
Improving Performance of CDCL SAT Solvers by
Automated Design of Variable Selection Heuristics

Marketa Illetskova∗, Alex R. Bertels†, Joshua M. Tuggle∗, Adam Harter∗, Samuel Richter∗,
Daniel R. Tauritz∗, Samuel Mulder†, Denis Bueno†, Michelle Leger†, and William M. Siever‡
∗Department of Computer Science, Missouri University of Science and Technology, Rolla, MO, U.S.A.

Email: miwdf@mst.edu, dtauritz@acm.org
†Sandia National Laboratories, Albuquerque, NM, U.S.A., Email: abertel@sandia.gov

‡Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, U.S.A.

Abstract—Many real-world engineering and science problems
can be mapped to Boolean satisfiability problems (SAT). It has
been shown that improvement in a SAT solver’s performance
correlates with improvement in its energy efficiency. CDCL SAT
solvers belong among the most efficient solvers. Previous work
showed that instances derived from a particular problem class
exhibit a unique underlying structure which impacts the effec-
tiveness of a solver’s variable selection scheme. Thus, customizing
the variable scoring heuristic of a solver to a particular problem
class can significantly enhance the solver’s performance; however,
manually performing such customization is very labor intensive.
This paper presents a system for automating the design of
variable scoring heuristics for CDCL solvers, making it feasible to
tailor solvers to arbitrary problem classes. Experimental results
are provided demonstrating that this system, which evolves
variable scoring heuristics using an asynchronous parallel hyper-
heuristics approach employing genetic programming, has the
potential to create more efficient solvers for particular problem
classes.

I. INTRODUCTION

The boolean satisfiability problem (SAT) is one of many
problems in computer science that belongs to the NP complete
complexity class, and therefore it has no efficient solution
unless P = NP. Various real-world engineering and science
problems can be modeled as instances of SAT, and searching
for solutions to such real-world problems requires extensive
utilization of computational resources.

Over the past few decades, SAT solver efficiency has
improved dramatically, leading to even more utilization of SAT
in engineering and science solutions [28]. For example, SAT
has been used to minimize power consumption in an energy
management system while satisfying varying requirements of
its users [12]. There are many other applications of SAT
in various fields such as computational biology [11], [34],
software testing [25], hardware and software model checking
and verification [33], [37], Internet of Things [27], and robotics
[22], [23].

Encoding specific problem classes in SAT creates classes of
structured logical expressions called SAT instances. Empirical
evidence shows that each solver has an ideal underlying
instance structure and that each class of instances has an
optimal solver [40], [41], [36]. Recent work has automati-
cally optimized SAT solver parameter configuration to target
specific classes of instances [20], [19], [15]. KhudaBukhsh

et al. automatically composed stochastic local search (SLS)
solvers from parts of existing SLS solvers [24], and other
work automatically evolved variable selection techniques for
SLS solvers [2], [26], [16], [17], [18]. However, conflict-driven
clause learning (CDCL) solvers are still the most efficient
SAT solvers for industrial instances. Based on Biere and
Fröhlich’s demonstration of the drastic impact that restart and
variable selection schemes have on CDCL solver efficiency
for specific problem classes [8], [7], Bertels introduced the
idea of automatic evolution of CDCL operations as a case
study in [5] and as a proof-of-concept system in [4]. His
work showed promising results in increasing the effectiveness
of a CDCL SAT solver by targeting classes of instances with
unique structure. We know of no other work that automatically
evolves CDCL heuristics.

In this paper we describe the system, ADSSEC (Automated
Design of SAT Solvers employing Evolutionary Computation),
evaluate its performance on datasets and benchmarks from
random and industrial tracks, and present results demonstrating
its potential for producing more effective solvers targeted to
arbitrary, but particular, problem classes (datasets).

II. RELATED WORK

Ideally, a single solver would be able to adapt to an appli-
cation at runtime. Tools such as ParamILS [20], SMAC [19],
and SpySMAC [15] automatically tailor the parameter config-
urations of reasonably versatile solvers to particular datasets.
While the solver parameter configurations are adjustable, most
of the internal methods of the solvers remain the same. The
effectiveness of adapting a solver to a problem class solely
through external parameter optimization is limited by the
appropriateness of the solver’s architecture, such as its variable
scoring heuristic, for that problem class.

