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Preparation and Treatment of Material _ : - Four Al species detected at
* Recrystallized NaAlH, in THF to remove Al and oxidized impurities g > = 7 maximum desorption Delocalized states from Ti may aid in movement of electrons with hydrogen.
« High-energy ball-milled for 2 h with 10 mol% TiCl,, yielding dark gray powder 2 = N0l & P * O %pef'at'g” SC?II—?S from Various O-containing species are stable at the NaAlH, (001) surface at 500 K.
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* In operando low-energy ion scattering and ex situ XPS measurements at Sandia - Ti not present at ) -H,0 surface, then react with
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» Small amounts appear = < Tiep (IL S | H | H o - Al-O bonds and Ti states act
after complete G | post-desorption " Ti(0) @ \ / as electron reservoirs.
desorption, both in £ £ ) « Al-H, with little Al°, is present
operando and when Vil XPS ————e— at surface until desorption is
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* Metallic and oxidized region phase propagates from bulk to
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NaAH, O 1s NaAlH, Al 2p 8 o8- £ 1100 ‘ i W - Realistic, cyclable TiCl,-doped NaAlH, was prepared and analyzed by XPS and LEIS.
— aon 5 06 ;: 1000 J M'\ g = * The oxygen XPS spectrum was highly dynamic, shifting from more oxidized Al-O to
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5 2 2 < Helong surface, with high Al-H concentrations remaining until near the end of desorption.
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Surface oxidation not preventable; observation requires highly Absence of Ti at surface indicates no role in desorption, whereas + Hendrik Bluhm and Steve Kevan for Director’s Discretionary Time on BL11.0.2 AP-XPS
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