

1 **Structural Determinants for Protein Unfolding and Translocation by the**
2 **Hsp104 Protein Disaggregase**

3

4 Jungsoon Lee¹, Nuri Sung¹, Lythou Yeo¹, Changsoo Chang⁴,
5 Sukyeong Lee^{1*} and Francis T.F. Tsai^{1,2,3*}

6

7 ¹Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College
8 of Medicine, One Baylor Plaza, Houston, Texas 77030, USA; ²Department of Molecular and
9 Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA;
10 ³Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor
11 Plaza, Houston, Texas 77030, USA and ⁴Structural Biology Center, Biosciences Division,
12 Argonne National Laboratory, 9700 Cass Avenue, Argonne, IL 60439, USA.

13

14

15 *Correspondence: Sukyeong Lee (slee@bcm.edu) or Francis T.F. Tsai (ftsai@bcm.edu).

16

17 **ABSTRACT**

18 The ring-forming Hsp104 ATPase cooperates with Hsp70 and Hsp40 molecular chaperones to
19 rescue stress-damaged proteins from both amorphous and amyloid-forming aggregates. The
20 ability to do so relies upon pore loops present in the ATP-binding domains of Hsp104 (loop-1
21 and loop-2 in AAA-1, and loop-3 in AAA-2), which face the protein translocating channel and
22 couple ATP-driven changes in pore loop conformation to substrate translocation. A hallmark of
23 loop-1 and loop-3 is an invariable and mutational sensitive aromatic amino acid (Tyr257 and
24 Tyr662) involved in substrate binding. However, the role of conserved aliphatic residues
25 (Lys256, Lys258, and Val663) flanking the pore loop tyrosines, and the function of loop-2 in
26 protein disaggregation has not been investigated. Here we present the crystal structure of an N-
27 terminal fragment of *Saccharomyces cerevisiae* Hsp104 exhibiting molecular interactions
28 involving both AAA-1 pore loops, which resemble contacts with bound substrate. Corroborated
29 by biochemical experiments and functional studies in yeast, we show that aliphatic residues
30 flanking Tyr257 and Tyr662 are equally important for substrate interaction, and abolish Hsp104
31 function when mutated to glycine. Unexpectedly, we find that loop-2 is sensitive to aspartate
32 substitutions that impair Hsp104 function and abolish protein disaggregation when loop-2 is
33 replaced by four aspartate residues. Our observations suggest that Hsp104 pore loops have non-
34 overlapping functions in protein disaggregation and together coordinate substrate binding,
35 unfolding, and translocation through the Hsp104 hexamer.

36 **ABBREVIATIONS**

37 AAA: ATPase associated with diverse cellular activities

38 AAA-1: First AAA+ ATP-binding domain

39 AAA-2: Second AAA+ ATP-binding domain

40 β -gal: β -galactosidase

41 ClpA: Caseinolytic peptidase A (eubacteria)

42 ClpB: Caseinolytic peptidase B (eubacteria; bacterial homolog of yeast Hsp104)

43 ClpX: Caseinolytic peptidase X (eubacteria)

44 FFL: Firefly luciferase

45 HslU: Heat shock locus U

46 Hsp104: Heat shock protein of 104 kDa (yeast)

47 Hsp101: Heat shock protein of 101 kDa (plant)

48 Hsp70: Heat shock protein of 70 kDa

49 Hsp40: Heat shock protein of 40 kDa

50 NCS: Non-crystallographic symmetry

51 Ni-NTA: Nickel-nitrilotriacetic acid

52 PDB: Protein Data Bank

53 PEG: Polyethylene glycol

54 RMSD: root mean square deviation

55 SD-Ura: Synthetic defined growth medium without Uracil

56 Sse1: Adenyl-nucleotide exchange factor (yeast)

57 Ydj1: Hsp40 co-chaperone (yeast)

58 YPD: Yeast extract peptone dextrose

59 **INTRODUCTION**

60 Members of the ring-forming Hsp104/ClpB family of ATP-driven molecular chaperones are the
61 principle protein disaggregases in fungi (Hsp104), plants (Hsp101), and eubacteria (ClpB) [1-3].
62 Interestingly, Hsp104 homologs are not found in animal cells [4], making members of this family
63 a potential anti-microbial drug target. To rescue stress-damaged proteins from an aggregated
64 state, Hsp104/ClpB disaggregases must cooperate with the cognate Hsp70/DnaK system,
65 consisting of Hsp70 and Hsp40 in yeast and DnaK-DnaJ-GrpE in eubacteria, to form a potent bi-
66 chaperone system. However, unlike the bacterial bi-chaperone system, a nucleotide-exchange
67 factor such as yeast *sse1* [5] is not required for Hsp104-dependent protein disaggregation in vitro
68 [6], but was shown to enhance its potency in yeast [7].