Running all computable solvers with all configurations
simultaneously would guarantee the shortest possible time to
solve a given instance. However, obtainable resources restrict
this parallel procedure to a subset of existing solvers with
carefully selected parameters. This method is referred to as
a portfolio approach. Xu et al. were able to predict which
solvers in a portfolio were able to perform well in particular
domains [38], [39]. They did this by calculating values for
a set of instances, testing the portfolio on the instances, and

SAND2017-7363C



using machine learning to relate solvers to a given instance.
This pairing of solvers with instance classes allowed Xu et
al. to reduce the portfolio to the best suited solvers. Hutter
et al. expanded on this work by employing these calculated
values to predict the runtime of SAT solvers [21]. Portfolios
of algorithms provide high flexibility in discovering the right
existing solver for the job, assuming that the right solver is in
the portfolio to begin with.

ADSSEC takes the next step by applying generative hyper-
heuristics [10] to generate CDCL SAT solvers tailored for
an arbitrary, but particular, problem class. Hyper-heuristics
approaches automatically develop heuristics or algorithms;
generative hyper-heuristics combine primitive heuristics, ex-
ploring a broader search space, while selective hyper-heuristics
choose the best option(s) from a set of pre-defined heuris-
tics [10]. While not quite as flexible as generating new
heuristics, selecting heuristics can be beneficial if multi-
ple components need to be matched together and effective
heuristics are known. In this paper, only the variable scoring
heuristic is being modified, so ADSSEC uses the generative
approach. ADSSEC employs genetic programming (GP) to
automatically reorganize and manipulate the algorithmic prim-
itives constituting the variable scoring heuristic [29], [30].
These primitives can be as general as state-related variables
and binary operations or as specific as carefully constructed
functions with tunable inputs.

ADSSEC is a hyper-heuristics framework that employs
CDCL state-based information and binary operations to au-
tomatically develop new variable scoring heuristics tailored
to problem classes. ADSSEC’s primitives are more granular
than statements in the source code and are therefore much
more versatile in developing new solver components.

We describe the ADSSEC hyper-heuristics framework in
detail in the next section.

III. ADSSEC

Genetic programing (GP) utilizes a biologically inspired
approach in searching for individuals adapted to a given
environment by preserving genes important for success. An
individual in GP may be optimized for a given input to
produce desirable output in a given environment. Finding an
optimal SAT solver for a given problem class is a complex
and expensive task, suitable for automation using a GP-
based hyper-heuristic system. Influenced by the success of
Fukunaga in improving SLS runtimes by evolving specific
heuristics [16], ADSSEC uses GP to evolve variable scoring
heuristics to automatically tailor CDCL solvers to specific
classes of structured instances.

In particular, ADSSEC utilizes Koza-style GP trees [32],
which are well suited to the parse trees representing variable
scoring heuristics used by CDCL solvers to select decision
variables. Biere and Fröhlich’s work demonstrating that the
current best variable scoring heuristics are roughly equal in
runtime performance when evaluated across many instance
classes [8] motivated the choice to adapt a CDCL solver’s
variable scoring heuristics [4].

TABLE I: Terminal nodes in ADSSEC

Score (s[v]) The previous score of the variable.
Conflict Index (i) The current number of conflicts

encountered.
MiniSat Variable Decay
Amount (f )

f is also used to derive MiniSat’s Variable
Increment Value (MiniSat Default: 0.95).

MiniSat’s Variable
Increment Amount (g)

(g = (1/f)i) The amount MiniSat
increases a score when a variable is
bumped.

Constant (C) A constant value in {1, 2, 3, . . . , 10} or
{0.0, 0.1, 0.2, . . . , 0.9}.

Special Component (H) Derived from the Chaff CDCL SAT solver
for scaling variable scores [8].

hmi =

{
0.5 · s if m divides i evenly
s otherwise

where m is a power of 2:
{2, 4, 8, . . . , 1024}.

Variables in the First UIP
(U [v])

The number of times a variable occurred
in a first Unique Implication Point (UIP)
conflict.

Eliminated Variables in
Simplification Step
(E[v])

The number of times a variable is
eliminated in the simplification of conflict
clauses.

Evolutionary algorithms and SAT solving are indepen-
dently computationally heavy tasks, and combining the two
magnifies the effect. Bertels et al. showed using ADSSEC
that an asynchronous parallel evolutionary algorithm (APEA)
approach leads to a significant speed up in hyper-heuristic
systems [5], [4]. This motivated us to use an asynchronous
parallel implementation of ADSSEC.

