.

REFERENCES
[1] Trace Repository. http://htor.inf.ethz.ch:8888/. (????). Retrieved 16 Jan 2014.

http://htor.inf.ethz.ch:8888/

EuroMPI’17, September 2017, Chicago, Illinois USA K.B. Ferreira et al.

[2] M. Bayatpour, H. Subramoni, S. Chakraborty, and D. K. Panda. 2016. Adaptive
and Dynamic Design for MPI Tag Matching. In 2016 IEEE International Conference
on Cluster Computing (CLUSTER).

[3] R. Brightwell, K. Pedretti, and K. Ferreira. 2008. Instrumentation and Analysis of
MPI Queue Times on the SeaStar High-Performance Network. In Proceedings of
17th International Conference on Computer Communications and Networks. 1–7.

[4] R. Brightwell and K. D. Underwood. 2004. An analysis of NIC resource us-
age for offloading MPI. In 18th International Parallel and Distributed Processing
Symposium, 2004. Proceedings. 183–.

[5] Argonne National Laboratory CESAR. The CESAR Proxy-apps. https://cesar.
mcs.anl.gov/content/software. (????). Retrieved 10 June 2013.

[6] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. 1993. LogP:
Towards a Realistic Model of Parallel Computation. In Proceedings of the Fourth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP ’93). ACM, New York, NY, USA, 1–12.

[7] Hoang-Vu Dang, Marc Snir, and William Gropp. 2016. Towards Millions of
Communicating Threads. In Proceedings of the 23rd European MPI Users’ Group
Meeting (EuroMPI 2016). ACM, New York, NY, USA, 1–14.

[8] Jr. E. S. Hertel, R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J. M. McGlaun,
S. V. PetneY, S. A. Silling, P. A. Taylor, and L. Yarrington. 1993. CTH: A Software
Family for Multi-Dimensional Shock Physics Analysis. In Proceedings of the 19th
Intl. Symp. on Shock Waves. 377–382.

[9] Kurt B. Ferreira, Ron Brightwell, and Patrick G. Bridges. 2008. Characterizing
Application Sensitivity to OS Interference Using Kernel-Level Noise Injection.
In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (SC’08).

[10] Kurt B. Ferreira, PatrickWidener, Scott Levy, Dorian Arnold, and Torsten Hoefler.
2014. Understanding the Effects of Communication and Coordination on Check-
pointing at Scale. In Proceedings of the 2014 International Conference for High
Performance Computing, Networking, Storage and Analysis (Supercomputing).

[11] Mario Flajslik, James Dinan, and Keith D. Underwood. 2016. Mitigating MPI
Message Matching Misery. Springer International Publishing, Cham, 281–299.

[12] Message Passing Interface Forum. 2012. MPI: A Message-Passing Interface
Standard Version 3.0. (09 2012). Chapter author for Collective Communication,
Process Topologies, and One Sided Communications.

[13] V.E. Henson and U.M. Yang. 2002. BoomerAMG: A parallel algebraic multigrid
solver and preconditioner. Applied Numerical Mathematics 41, 1 (2002), 155–177.

[14] Michael A. Heroux, Douglas W. Doerfler, Paul S. Crozier, James M. Willenbring,
H. Carter Edwards, Alan Williams, Mahesh Rajan, Eric R. Keiter, Heidi K. Thorn-
quist, and Robert W. Numrich. 2009. Improving Performance via Mini-applications.
Technical Report SAND2009-5574. Sandia National Laboratory.

[15] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2010. Characterizing
the Influence of System Noise on Large-Scale Applications by Simulation. In

International Conference for High Performance Computing, Networking, Storage
and Analysis (SC’10).

[16] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2010. LogGOPSim -
Simulating Large-Scale Applications in the LogGOPS Model. In Proceedings of the
19th ACM International Symposium on High Performance Distributed Computing.
ACM, 597–604.

[17] Rainer Keller and Richard L. Graham. 2010. Characteristics of the Unexpected
Message Queue of MPI Applications. In Proceedings of the 17th European MPI
Users’ Group Meeting Conference on Recent Advances in the Message Passing
Interface (EuroMPI’10). Springer-Verlag, Berlin, Heidelberg, 179–188.

[18] Benjamin Klenk, Holger Fröning, Hans Eberle, and Larry Dennison. 2017. Re-
laxations for High-Performance Message Passing on Massively Parallel SIMT
Processors. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS), Orlando, FL.

[19] Sandia National Laboratories. 2013. LAMMPS Molecular Dynamics Simulator.
http://lammps.sandia.gov. (Apr. 10 2013).

[20] Lawrence Livermore National Laboratory. Co-design at Lawrence Livermore Na-
tional Lab : Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics
(LULESH). http://codesign.llnl.gov/lulesh.php. (????).

[21] Sandia National Laboratory. 2014. Mantevo Project Home Page. http://mantevo.
org. (Jan. 10 2014).

[22] Scott Levy, Kurt B. Ferreira, Patrick M. Widener, Patrick G. Bridges, and Oscar H.
Mondragon. 2016. How I Learned to Stop Worrying and Love In Situ Analytics:
Leveraging Latent Synchronization in MPI Collective Algorithms. In Proceedings
of the 23rd European MPI Users’ Group Meeting, EuroMPI 2016, Edinburgh, United
Kingdom, September 25-28, 2016. 140–153.

[23] Scott Levy, Bryan Topp, Kurt B Ferreira, Dorian Arnold, Torsten Hoefler, and
PatrickWidener. 2014. Using simulation to evaluate the performance of resilience
strategies at scale. InHigh Performance Computing Systems. PerformanceModeling,
Benchmarking and Simulation. Springer, 91–114.

[24] J.M. McGlaun, S.L. Thompson, and M.G. Elrick. 1990. CTH: A three-dimensional
shock wave physics code. International Journal of Impact Engineering 10, 1 (1990),
351–360.

[25] Steve Plimpton. 1995. Fast Parallel Algorithms For Short-Range Molecular-
Dynamics. Journal of Computational Physics 117, 1 (1995), 1–19.

[26] Keith Underwood, Sue Goudy, and Ron Brightwell. 2005. A Preliminary Analysis
of the MPI Queue Characteristics of Several Applications. 2013 42nd International
Conference on Parallel Processing 00 (2005), 175–183.

[27] K. D. Underwood, K. S. Hemmert, A. Rodrigues, R. Murphy, and R. Brightwell.
2005. A Hardware Acceleration Unit for MPI Queue Processing. In 19th IEEE
International Parallel and Distributed Processing Symposium.

https://cesar.mcs.anl.gov/content/software
https://cesar.mcs.anl.gov/content/software
http://lammps.sandia.gov
http://codesign.llnl.gov/lulesh.php
http://mantevo.org
http://mantevo.org

	Abstract
	1 Introduction
	2 Approach
	2.1 Simulating Application Performance
	2.2 Workload Descriptions
	2.3 Limitations of this study

	3 Results
	3.1 Search length CDFs
	3.2 Per-node mean search lengths CDFs
	3.3 Search length scaling
	3.4 Match queue statistics
	3.5 Time in queue CDFs
	3.6 Queue time scaling

	4 Related Work
	5 Conclusions & Future Work
	References