69 At the molecular level, *Saccharomyces cerevisiae* Hsp104 forms a homo-hexamer that is
70 stabilized by adenine nucleotides [8-10]. Each Hsp104 monomer features two ATP-binding
71 domains, termed AAA-1 and AAA-2, in addition to an N-terminal (N) domain and a coiled-coil
72 motif that mediates the physical interaction with Hsp70 [11,12]. It is now widely accepted that
73 Hsp104 facilitates the unfolding of aggregated proteins and the threading of substrate through the
74 protein translocation channel analogous to ATP-dependent Clp proteases [13,14]. However, it
75 remains unknown whether substrate unfolding and threading represent concerted or
76 mechanistically distinct events. Amongst the Hsp104 domains, the functional role of the N
77 domain is perhaps most perplexing. Although dispensable for protein disaggregation in vitro and
78 in vivo [15-17], the N domain is essential for yeast prion dissolution [18] and curing by Hsp104
79 overexpression [15]. Consequently, how Hsp104 recognizes substrates and recovers stress-
80 damaged proteins from protein aggregates has been a matter of considerable debate. Southworth
81 and colleagues recently reported the high-resolution cryoEM structure of yeast Hsp104 bound to

82 casein [19], an unstructured phosphoprotein that, unlike native substrates, is processed in a
83 nucleotide-independent manner [20]. The structure confirmed a role for the conserved loop-1 and
84 loop-3 tyrosines contacting the unfolded polypeptide, which is corroborated by an analogous
85 cryoEM study of the bacterial homolog, ClpB [21]. However, the role of conserved aliphatic
86 pore loop residues and the importance of loop-2 in protein disaggregation has not been
87 investigated.

88 Here we present the X-ray structure of an *S. cerevisiae* Hsp104 fragment (Hsp104₁₋₃₆₀)
89 determined from a new crystal form featuring three independent copies of Hsp104₁₋₃₆₀ in the
90 crystallographic asymmetric unit. As each monomer has a different crystal-packing environment,
91 consistent stereochemical features are inherent to the structure and independent of the crystal
92 lattice. We find that both loop-1 and loop-2 form molecular interactions that resemble contacts
93 with bound substrate. Although the structure of the physiological ring assembly was not
94 determined, we show that the aliphatic side chains of Lys256 and Lys258 (loop-1) and Val663
95 (loop-3) flanking the conserved pore loop tyrosines are also involved in substrate interaction, and
96 abolish Hsp104 function when mutated to glycine. Furthermore, our structure also suggests a
97 previously unknown role for loop-2 in Hsp104 function. Although loop-2 shows only a small
98 defect when all four residues are mutated to glycine or alanine, we find that loop-2 is sensitive to
99 substitutions with aspartate. Notably, substituting loop-2 with four aspartates abolishes protein
100 disaggregation *in vitro* and severely impairs thermotolerance development *in vivo*. Taken
101 together, our observations suggest that loop-1 and loop-2 have distinct mechanical functions, and
102 cooperate with loop-3 to facilitate the recovery of stress-damaged protein from aggregates.

103

104

105 **EXPERIMENTAL**

106 **Protein expression and purification**

107 *S. cerevisiae* Hsp104_{Y257A} and Hsp104_{Y662A} were generated by QuikChange site-directed
108 mutagenesis (Agilent). All other Hsp104 pore loop mutants were generated by overlap extension
109 PCR followed by cassette mutagenesis. Hsp104 and its mutants were cloned into the pProEX-
110 HTb vector (Invitrogen), which adds a tobacco etch virus protease cleavable N-terminal His₆-tag,
111 and were overexpressed in *E. coli* BL21-CodonPlus (DE3)-RIL cells (Agilent) by isopropyl β-D-
112 thiogalactopyranoside induction. Proteins were purified from cleared lysates by affinity
113 chromatography on a Ni-NTA agarose column (Qiagen) and eluted in 25 mM Tris-HCl pH 7.5,
114 300 mM NaCl, 5% glycerol and 5 mM β-mercaptoethanol containing 300 mM imidazole, or in
115 Tris-buffered saline using a 20 to 800 mM imidazole gradient (Hsp104₁₋₃₆₀). The N-terminal
116 His₆-tag was cleaved off and removed by reapplying the protein to a Ni-NTA agarose column.
117 Hsp104₁₋₃₆₀ was further purified by negative binding to an anion-exchange column followed by
118 binding to a Mono-S column (GE Healthcare). His₆-Ydj1 and His₆-Hsp70 were purified as
119 described [22].

120

121 **Size-exclusion chromatography**

122 Full-length Hsp104 and Hsp104 mutant proteins were further purified by size-exclusion
123 chromatography on a Superdex 200 10/300 GL column (GE Healthcare) preequilibrated in 25
124 mM Tris-HCl pH 7.5, 150 mM NaCl, 5% glycerol, and 1 mM DTT. Size-exclusion
125 chromatography was also used to determine the oligomeric state of Hsp104 and Hsp104 mutants.
126 Hexamers were isolated and used for subsequent ATPase activity measurements and coupled
127 chaperone assays.

128 **Crystal structure determination**

129 Crystals of Hsp104₁₋₃₆₀ were grown by the hanging drop vapor diffusion method at 4 °C by
130 mixing 2 µl of protein solution (20 mg/ml) with 2 µl of reservoir solution containing 25% PEG
131 4000 (w/v), 50 mM Tris-HCl pH 8.5, and 20 mM ammonium citrate. Data were collected and
132 processed using the HKL2000 software package [23] (Supplementary Table S1). The crystal
133 structure of Hsp104₁₋₃₆₀ was determined by molecular replacement using MOLREP [24] with
134 Protein Data Bank (PDB) accession 6AMN as search model [25]. Two molecules of Hsp104₁₋₃₆₀
135 were found. The calculated map revealed the location of a third molecule in the asymmetric unit,
136 and the two domains of the third molecule were manually placed. After rigid body refinement,
137 the N and AAA-1_{large} domains were connected in each molecule. Cycles of rebuilding and
138 refinement were carried out using COOT [26] and PHENIX [27], respectively. Atomic
139 coordinates and structure factors have been deposited in the PDB with the accession number
140 5WBW. Protein domain motions were analyzed using DynDom [28].