ADSSEC creates an initial population of variable scor-
ing heuristics and evolves the population through mutation
and recombination, both explained in detail later. ADSSEC
evaluates these heuristics by replacing the variable selection
heuristic in MiniSat 2.2 [13], a commonly used efficient and
deterministic CDCL solver with dense source code, or in Glu-
cose 4.0 [1], one of the current state-of-the-art solvers based
on MiniSat. ADSSEC employs a standard parent selection
before producing offspring and a crowding survival selection
specifically modified for the APEA [4]. ADSSEC returns the
best heuristics from the final population after reaching the
termination criteria.

Derived from currently implemented variable scoring
heuristics [8], [13], [35], ADSSEC defines the terminal nodes
described in Table I and basic non-terminal (binary) opera-
tor nodes: Addition (+), Subtraction (−), Multiplication (∗),
and Division (/). These arithmetic operators may be applied
because all terminal nodes are either integer or floating-point
values. These nodes allow evolution of novel schemes while
still being able to represent current schemes.

A. Heuristic Representation

Mapping variable scoring heuristic functions to objects that
can be easily manipulated in a GP tree is fairly straight-
forward. Each scoring heuristic can be represented as a parse
tree where non-terminal nodes are operators and terminal



nodes are state-related values. See Figure 9 for an example
of a tree representation of an evolved heuristic.

ADSSEC evolves the parse tree genetic encodings. To
evaluate each variable scoring heuristic, the parse tree is
converted into a C++ statement. The original variable scoring
heuristic in a pre-built solver is replaced by compiling and
linking with the new variable scoring heuristic. The resulting
solver, termed the evolved variant, is executed on test instances
to evaluate the effectiveness of the heuristic.

B. Objectives

The evolutionary algorithm (EA) objective score represents
how well an evolved variant performs on a provided training
set of instances. Traditionally, the aim is to reduce the runtime
needed to either find a solution or prove unsatisfiability. In
Sect. IV-A, we compare performance measures, i.e., objective
functions, to use in ADSSEC; our ultimate goal is to reduce
the average runtime across instances in a problem class.

ADSSEC’s per-instance sub-score for an evolved variant is
the ratio of the performance of the evolved solver to that of the
original solver. The objective score is then simply the average
of all the instance sub-scores. Thus, any evolved individual that
performs identically to the original solver’s variable scoring
heuristic will end up with an objective score of 1.0, and lower
scores indicate better schemes.

Occasionally, the EA will construct inadequate heuristics
that cause the solver to require inordinate resources to ter-
minate on some instances. Limiting functions prevent wasting
evaluation time on such heuristics. ADSSEC relies on the orig-
inal solver’s performance to approximate reasonable limits for
any given SAT instance. Initially, ADSSEC limits an evolved
variant to three times the number of variable decisions the
original solver needed to solve that instance. These generous
limits allow ADSSEC to collect diverse genetic material in a
population; they do not time out on all tested instances, but
they are generally worse than the original solver. However, as
ADSSEC progresses through the evolutionary process, interest
shifts from collecting diverse heuristics to exploiting heuristics
that are strictly better than the original. As such, the decision
limit linearly decreases down to the exact number of decisions
the original solver needed for a specific instance. For example,
if ADSSEC is to complete 5000 evaluations throughout the run
and the decision limit multiplier decreases from 3.0 to 1.0, then
the multiplier is decremented by ((3.0− 1.0)/5000 = 0.0004
after each evaluation.

Ideally, an accurate objective score would be determined
by executing the evolved variable scoring heuristic against the
entire training dataset of interest. This is generally too costly,
therefore ADSSEC utilizes strike-based sampling to gauge the
effectiveness of an evolved variant. ADSSEC randomly selects
a number of instances in a user-defined range from the given
training set to evaluate a variant. For each instance in this
selection, ADSSEC executes the evolved variant and assigns
a sub-score ratio as described before. If the variant reaches
the decision limit for that instance, then the variant receives a
strike and a sub-score of the current decision-limit multiplier.

After a variant reaches a set number of strikes, all remaining
sub-scores are assigned the current decision-limit multiplier
without evaluation.

C. Evolutionary Algorithm

1) Population Initialization: To avoid local optima,
ADSSEC creates each individual in the initial population of
variable scoring heuristics by randomly generating a parse
tree from the primitives (nodes). First, ADSSEC assigns a
random operator node to the root of the tree. ADSSEC then
assigns two random nodes to the left and right branches of the
operator node. There is a 50% chance that each node will be
terminal. If the node is non-terminal, then ADSSEC repeats
the process and assigns a random operator node. If the node is
terminal, then there is a 50% chance that the node will be the
previously assigned score s. Otherwise, ADSSEC randomly
assigns one of the other terminal node options. This bias
was introduced because most current schemes appear to rely
heavily on the previous variable score. The maximum depth
of a tree generated for the initial population is arbitrarily set
to eight. Smaller depths seemed to contain much less genetic
diversity while larger depths produced complex heuristics that
rarely solved instances within the decision limits.

