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Motivation
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Carbon sequestration

Shale caprock

Problem: fracture growth under chemically reactive conditions.

Approach: subcritical fracturing tests under chemically reactive conditions.

Petroleum system

Fluid-rock interactions Fracture growth.



Specimen configuration
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V: fracture propagation velocity

KI: mode-I stress intensity factor 

K0: Stress corrosion limit

KIC: mode-I fracture toughness

n: subcritical crack index (SCI) Experimental setup
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Mode I fracture testing

K-V curve
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Mode-I fracture testing
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Testing protocol

• Three shale types

• Woodford, Mancos, Marcellus

• Also sandstones for comparison/integration

• Room dry, CO2gas, DI water

• Varying salinity, NaCl, KCl

• Varying pH

• Room temperature, 65°C 

• Some samples coated with hydrophobic agent to limit 

fluid/rock interaction to fracture tip
5



Three shale lithologies
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Shale sample composition
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Fracture trace imaging
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10 mm 20 mm 2 mm

Woodford Mancos Marcellus

 Woodford, Mancos: intergranular fracture (through clay matrix)

 Marcellus: intragranular (cleavage) fracture



Fracture surface imaging
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 Roughness variation, but no plumose structure

 Grain boundary breakage vs transgranular breakage

Marcellus shaleMancos shale



Fracture surface imaging
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Marcellus shaleMancos shale

10 mm

2 mm

NaCl solution, 1.7 M

HCl solution, pH=1.2

10 mm

10 mm

Woodford shale

NaCl solution, 1.7 M

DI water

20 mm

50 mm

DI water

KCl solution, 1.3 M

Fracture surface features invariable with fluids conditions, indicating similar subcritical fracturing process. 



Fracture response: Water content
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Water enhances subcritical fracturing for clay-rich shales 
 Strong reduction of KIC (48%) and SCI (75%) with increasing water content

 K-V curves obey power-law, indicating fracturing in stress-corrosion regime (I)

 Load relaxation technique (lines) matches constant loading rate method (squares)

Woodford shale, 23°C
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Transient weakening response: Coated samples
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 Hydrophobic coating restricts water-sample interaction to the fracture tip

 Coating temporarily protects specimens from weakening except at fracture tip

 Transient K-V curves.  

 Only for clay-rich Woodford and Mancos shales

 Competition between fracture growth and rock degradation by H2O-rock interaction

Chen et al., JGR 2017



Fracture response: Salinity
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Woodford shale, NaCl brine, 23°C

Increase of fluid salinity increases KIC and SCI in clay-rich Woodford and Mancos shales
 Less weakening in KCl brine than in NaCl brine 

 Clay swelling



Fracture response: pH
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SCI decreases with decreasing pH for carbonate-rich Marcellus shale
 KIC is independent of pH

 SCI effect opposite to that in glass and quartzite

 Calcite dissolution

Marcellus shale, HCl solution, 23°C



Fracture response: Temperature

15

Increase in temperature enhances 

subcritical fracturing
 Left-ward shift for all shales

 Concentration effects less pronounced at 

elevated  T



Environmental effects on K-V behavior
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Time-to-failure analysis
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Evans (1972) & Nara et al. (2015)

Assume subcritical crack growth limit @ 10-10 m/s:

 To meet safe storage time>104 years, s<0.004 

MPa for wet, s<0.01 MPa for dry conditions.

 Under s=1 MPa, failure occurs at 61 days for wet, 

402 days for dry. 



Summary
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• Chemical environments , rock mineralogy, and temperature influence shale 

fracture properties. 

• Stronger wet-dry differences in clay-rich shales (Woodford and Mancos) than in 

carbonate-rich shale (Marcellus).

• “Wet” fracture growth rate faster by one-order of magnitude

• Increasing temperature enhances subcritical fracturing.

• Carbonate-rich Marcellus: carbonate dissolution

• SCI sensitive to acidic pH

• KIC independent of chemical environment

• Woodford & Mancos: clay-fluid interaction

• KIC and SCI sensitive to water content and salinity.

• Water-weakening enhances subcritical fracturing 

• Environmental effects controlled by competition between fracture growth rate and 

rate of rock degradation by fluid-rock interactions.



Implications
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• Fracture growth strongly affected by water content variations
• Natural fractures: lithification, diagenesis, oil-water system, gas 

charging

• Engineered systems: hydraulic fracturing, EOR, CO2 sequestration 

• Higher temperature systems have higher propensity for 
subcritical fracture growth.

• Clay-rich rocks:
• more sensitive to water-weakening.

• high salinity suppresses water-weakening.

• higher risk for seal failure with subcritical fracture growth.

• Carbonate-rich rocks:
• more prone to subcritical fracture by pH decrease (CO2 EOR, CO2

sequestration, organic acids). 