141

142 **ATPase activity assay**

143 Hsp104 and variants (0.5 µM monomer) were incubated with 2 mM ATP at 22 °C for 15 min.
144 The amount of released inorganic phosphate was measured using the malachite green assay [29].

145

146 **Coupled chaperone assay**

147 Firefly Luciferase (FFL; 10 µM) was denatured in 7 M urea in refolding buffer (25 mM HEPES-
148 KOH pH 7.5, 150 mM potassium acetate, 10 mM magnesium acetate, and 10 mM DTT) for 30
149 min at 22 °C, then diluted 125-fold in refolding buffer containing the bi-chaperone system (1 µM
150 Hsp104, 1 µM hHsp70, 1 µM Ydj1), 5 mM ATP, and an ATP regenerating system consisting of

151 25 mM phosphoenolpyruvate and 2 μ M pyruvate kinase. β -galactosidase (β -gal; 0.4 μ M) was
152 heat aggregated in refolding buffer for 40 min at 59 °C and mixed (0.2 μ M final concentration)
153 with the bi-chaperone system (1 μ M each) together with 4 mM ATP, 20 mM
154 phosphoenolpyruvate, and 2 μ M pyruvate kinase. Recovered enzymatic activities were measured
155 after 120 min (FFL) and 360 min (β -gal) as described [30].

156

157 **Thermotolerance assay**

158 Hsp104 loop-1 and loop-2 mutants were generated by excising an *EcoRI-BglII* fragment
159 featuring the desired mutation and swapping it into pYS104 containing *S. cerevisiae* Hsp104
160 wild-type under control of the *Hsp104* promoter. Hsp104 loop-3 mutants were generated by
161 cassette mutagenesis. Plasmids expressing wild-type and mutant Hsp104 were transformed into *S.*
162 *cerevisiae* OT46 ($\Delta hsp104$) and screened on SD-Ura plates [31]. Yeast cells were diluted to 0.1
163 D_{600} from overnight cultures, grown for 2.5 h at 25 °C in YPD medium and divided into two sets.
164 One set was treated by heat-shock at 50 °C for 15 min (basal thermotolerance), while the other
165 set was incubated at 37 °C for 30 min to induce heat-shock protein synthesis prior to heat-shock
166 (induced thermotolerance). Cells were heat-shocked and immediately chilled on ice. Five
167 microliters of 10-fold serial dilutions were dropped onto YPD plates. Viability was scored after
168 two days of incubation at 30 °C.

169

170 **Subunit mixing experiments**

171 Hsp104 and mutant proteins were mixed at different ratios to achieve the indicated subunit
172 composition in the hexamer, while keeping the total protein concentration at 10 μ M. Mixtures
173 were incubated at 22 °C for 20 min to allow for subunit exchange. For urea-denatured FFL,

174 Hsp104 hetero-hexamers were diluted 10-fold with refolding buffer containing 1 μ M Hsp70 and
175 Hsp40. For heat-aggregated β -gal, 0.3 μ M of the bi-chaperone system with Hsp104 hetero-
176 hexamers was used. As control, Hsp104, Hsp70, and Hsp40 chaperones were diluted with
177 refolding buffer keeping their stoichiometric ratio constant. Coupled chaperone assays were
178 performed in the presence of ATP and an ATP regenerating system as described above.

179

180 **RESULTS**

181 **Crystal structure of Hsp104₁₋₃₆₀**

182 Yeast Hsp104 is a protein disaggregase that is functionally conserved with bacterial ClpB [32].
183 The crystal structure of *Chaetomium thermophilum* Hsp104 confirmed that Hsp104 and ClpB are
184 also structurally conserved [33]. However, the atomic structures of the N- and C-terminal
185 domains of *C. thermophilum* Hsp104 could not be modeled despite being part of the crystallized
186 construct. Here we present the orthorhombic crystal structure of an N-terminal fragment of *S.*
187 *cerevisiae* Hsp104 (Hsp104₁₋₃₆₀) comprising the N domain (residues 4-164), the AAA-1_{large}
188 domain (residues 165-341), and the first α -helix of the AAA-1_{small} domain (residues 345-356).
189 We did not observe any unaccounted electron density that could be attributed to a bound
190 nucleotide, even when 5 mM nucleotide (ADPNP or ADP) was added for crystallization,
191 indicating that Hsp104₁₋₃₆₀ was crystallized in the nucleotide-free state. The structure of
192 Hsp104₁₋₃₆₀ was determined by molecular replacement and was refined to a resolution of 2.6 \AA
193 (Supplementary Table S1). The crystal structure consists of three Hsp104₁₋₃₆₀ monomers (mol 1,
194 mol 2, and mol 3) that are structurally independent and in different physicochemical
195 environments, which allows the identification of common structural features that may be of
196 functional importance.