2) Variation Operators: As in traditional tree GP, ADSSEC
uses one of two methods to develop a single offspring
(variant): mutation or recombination. For mutation, ADSSEC
randomly selects a node in a random individual’s parse tree
and replaces it with a new subtree generated using the rules
established in Population Initialization (Sect. III-C1) – without
a depth limitation. For recombination, ADSSEC implements
a sub-tree crossover: the system randomly selects two indi-
viduals in the population and replaces a random branch from
the first parent with a random branch from the second parent.
Both procedures produce a single child.

3) Selection: The survival selection function determines
which individuals in the population continue into the next
generation. In ADSSEC, genetically diverse selection is de-
sirable so that smaller parse trees (which are generated more
easily) do not flood the population. Certain small heuristics
have adequate performance and, if one is discovered early on
in evolution, it can overwhelm the population if diversity is
not maintained.

Crowding functions are selection functions that excel at
promoting genetic diversity in the population [14]. In a
standard crowding function, an offspring competes with its
closest parent, either replacing the parent or being dropped
from the population in favor of the parent. In an APEA,
however, generations are not clearly delineated and a parent
can have multiple offspring being evaluated simultaneously.
Bertels developed an asynchronous crowding function that
allows offspring to compete with either their parents or any
‘siblings’ – or descendants of siblings – that replaced the
parents [4], [5]. The function uses a computationally cheap
distance function comparing histograms of node types (e.g.,
addition, constant, conflicts, etc.) to determine the closest
remaining relative in the current population. As in a standard



crowding function, only the offspring or its closest remaining
relative remains in the population, and the population remains
at a fixed size.

We use k-Tournament parent selection, which is easily
applicable to parallel systems and which provides selection
pressure modification through the k parameter. We selected
a low k to increase the chance that genetic material in the
pool propagates to many individuals in the population while
maintaining some pressure to eliminate less fit individuals.

4) Termination: ADSSEC terminates the evolutionary cy-
cle after completing a user-defined number of evaluations.
However, throughout the run, individuals may be replaced by
randomly generated parse trees if the population converges. If
the best individual has not been improved in a user-defined
number of evaluations, ADSSEC introduces new material to
the gene pool. Currently, all variants whose performance is
worse than that of the original solver are replaced. This mech-
anism is useful in restarting the exploration of the variable
scoring heuristic search space.

IV. EXPERIMENTS

A. Comparison of Objectives

The main motivation for this experiment was to determine
a good objective for the EA employed by ADSSEC. ADSSEC
evaluates several instances in parallel on the same hardware,
and so runtimes for individual instances are inconsistent. For
that reason, ADSSEC was originally implemented both as
a single objective EA (SOEA) with the number of variable
decisions as an objective and as a multi-objective EA (MOEA)
with the number of variable decisions and the number of learnt
clause literals (conflict literals) as objectives. An improved
variable scoring heuristic should reduce the values for the
number of decisions and conflict literals, potentially reducing
the runtime, but lower values in CDCL solvers may not
correlate well with the runtime in specific cases.

Thus, we decided to explore the performance of solvers
produced by ADSSEC when using CPU time as an objective.
We compare an SOEA with decisions as an objective to an
SOEA with CPU time as an objective, and we compare an
MOEA with decisions and conflict literals as objectives to
an MOEA with decisions, conflict literals, and CPU time
as objectives. We explore both SOEA and MOEA because
experiments in [4] suggested that ADSSEC produced more
performant evolved variants using an MOEA.

In order to achieve a statistically significant results, we ran
the evolutionary process with the same settings 30 times for
each of the four different classes that we compare. Since
evolutionary algorithms are computationally expensive, we
needed a dataset whose instances can be quickly solved. For
this experiment, we chose the ibm-26 dataset, one of many
subsets of the IBM - Hardware Verification set from the IBM
Formal Verification Benchmark Library, from the Configurable
SAT Solver Challenge (CSSC) 2014 benchmarks [31]. MiniSat
can solve all instances in less than 4 seconds.

We evolved the variable scoring heuristic from the MiniSat
solver, using an identical parameter configuration (Table II;

more on parameter configuration in Sect. IV-B) for all SOEA
and MOEA experiments. ADSSEC evaluated each evolved
variant on a randomly ordered subset of all of the instances
from the ibm-26 dataset, employing the evaluation described
previously.

