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Motivation

Problem: fracture growth under chemically reactive conditions.

Fluid-rock interactions — > Fracture growth.
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Approach: subcritical fracturing tests under chemically reactive conditions. 2
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Mode-I fracture testing
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Testing protocol

* Three shale types
* Woodford, Mancos, Marcellus
« Also sandstones for comparison/integration

* Room dry, CO,,, DI water
 Varying salinity, NaCl, KC]
* Varying pH

 Room temperature, 65°C

« Some samples coated with hydrophobic agent to limit
fluid/rock interaction to fracture tip




Three shale lithologies
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Shale sample composition

Woodford shale Mancos shale
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imaging
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Intergranular fracture (through clay matrix)
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Fracture surface imaging

Marcellus shale
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Fracture surface imaging

Woodford shale Mancos shale Marcellus shale

DI Water ‘@' NaCI solut|o ,

Fracture surface features invariable with fluids conditions, indicating similar subcritical fracturing process. .
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Fracture response: Water content
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Water enhances subcritical fracturing for clay-rich shales

= Strong reduction of K- (48%) and SCI (75%) with increasing water content
K-V curves obey power-law, indicating fracturing in stress-corrosion regime (I)
Load relaxation technique (lines) matches constant loading rate method (squares)
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Transient weakening response: Coated samples

» Hydrophobic coating restricts water-sample interaction to the fracture tip
= Coating temporarily protects specimens from weakening except at fracture tip
» Transient K-V curves.
O Only for clay-rich Woodford and Mancos shales
O Competition between fracture growth and rock degradation by H,O-rock interaction

Corrected

log(K,)
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Fracture response: Salinity

Woodford shale, NaCl brine, 23°C
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Increase of fluid salinity increases K, and SCI in clay-rich Woodford and Mancos shales
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= Less weakening in KCI brine than in NaCl brine

= Clay swelling
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Marcellus shale, HCI solution, 23°C
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SCl decreases with decreasing pH for carbonate-rich Marcellus shale

Fracture response: pH
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= K is independent of pH

» SCI effect opposite to that in glass and quartzite

Calcite dissolution
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Fracture response: Temperature

Marcellus, DI water
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Environmental effects on K-V behavior
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Time-to-failure analysis
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« Chemical environments , rock mineralogy, and temperature influence shale
fracture properties.

« Stronger wet-dry differences in clay-rich shales (Woodford and Mancos) than in
carbonate-rich shale (Marcellus).
« “Wet” fracture growth rate faster by one-order of magnitude

* Increasing temperature enhances subcritical fracturing.

« Carbonate-rich Marcellus: carbonate dissolution
« SCI sensitive to acidic pH
+ K, independent of chemical environment

* Woodford & Mancos: clay-fluid interaction
* K, and SCI sensitive to water content and salinity.
« Water-weakening enhances subcritical fracturing

« Environmental effects controlled by competition between fracture growth rate and
rate of rock degradation by fluid-rock interactions. "




Implications

* Fracture growth strongly affected by water content variations

« Natural fractures: lithification, diagenesis, oil-water system, gas
charging
* Engineered systems: hydraulic fracturing, EOR, CO, sequestration
* Higher temperature systems have higher propensity for
subcritical fracture growth.

» Clay-rich rocks:

e more sensitive to water-weakening.

* high salinity suppresses water-weakening.

* higher risk for seal failure with subcritical fracture growth.
» Carbonate-rich rocks:

* more prone to subcritical fracture by pH decrease (CO, EOR, CO,
sequestration, organic acids).
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