197 **Crystal structure of Hsp104₁₋₃₆₀ confirms the high *en bloc* mobility of the N domain**

198 The atomic structures of the N and AAA-1_{large} domains alone are nearly identical among the
199 three Hsp104₁₋₃₆₀ molecules and superimpose pair-wise with an RMSD of only 0.41 ± 0.05 Å (N
200 domain) and 0.72 ± 0.22 Å (AAA-1_{large}). In addition, the three Hsp104₁₋₃₆₀ molecules
201 superimpose pair-wise with the hexagonal crystal structure of one Hsp104₁₋₃₆₀ monomer (PDB:
202 6AMN) [25] with an RMSD of 0.47 ± 0.01 Å (N domain) and 0.75 ± 0.01 Å (AAA-1_{large}), and
203 with the crystal structure of the isolated *S. cerevisiae* Hsp104 N domain (PDB: 5U2U) [34] with
204 an RMSD of 0.50 ± 0.05 Å calculated over all atoms. Superimposing the crystal structures of the
205 complete Hsp104₁₋₃₆₀ fragment through their AAA-1_{large} domain shows that the orientation of the
206 N domain seen in mol 1 and mol 2 is rotated by $172\text{--}174^\circ$ relative to that in mol 3 (Figure 1)
207 with residues 161-165 making up the hinge region. Interestingly, different N domain
208 conformations are also observed in the fitted cryoEM structures of Hsp104 hexamers, with mol 1
209 and 2 matching the N domain conformation of the C subunit of the open conformation (PDB:
210 5KNE-C) [10] and the A, C, and E subunits of the closed conformation of Hsp104 with casein-
211 bound (PDB: 5VY9-A/C/E) [19]. Mol 3 matches the F subunit of the casein-bound, closed
212 structure (PDB: 5VY9-F) [19]. It is noteworthy that the N domain conformation of the Hsp104<sub>1-
213 360</sub> monomer in the hexagonal crystal form (mol 4) [25] differs from the other three
214 conformations presented here and matches the N domain conformation of the D subunit of the
215 casein-bound, closed structure (PDB: 5VY9-D) [19]. Together, these findings indicate that the
216 high *en bloc* mobility of the N domain observed in our crystal structure is likely of functional
217 importance, and is also observed in physiologically relevant structures of Hsp104 hexamers.

218 The AAA-1_{large} domain shares the canonical α/β -fold of related AAA+ ATPases
219 determined in their hexamer assembly [35-38], and superposes with the crystal structure of the

220 isolated AAA-1_{large} domain of *Escherichia coli* ClpB (PDB: 1JBK) [39] with an RMSD of 1.20 ±
221 0.11 Å calculated over their C α atoms. However, unlike previously determined crystal structures,
222 we observed both pore loops in our structure. The first AAA-1 pore loop (loop-1), comprising
223 residues 253-259, is seen in all three monomers, and loop-2, comprising residues 291-294, is
224 ordered in two molecules. Loop-1 features the conserved Tyr257 that is sensitive to alanine
225 mutation in Hsp104 [40], and can be site-specifically crosslinked to substrate-mimicking
226 peptides in ClpB [41]. A pore-facing tyrosine or phenylalanine is also found in many other
227 AAA+ machines involved in protein quality control [42], and support a key role for Tyr257 in
228 substrate binding, translocation, or both. Although no corresponding aromatic residue is found in
229 loop-2 that features only two non-glycine residues, loop-2 was shown to be sensitive to mutation
230 that impair the protein unfolding activity of bacterial ClpA [43].

231

232 **Hsp104₁₋₃₆₀ monomer contacts resemble interaction with substrate**

233 In our structure, Tyr257 makes contact with the N domain of a neighboring, non-crystallographic
234 symmetry (NCS) related molecule (Figure 2A,B). Tyr257 is flanked by Lys256 and Lys258 that
235 contributes to the protein-protein interface made up of hydrophobic contacts between aliphatic
236 and aromatic side chains of loop-1 and N domain residues, Arg59 and Tyr60, with additional
237 contributions from the main chain of residues Lys57, Gly58, and Arg59 (Figure 2B). The
238 aforementioned hydrophobic contacts are reminiscent of a chaperone-substrate interaction, and
239 are observed in two out of three molecules (Figure 2A). However, neither the hydroxyl group of
240 the Tyr257 side chain nor the ϵ -amino group of Lys258 contributes binding energy (Figure 2B).
241 In addition, the aliphatic side chain of Lys256 forms a stacking interaction with the Tyr257 side
242 chain, which may orient Tyr257, while the ϵ -amino group of Lys256 makes an ionic interaction

243 with the Glu146 side chain of a neighboring molecule. Our observations support a functional role
244 for Lys256 and Lys258 in substrate interaction, and provide an explanation why aromatic
245 residues, such as tryptophan and phenylalanine, can substitute for conserved pore loop tyrosines
246 without marked loss of Hsp104 function [40].

247 Unlike loop-1, loop-2 is less well ordered, which prevented us from modeling side chains.
248 In our structure, loop-2 adopts two distinct conformations in an “up” and “down” configuration
249 when viewed along the 6-fold axis of the Hsp104 hexamer (Figures 2A and 4A). Residue 292
250 (Asn) that is non-conserved in ClpA/B proteins, is in van der Waals contact with the N domain
251 of an NCS-related, neighboring molecule (Lys131), resembling an interaction with substrate. In
252 support of a functional role for Asn292 in substrate binding, it was shown that mutating the
253 analogous residue in bacterial ClpA (Ala293) from alanine to aspartate abolished binding and
254 translocation of an unfolded model substrate [43]. It is tempting to speculate that the “up” and
255 “down” configurations of loop-2 may represent conformations associated with protein unfolding
256 or substrate translocation through the central channel of the Hsp104 hexamer, and is subject to
257 future investigations.