We executed ADSSEC on the same machine for each
objective function. Solvers were then compiled with the best
heuristic produced by each run. To obtain more accurate CPU
solve times, we averaged the CPU time collected over 30 serial
runs of each evolved variant and the original MiniSat on each
instance in the ibm-26 dataset. All evaluations were performed
on the same machine. Results are presented in Sect. V-A.

B. Evolving Variable Scoring Heuristics

Based on preliminary results from experiments like that
in Sect. IV-A, and in order to achieve results comparable
to results in [4], we ran our main experiments using an
MOEA with decisions and conflict literals as objectives for
the training phase. The purpose of these experiments was
to determine whether ADSSEC could produce more efficient
solvers tailored to specific real-world problem classes.

Due to the nature of evolutionary computation and SAT
solving, ADSSEC requires datasets with enough instances to
represent a distinct instance class for training and testing.
These datasets must contain instances that ADSSEC can
train on in a short period of time, and the dataset must
be difficult enough to benefit from a fitted heuristic. Many
available datasets do not fulfill these requirements. For these
experiments, we used the unif-k5 dataset, a benchmark from
the random track of CSSC 2014 consisting of 600 instances
generated by Balint et al. according to the uniform generation
model [3], and the ibm-18 dataset, another subset of the IBM -
Hardware Verification dataset from the CSSC 2014 industrial
track benchmarks [31].

We used an identical configuration for ADSSEC on both
datasets (Table II), the same as used in [4]. For each exper-
iment, ADSSEC created an initial population of 30 random
individuals. The master process used several slave processes
(the exact number varied based on the number of nodes
available on the machine used for each experiment) to evaluate
offspring populations, asynchronously creating new offspring
as each node became available.

ADSSEC selected parents in a k-Tournament selection with
k = 2 for either recombination or mutation – with a mutation
probability of 0.10 and a recombination rate of 0.90 – and
used an asynchronous crowding method for survival selection.
Although ADSSEC terminated after 5000 evaluations, if the
best individual objective score had not improved in 250
evaluations, ADSSEC replaced the worst individuals in the
population with randomly generated parse trees. ADSSEC
evaluated each individual on the ten SAT instances in the
training set (randomly ordered); each individual was limited
to four strikes against the decision limit described previously.

We used the same experimental setup to evolve variable
scoring heuristics in both MiniSat and Glucose. We executed
ADSSEC on several locally networked machines of varying



TABLE II: ADSSEC EA parameter settings

Population Offspring Mutation Termination Restart
(µ) (λ) Rate Evaluations Evaluations
30 63 0.10 5000 250

Fig. 1: Comparison of objectives on ibm-26

loads. Solvers were then compiled with the best heuristics
produced by each run. For each evolved variant and each
original solver, we averaged the CPU time collected over 30
serial runs on each instance. All evaluations were performed
on the same machine. Results are presented in Sect. V-B.

V. RESULTS

A. Comparison of Objectives

Figure 1 compares the CPU time that the evolved solvers
produced by ADSSEC took to solve all instances in ibm-26
dataset. The SOEA with decisions as the objective produced
statistically more efficient solvers than SOEA with CPU time
as the objective. The MOEA with decisions, conflict literals,
and CPU time produced more efficient solvers than any other
combination of objectives that we compare, but these results
had higher variance than those produced when not using
CPU time as an objective. Our results serve as a guide for
further experimentation: different EA parameter configuration
or different datasets may yield different results.

B. Evolving Variable Scoring Heuristics

Figure 2 compares the CPU time required to solve instances
in the ibm-18 dataset using the original MiniSat solver against
that required using an evolved variant with a new variable
scoring heuristic. While the minimum CPU times required are
fairly close, there is a marked improvement with the new
heuristic in the maximum CPU time needed. Because the
dataset contains only 15 instances, ADSSEC’s training and
the test instances are the same. However, in Figure 3 we show
that the solver evolved on instances from the ibm-18 showed
improvement in CPU time on other IBM Hardware Verification

Fig. 2: ibm-18 cactus plot comparing CPU time to solve

dataset subsets on which it was not trained (ibm-15 and ibm-
03), especially in maximum CPU time.

Figure 4 compares the CPU time to solve instances from
the unif-k5 dataset using the original MiniSat solver against
that using MiniSat with an evolved heuristic. Significant
improvement can be seen across the board using the evolved
variable selection heuristic. The training set for ADSSEC was
a randomly selected subset of ten instances from the dataset;
both training and test instances are covered in the plot.

We show in Figure 5 that the solver evolved for the ibm-18
dataset did not show improvement in CPU time on instances
from the unif-k5 dataset, which is from a different track. This
supports the hypothesis that improved performance is obtained
by targeting the specific structure of a problem class.

Figure 6 compares the CPU time to solve instances from the
ibm-18 dataset using the original Glucose solver against that
using Glucose with an evolved heuristic. Evolving a variable
scoring heuristic in Glucose to target problems from the ibm-
18 dataset did not show as much improvement as evolving the
variable scoring heuristic in MiniSat. Still, some improvement
was seen: the maximum CPU time to solve improved, and the
average CPU time to solve all instances also improved slightly.

Figure 7 compares the CPU time to solve instances from the
unif-k5 dataset using the original Glucose solver against that
of Glucose with an evolved heuristic. As with MiniSat, the
new heuristic for the unif-k5 dataset in Glucose significantly
improved the solver for this dataset. The training set for
ADSSEC was a randomly selected subset of ten instances from
the dataset; both training and test instances are covered in the
plot.

VI. DISCUSSION

In Figure 8 we compare solvers with evolved heuristics to
some of the top state-of-the-art CDCL solvers, specifically
Glucose 4.1 [1] and the SAT 16 competition version of
Lingeling [6], on instances from the ibm-18 and unif-k5



(a) ibm-15

(b) ibm-03

Fig. 3: Cactus plot comparing CPU time to solve of evolved
solver trained on ibm-18 dataset and tested on other datasets
from IBM Hardware Verification dataset

datasets. We also show MiniSat for comparison. On the unif-
k5 dataset, the evolved solvers significantly outperformed both
Glucose and Lingeling. On ibm-18, the solvers did better than
Lingeling. The evolved Glucose solver also did better than
Glucose in overall runtime. Again, we averaged the CPU time
collected over 30 runs of each solver on same machine in order
to obtain more accurate CPU times.

In Figure 9, we present the tree representation of the
best heuristic evolved by ADSSEC for the unif-k5 dataset
using MiniSat. Interestingly, it is heavily based on the current
number of conflicts encountered (i).

VII. CONCLUSIONS

Our results show that ADSSEC is capable of evolving
variable scoring heuristics that are able to outperform default
MiniSat or Glucose on a specific problem class. Even better,

Fig. 4: unif-k5 cactus plot comparing CPU time to solve

Fig. 5: unif-k5 cactus plot comparing CPU time to solve,
evolved solver trained on ibm-18 dataset

Fig. 6: ibm-18 cactus plot comparing CPU time to solve



Fig. 7: unif-k5 cactus plot comparing CPU time to solve

(a) ibm-18

(b) unif-k5

Fig. 8: Cactus plot comparing CPU time to solve of evolved
solvers and top solvers

+

+

+

+

0.5+

+

5i

*

+

5i

*

if

i

i

*

+

5i

i

Fig. 9: Evolved heuristic for MiniSat for the unif-k5 dataset

the evolved heuristics seem to outperform some of the state-
of-the-art solvers.

We found that even when not using CPU time as an
objective during the training phase, we were still able to show
major improvement in CPU times of evolved solvers. As our
results showed, a multi-objective evolutionary algorithm using
CPU time as one of the objectives might lead to even better
results than the ones we achieved.

Previous research showed that an automatically optimized
solver that needs less CPU time to solve a set of instances is
more energy efficient than an original solver [9]. We showed
that ADSSEC found solvers that required less CPU time to
solve instances from some benchmarks than some of the most
energy efficient state-of-the-art solvers; thus, we believe that
our system can produce more energy efficient solutions to real-
world problems.

REFERENCES

[1] Gilles Audemard and Laurent Simon. Glucose and Syrup in the SAT
Race 2015. In SAT Race 2015, Austin, TX, USA, September 2015. 2
pages.

[2] Mohamed Bader-El-Den and Riccardo Poli. Generating SAT Local-
Search Heuristics Using a GP Hyper-Heuristic Framework. In Artificial
Evolution, volume 4926 of Lecture Notes in Computer Science, pages
37–49, Tours, France, October 2008. Springer Berlin Heidelberg.

[3] Adrian Balint, Anton Belov, Matti Jrvisalo, and Carsten Sinz. SAT
Challenge 2012 Random SAT Track: Description of Benchmark Gener-
ation. In Proceedings of SAT Challenge 2012: Solver and Benchmark
Descriptions, pages 72–73, Department of Computer Science Series of
Publications B, University of Helsinki, Finland, 2012.