258

259 **The hydrophobicity but not aromaticity of loop-1 is crucial for protein interaction**

260 The functional importance of conserved pore loop tyrosines in Clp/Hsp100 proteins is well
261 established [41,43-45]. It was shown more recently that Tyr257 of Hsp104 mediates binding of
262 an unstructured polypeptide [19]. Consistent with a role in substrate interaction, Tyr257 is
263 sensitive to mutation that severely impaired but, interestingly, did not abolish Hsp104 function
264 [40]. The latter suggests that other pore loop residues must also contribute towards substrate
265 binding. The crystal structure of Hsp104₁₋₃₆₀ revealed a previously unobserved specific interface

266 between loop-1 and the N domain of a neighboring, NCS-related molecule involving the side
267 chains of Lys256 and Lys258 in addition to Tyr257 (Figures 2B and 3A), contrasting the
268 proposed role of Lys256 and Lys258 in stabilizing the hexamer assembly [19].

269 To our knowledge, the importance of conserved aliphatic residues flanking Tyr257 has
270 not been investigated previously. We therefore mutated Lys256 and Lys258 to glycine
271 (Hsp104_{GYG}) and compared the activity of Hsp104_{GYG} to Hsp104_{Y257A} that is functionally
272 impaired. As expected, all of our loop-1 mutants assemble into hexamers (Figure 3B) and are
273 functional ATPases (Figure 3C). Strikingly, we find that replacing Lys256 and Lys258 with
274 glycine severely impaired Hsp104 function in vitro (Figure 3D,E) and in vivo (Figure 3F), even
275 more so than Hsp104_{Y257A} (Figure 3D-F). Because a hexamer ring assembly is a prerequisite for
276 ATP hydrolysis [30], the ability of Hsp104_{GYG} to hydrolyze ATP argues against a role of Lys256
277 and Lys258 in the formation of hexamers or stabilizing the oligomer assembly. Combining the
278 Lys256, Tyr257, and Lys258 mutations (Hsp104_{GAG}) completely abolished Hsp104's ability to
279 disaggregate chemically denatured firefly luciferase (FFL) in vitro (Figure 3D) and its ability to
280 acquire thermotolerance in vivo (Figure 3F, compare Hsp104_{GAG} with vector control). Taken
281 together, our observations support a role for Lys256 and Lys258 in substrate interaction that is
282 abolished when the ²⁵⁶Lys-Tyr-Lys²⁵⁸ tri-peptide is mutated to glycine and alanine, respectively.

283

284 **Loop-2 is sensitive to aspartate substitutions**

285 The crystal structure of Hsp104₁₋₃₆₀ showed that loop-2 adopts an "up" (mol 2) and "down" (mol
286 1) configuration with the tip of loop-2 making van der Waals contact with a neighboring, NCS-
287 related molecule (Figures 2A and 4A). The latter is suggestive of a substrate interaction and,
288 when taken together, reminiscent of an interaction with substrate that is being translocated down

289 the axial channel. Because a functional role for loop-2 in substrate binding or translocation has
290 not been demonstrated previously for Hsp104/ClpB, we asked whether loop-2 is sensitive to
291 mutation that would impact Hsp104 function.

292 Loop-2 is considerably shorter than other pore loops and consists of only four amino acid
293 residues of sequence $^{291}\text{Gly-Asn-Gly-Lys}^{294}$ (Figure 4A). It was previously reported that
294 mutating the equivalent residue of Asn292 of *E. coli* ClpA (Ala293) to aspartate abolished ClpA
295 function [43]. We therefore asked whether introducing one or more aspartates into loop-2 would
296 have a similar impact on Hsp104 function. As anticipated, loop-2 mutants assemble into
297 hexamers (Figure 4B and Supplementary Figure S1) and are functional ATPases (Figure 4C).
298 We note that the Hsp104_{4D} hexamer is right shifted in the absence of nucleotide (Figure 4B), but
299 elutes at the expected position in the presence of ATP γ S (Supplementary Figure S1).
300 Furthermore, we found that the ATPase activity of Hsp104_{4D} is similar to Hsp104 wild-type
301 (Figure 4C), indicating no structural perturbations. Yet, replacing Asn292 with aspartate
302 (Hsp104_{1D}) reduced the recovery of chemically denatured FFL by the bi-chaperone system by
303 15% (Figure 4D). Introducing a second aspartate (Hsp104_{2D}) further reduced protein
304 disaggregation by 68%, and substituting all four residues (Hsp104_{4D}) completely abolished
305 Hsp104-dependent protein disaggregation in vitro (Figure 4D). The observed loss-of-function is
306 specific to Hsp104_{4D} because loop-2 variants featuring either four alanine (Hsp104_{4A}) or four
307 glycine residues (Hsp104_{4G}) cooperate with the Hsp70 system in protein disaggregation (Figure
308 4D). Similar results were also obtained with heat-aggregated β -galactosidase (β -gal) as the model
309 substrate arguing against a substrate-specific defect (Figure 4E). Consistent with our in vitro
310 observations, loop-2 mutants are also impaired in vivo, with Hsp104_{4D} showing the largest defect
311 in thermotolerance development (Figures 4F).

312 Taken together, our observations suggest that loop-2 is sensitive to aspartate substitutions
313 that severely impair Hsp104 function when loop-2 is replaced by four aspartates. The inability of
314 Hsp104_{4D} to recover functional protein from aggregates could not be overcome by loop-1 (Figure
315 4D,E), nor could loop-2 rescue loop-1 loss-of-function mutants (Figure 3D,E), suggesting that
316 loop-1 and loop-2 have distinct, non-overlapping roles in protein disaggregation. Although the
317 exact nature of the functional defect of loop-2 mutants remains unclear, we speculate that the
318 aspartate substitutions may have interfered with substrate interaction. Furthermore, the apparent
319 lack of specificity observed with Hsp104_{4G} that remains fully functional (Figure 4D,E) contrasts
320 the proposed role of loop-1 as a substrate anchor that facilitates a tight interaction with substrate
321 and is sensitive to glycine/alanine substitutions. Thus, our observations could be indicative of a
322 more mechanical function of loop-2 in protein unfolding or translocation, which does not require
323 a tight grip on substrate.

324

325 **Loop-3 is essential for protein disaggregation**

326 Loop-3 features a conserved aromatic amino acid (Tyr662) that is essential for substrate
327 interaction in vitro and in vivo [40] (Figure 5A-F). Tyr662 is preceded by glycine or a small
328 aliphatic residue and is followed by a hydrophobic amino acid (Ψ) and glycine, giving rise to a
329 (Gly)-Tyr- Ψ -Gly motif. The latter is reminiscent to the Ψ -Tyr- Ψ motif of loop-1, which impaired
330 Hsp104 chaperone function when Ψ is replaced with glycine (Figure 3D-F). In Hsp104, Tyr662
331 is followed by Val663 that shares an aliphatic side chain with Lys258. It was previously shown
332 that the equivalent valine in HslU (Val92) is insensitive to isoleucine, alanine, and serine
333 substitutions, but abolishes protein unfolding and translocation when mutated to phenylalanine or
334 cysteine [46]. Similar observations were also made in bacterial ClpX with observed levels of

335 impairment dependent on the substrate [44]. It is interesting to note that all of the aforementioned
336 Clp/Hsp100 variants featuring aliphatic side chain substitutions, besides cysteine that is sensitive
337 to oxidation, appear to be functional. We therefore asked whether replacing Val663 with glycine
338 that lacks an aliphatic side chain would impact protein disaggregation. Strikingly, we found that
339 protein disaggregation by Hsp104_{V663G} was completely abolished in vitro (Figure 5D,E) and in
340 vivo (Figure 5F), despite featuring a functional Tyr662. The observed defect was not due to an
341 inability to self-assemble or lack of ATPase activity, which was similar to Hsp104 wild-type
342 (Figure 5B,C). The sequence specificity and location of loop-3 near the distal end of the protein
343 translocating channel support an essential role of loop-3 in polypeptide binding and translocation.
344 However, it is not the conservation of Tyr662 *per se* but the hydrophobicity of loop-3 that is
345 essential to Hsp104 function.

346

347 **Loop-1 and loop-2 cooperate in initial protein binding and unfolding**

348 Our in vitro and in vivo experiments show that loss-of-function mutations of either loop-1 or
349 loop-2 can abolish protein disaggregation, suggesting distinct, non-overlapping functions of
350 AAA-1 pore loops. While Tyr257 is critically important for substrate binding [19,40,41], our
351 structure further extends the substrate-binding interaction to the ²⁵⁶Lys-Tyr-Lys²⁵⁸ tri-peptide
352 (Figure 2B). Interestingly, both Hsp104_{KAK} (i.e. Hsp104_{Y257A}) and Hsp104_{GYG} retain some
353 chaperone activity and mutating all three residues is required to abolish Hsp104 function (Figure
354 3D,F). It is worth noting that the proposed hydrophobic interaction between loop-1 and substrate
355 is consistent with the prevailing notion of molecular chaperones in recognizing exposed
356 hydrophobic residues to discriminate between folded and unfolded protein conformers.

357 The recently reported cryoEM structure of a casein-bound Hsp104 hexamer supports a
358 threading mechanism down the central channel, necessitating cooperative interactions between
359 adjacent subunits [19]. To determine whether pore loops of neighboring Hsp104 subunits
360 cooperate in protein disaggregation, we used a subunit mixing assay [22] to monitor protein
361 disaggregation by Hsp104 hexamers composed of active and inactive mutant subunits. We note
362 that all three pore loops have distinct locations within one subunit, and are not in direct contact
363 (Figure 6A). However, we do not rule out contacts with loops in neighboring subunits as
364 previously proposed [19]. Figure 6B shows that protein disaggregation by Hsp104:Hsp104_{GAG}
365 hetero-hexamers together with the Hsp70 system was substantially impaired in the presence of
366 only one inactive Hsp104_{GAG} subunit. The latter suggests strong cooperativity between subunits
367 and lend support for substrate handover between loop-1 of neighboring AAA-1 domains. A
368 substrate handover mechanism is supported by the recent cryoEM structure of a casein-bound
369 Hsp104 hexamer revealing direct contacts of loop-1 residues from neighboring subunits with the
370 unfolded polypeptide [19]. A more complex pattern emerges when performing the subunit-
371 mixing experiment with Hsp104 hexamers composed of wild-type and inactive loop-2 mutant
372 subunits (Hsp104_{4D}) (Figure 6C). Both cooperative and probabilistic interactions are observed
373 depending on the nature of the substrate (Figure 6C). While a cooperative interaction between
374 subunits was observed with heat-aggregated β -gal, a near linear decline was seen with
375 chemically denatured FFL, indicating a probabilistic mechanism. Although it may seem that
376 Hsp104 uses distinct *modi operandi*, we reasoned that only heat-aggregated and amyloid-
377 forming substrates that are characterized by a stable secondary and/or tertiary structure [47,48]
378 may require an additional protein unfolding step prior to substrate translocation. Because loop-2
379 mutants featuring either four glycines (Hsp104_{4G}) or four alanines (Hsp104_{4A}) are functional, and