[4] Alex R. Bertels. Automated Design of Boolean Satisfiability Solvers
Employing Evolutionary Computation. Master’s thesis, Missouri Uni-
versity of Science and Technology, Rolla, Missouri, USA, 2016.

[5] Alex R. Bertels and Daniel R. Tauritz. Why Asynchronous Parallel
Evolution is the Future of Hyper-heuristics: A CDCL SAT Solver Case
Study. In Proceedings of the 18th Annual Conference Companion on
Genetic and Evolutionary Computation (GECCO ’16), pages 1359–
1365, Denver, Colorado, USA, July 2016.

[6] Armin Biere. Lingeling and Friends Entering the SAT Race 2015. In
SAT Race 2015, Austin, TX, USA, September 2015. 2 pages.

[7] Armin Biere and Andreas Fröhlich. Evaluating CDCL Restart Schemes.
In Proceedings of the International Workshop on Pragmatics of SAT
(POS’15), Austin, TX, September 2015.

[8] Armin Biere and Andreas Fröhlich. Evaluating CDCL Variable Scoring
Schemes. In Theory and Applications of Satisfiability Testing–SAT 2015,
volume 9340 of Lecture Notes in Computer Science, pages 405–422.
Springer International Publishing, Austin, TX, USA, September 2015.



[9] Bobby R. Bruce, Justyna Petke, and Mark Harman. Reducing energy
consumption using genetic improvement. In Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation, GECCO
’15, pages 1327–1334, New York, NY, USA, 2015. ACM.

[10] Edmund K. Burke, Michel Gendreau, Matthew Hyde, Graham Kendall,
Gabriela Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: a survey
of the state of the art. Journal of the Operational Research Society,
64(12):1695–1724, December 2013.

[11] George Chin, Daniel G. Chavarria, Grant C. Nakamura, and Heidi J.
Sofia. Biographe: high-performance bionetwork analysis using the
biological graph environment. BMC Bioinformatics, 9(6):S6, 2008.

[12] F. Corno and F. Razzak. Intelligent energy optimization for user
intelligible goals in smart home environments. IEEE Transactions on
Smart Grid, 3(4):2128–2135, Dec 2012.

[13] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Theory
and Applications of Satisfiability Testing–SAT 2003, volume 2919 of
Lecture Notes in Computer Science, pages 502–518, Santa Margherita
Ligure, Italy, May 2003. Springer Berlin Heidelberg.

[14] Agoston E Eiben and James E Smith. Introduction to Evolutionary
Computing. Springer, 2003.

[15] Stefan Falkner, Marius Lindauer, and Frank Hutter. SpySMAC: Au-
tomated Configuration and Performance Analysis of SAT Solvers. In
Theory and Applications of Satisfiability Testing–SAT 2015, volume
9340 of Lecture Notes in Computer Science, pages 215–222. Springer
International Publishing, Austin, TX, USA, September 2015.

[16] Alex S Fukunaga. Evolving Local Search Heuristics for SAT Using Ge-
netic Programming. In Genetic and Evolutionary Computation–GECCO
2004, volume 3103 of Lecture Notes in Computer Science, pages 483–
494, Seattle, WA, USA, June 2004. Springer Berlin Heidelberg.

[17] Alex S Fukunaga. Automated Discovery of Local Search Heuristics
for Satisfiability Testing. Evolutionary Computation, 16(1):31–61, April
2008.

[18] Alex S Fukunaga. Massively Parallel Evolution of SAT Heuristics. In
2009 IEEE Congress on Evolutionary Computation (CEC), pages 1478–
1485, Trondheim, Norway, May 2009. IEEE.

[19] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential
model-based optimization for general algorithm configuration. In
Learning and Intelligent Optimization, volume 6683 of Lecture Notes in
Computer Science, pages 507–523. Springer Berlin Heidelberg, Rome,
Italy, January 2011.

[20] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas
Stützle. ParamILS: An Automatic Algorithm Configuration Framework.
Journal of Artificial Intelligence Research, 36(1):267–306, September
2009.

[21] Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Algo-
rithm Runtime Prediction: Methods & Evaluation. Artificial Intelligence,
206:79–111, January 2014.

[22] F. Imeson and S. L. Smith. A language for robot path planning in
discrete environments: The tsp with boolean satisfiability constraints.
In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 5772–5777, May 2014.

[23] F. Imeson and S. L. Smith. Multi-robot task planning and sequencing
using the sat-tsp language. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 5397–5402, May 2015.