380 cooperate with Hsp70 and Hsp40 chaperones in protein disaggregation (Figure 4D-F), the
381 observed defect of Hsp104_{4D} may be indicative of a mechanical function in protein unfolding or
382 translocation, and is reflected in the nature of the substrate used.

383 Taken together, we propose that unstructured model substrates, such as casein and
384 chemically unfolded FFL that are tethered to loop-1, do not require mechanical unfolding prior
385 to substrate translocation. On the other hand, heat-aggregated substrates rely on an additional
386 mechanical unfolding step that is dependent on cooperative interactions between loop-2 from
387 neighboring subunits to exert a stronger pulling force.

388

389 **Loop-3 is essential for substrate translocation through the distal ring**

390 The distinct cooperative and probabilistic mechanisms observed with hetero-hexamers composed
391 of active and inactive loop-2 subunits were intriguing. We therefore performed subunit-mixing
392 experiments with active and inactive loop-3 variants (Hsp104_{Y662A} and Hsp104_{V633G}). In
393 agreement with the literature [49], we observed a near linear decrease in FFL reactivation as the
394 number of Hsp104_{Y662A} subunits increased (Figure 6D). We note that the pattern differs
395 somewhat for heat-aggregated β -gal as seen with loop-2 mutant hetero-hexamers (Figure 6C).
396 Mixing Hsp104 with Hsp104_{V633G} yields hetero-hexamers that do not function cooperatively in
397 protein disaggregation (Figure 6E). How can these differences be reconciled? Loop-3 is at the
398 distal end of the protein-translocating channel where the unfolded polypeptide emerges from the
399 Hsp104 hexamer. Because Tyr662 has previously been shown to bind polypeptides [40,45],
400 Tyr662 may provide a substrate anchor with Val663 adding binding energy by contacting the
401 unfolded polypeptide. We speculate that the observed cooperativity of Hsp104:Hsp104_{Y662A}
402 hetero-hexamers with heat-aggregated β -gal versus chemically denatured FFL might be the result

403 of an additional protein unfolding step needed for native Hsp104 substrates, such as those
404 encountered during heat-stress, and is dispensable for non-native substrates, such as chemically
405 unfolded FFL and casein that is inherently unstructured.

406

407 **DISCUSSION**

408 Hsp104 chaperones are protein disaggregases that recover functional protein from both
409 amorphous and amyloid-forming aggregates. Seminal discoveries from different laboratories
410 have provided key insight into the protein disaggregation mechanism by the Hsp104 bi-
411 chaperone system [1,2]. It is now widely accepted that the Hsp70 chaperone system targets
412 Hsp104 to protein aggregates *in vivo* [17,50] from which Hsp104 extracts one or more
413 polypeptides. The substrate is threaded through the Hsp104 hexamer [45,51], resulting in protein
414 unfolding. We propose that pore loop-1 facilitates the interaction with substrate at the proximal
415 end, providing an anchoring point for initial substrate binding.

416 Our crystal structure of Hsp104₁₋₃₆₀ revealed an interaction between loop-1 and an NCS-
417 related, neighboring molecule which mimics an interaction with substrate and supports a
418 functional role of loop-1 as an anchor for initial substrate binding. Consistent with such a role,
419 replacing the ²⁵⁶Lys-Tyr-Lys²⁵⁸ tri-peptide motif of loop-1 in full-length Hsp104 with glycine
420 and alanine, respectively, abolishes Hsp104 function without disrupting hexamer assembly.
421 Unlike loop-1, the role of loop-2 is more complex. Loop-2 mutants are mostly functional in
422 protein disaggregation, and Hsp104_{4G} that features four glycines instead of loop-2 is nearly as
423 active as Hsp104 wild-type (Figure 4D-F). Yet, replacing loop-2 with four aspartates (Hsp104_{4D})
424 abolishes protein disaggregation *in vitro* (Figure 4D,E) and impaired thermotolerance
425 development *in vivo* (Figure 4F). Lack of sequence preference observed with Hsp104_{4G} and

426 Hsp104_{4A} may be indicative of a more mechanical function of loop-2, such as what would be
427 required to facilitate protein unfolding of heat-aggregated substrates. We speculate that loop-2,
428 driven by ATP hydrolysis in the AAA-1 domain, moves from an “up” to a “down” position
429 inside the central channel, exerting a mechanical pulling force on substrate bound to loop-1 in
430 order to promote local unfolding. This unidirectional motion propels the substrate down the axial
431 channel and, combined with substrate binding and pulling by loop-3, results in protein unfolding
432 and translocation with the unfolded polypeptide emerging from the distal end.