[24] Ashiqur R. KhudaBukhsh, Lin Xu, Holger H. Hoos, and Kevin Leyton-
Brown. Satenstein: Automatically building local search sat solvers from
components. Artificial Intelligence, 232:20 – 42, 2016.

[25] Sarfraz Khurshid and Darko Marinov. Testera: Specification-based
testing of java programs using sat. Automated Software Engineering,
11(4):403–434, 2004.

[26] Raihan H Kibria and You Li. Optimizing the Initialization of Dynamic
Decision Heuristics in DPLL SAT Solvers Using Genetic Programming.
In Genetic Programming, volume 3905 of Lecture Notes in Computer
Science, pages 331–340. Springer Berlin Heidelberg, Budapest, Hun-
gary, April 2006.

[27] Chieh-Jan Mike Liang, Börje F. Karlsson, Nicholas D. Lane, Feng
Zhao, Junbei Zhang, Zheyi Pan, Zhao Li, and Yong Yu. Sift: Building
an internet of safe things. In Proceedings of the 14th International
Conference on Information Processing in Sensor Networks, IPSN ’15,
pages 298–309, New York, NY, USA, 2015. ACM.

[28] J. Marques-Silva. Practical applications of boolean satisfiability. In 2008
9th International Workshop on Discrete Event Systems, pages 74–80,
May 2008.

[29] Matthew A Martin and Daniel R Tauritz. A Problem Configuration Study
of the Robustness of a Black-Box Search Algorithm Hyper-Heuristic. In
Proceedings of the 16th Annual Conference Companion on Genetic and
Evolutionary Computation (GECCO ’14), pages 1389–1396, Vancouver,
BC, Canada, July 2014. ACM.

[30] Matthew A Martin and Daniel R Tauritz. Hyper-Heuristics: A Study On
Increasing Primitive-Space. In Proceedings of the 17th Annual Confer-
ence Companion on Genetic and Evolutionary Computation (GECCO
’15), pages 1051–1058, Madrid, Spain, July 2015. ACM.

[31] Research Group on Learning, Optimization, and Automated Algo-
rithm Design at Freiburg University. Configurable SAT Solver Challenge
(CSSC) 2014 - Benchmarks. http://aclib.net/cssc2014/benchmarks.html.
[Online; accessed 02-April-2017].

[32] Riccardo Poli, William B Langdon, and Nicholas Freitag
McPhee. A Field Guide to Genetic Programming.
Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, March 2008. (With
contributions by J. R. Koza).

[33] Mathias Soeken, Robert Wille, Mirco Kuhlmann, Martin Gogolla, and
Rolf Drechsler. Verifying uml/ocl models using boolean satisfiability.
In Proceedings of the Conference on Design, Automation and Test in
Europe, DATE ’10, pages 1341–1344, 3001 Leuven, Belgium, Belgium,
2010. European Design and Automation Association.

[34] Ricardo Soto, Hakan Kjellerstrand, Orlando Durn, Broderick Crawford,
Eric Monfroy, and Fernando Paredes. Cell formation in group tech-
nology using constraint programming and boolean satisfiability. Expert
Systems with Applications, 39(13):11423 – 11427, 2012.

[35] Tichy, Richard and Glase, Thomas. Clause Learning in SAT. University
of Potsdam., April 2006.

[36] Allen Van Gelder. Another Look at Graph Coloring via Propositional
Satisfiability. Discrete Applied Mathematics, 156(2):230–243, January
2008.

[37] Y. Vizel, G. Weissenbacher, and S. Malik. Boolean satisfiability solvers
and their applications in model checking. Proceedings of the IEEE,
103(11):2021–2035, Nov 2015.

[38] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
SATzilla: Portfolio-Based Algorithm Selection for SAT. Journal of
Artificial Intelligence Research, 32(1):565–606, May 2008.

[39] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
SATzilla2009: An Automatic Algorithm Portfolio for SAT. In SAT 2009
Competitive Events Booklet, pages 53–55, September 2009.

[40] Emmanuel Zarpas. Benchmarking SAT Solvers for Bounded Model
Checking. In Theory and Applications of Satisfiability Testing–SAT 2005,
volume 3569 of Lecture Notes in Computer Science, pages 340–354, St
Andrews, UK, 2005. Springer Berlin Heidelberg.

[41] Emmanuel Zarpas. Back to the SAT05 Competition: an a Posteriori
Analysis of Solver Performance on Industrial Benchmarks. Journal on
Satisfiability, Boolean Modeling and Computation, 2:229–236, January
2006.