433 Although our model inferred from the crystal structure of Hsp104₁₋₃₆₀ is supported by
434 both biochemical and functional studies in vitro and in vivo, Hsp104₁₋₃₆₀ did not crystallize as a
435 hexameric ring assembly. We therefore cannot exclude contacts between neighboring subunits,
436 which may have impacted substrate binding. While our manuscript was under review, the
437 cryoEM structures of a casein-bound Hsp104 hexamer was reported [19]. Although these
438 structures provided a stereo-chemical framework to interpret our observations, any structural
439 insight must be taken with caution because of the limited resolution and accuracy of these
440 cryoEM reconstructions that remain to be confirmed biochemically. In the hexamer structure,
441 both loop-1 and loop-3 make contact with the equivalent loops of neighboring subunits on both
442 sides supporting a clockwise handover of the unfolded polypeptide when viewed top down.
443 Furthermore, Lys258 of loop-1 interacts with residues of the neighboring subunit immediately
444 following loop-2 (Asp295 and Asp296), which would be consistent with the complex pattern of
445 substrate recovery observed with hexamers composed of active and inactive loop-2 subunits
446 (Figure 6C). Taken together, we propose a coordinated interaction between pore loops with loop-
447 1 facilitating protein binding, loop-2 potentially promoting protein unfolding by pulling down
448 the substrate, and loop-3 mediating substrate translocation through the Hsp104 hexamer.

449 **ACKNOWLEDGEMENTS**

450 We thank the late S. Lindquist for the gift of the Hsp104₁₋₃₆₀ bacterial expression construct, and
451 Y. Chernoff for yeast Hsp104 (pYS104). Use of the APS-SBC 19-ID beamline was supported by
452 the U.S. Department of Energy, Office of Biological and Environmental Research under contract
453 DE-AC02-06CH11357.

454

455 **DECLARATIONS OF INTEREST**

456 The authors declare that there are no competing interests associated with the manuscript.

457

458 **FUNDING INFORMATION**

459 This work was supported by grants from the National Institutes of Health (GM104980 and
460 GM111084) and the Welch Foundation (Q-1530).

461

462 **AUTHOR CONTRIBUTIONS**

463 J.L. and S.L. designed and performed experiments, analyzed the data, and wrote the manuscript.
464 N.S. and L.Y. performed experiments, analyzed the data, and wrote the manuscript. C.C.
465 performed experiments and analyzed the data. F.T.F.T. designed experiments, analyzed the data,
466 and wrote the manuscript. All authors reviewed the manuscript.

467

468 **REFERENCES**

469 1. Doyle, S.M., Genest, O. and Wickner, S. (2013) Protein rescue from aggregates by powerful
470 molecular chaperone machines. *Nat. Rev. Mol. Cell Biol.* **14**, 617-629
471 2. Mogk, A., Kummer, E. and Bukau, B. (2015) Cooperation of Hsp70 and Hsp100 chaperone
472 machines in protein disaggregation. *Front. Mol. Biosci.* **2**, 22 10.3389/fmolb.2015.00022
473 3. Sweeny, E.A. and Shorter, J. (2016) Mechanistic and Structural Insights into the Prion-
474 Disaggregase Activity of Hsp104. *J. Mol. Biol.* **428**, 1870-1885

475 4. Mosser, D.D., Ho, S. and Glover, J.R. (2004) *Saccharomyces cerevisiae* Hsp104 enhances
476 the chaperone capacity of human cells and inhibits heat stress-induced proapoptotic signaling.
477 *Biochemistry* **43**, 8107-8115

478 5. Liu, Q. and Hendrickson, W.A. (2007) Insights into Hsp70 chaperone activity from a crystal
479 structure of the yeast Hsp110 Sse1. *Cell* **131**, 106-120

480 6. Glover, J.R. and Lindquist, S. (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system
481 that rescues previously aggregated proteins. *Cell* **94**, 73-82

482 7. Kaimal, J.M., Kandasamy, G., Gasser, F. and Andréasson, C. (2017) Coordinated Hsp110
483 and Hsp104 Activities Power Protein Disaggregation in *Saccharomyces cerevisiae*. *Mol. Cell.*
484 *Biol.* **37**, e00027-00017 doi: 10.1128/MCB.00027-17

485 8. Parsell, D.A., Kowal, A.S. and Lindquist, S. (1994) *Saccharomyces cerevisiae* Hsp104
486 protein. *J. Biol. Chem.* **269**, 4480-4487

487 9. Lee, S., Sielaff, B., Lee, J. and Tsai, F.T.F. (2010) CryoEM structure of Hsp104 and its
488 mechanistic implication for protein disaggregation. *Proc. Natl. Acad. Sci. USA* **107**, 8135-
489 8140

490 10. Yokom, A.L., Gates, S.N., Jackrel, M.E., Mack, K.L., Su, M., Shorter, J. et al. (2016) Spiral
491 architecture of the Hsp104 disaggregase reveals the basis for polypeptide translocation. *Nat.*
492 *Struct. Mol. Biol.* **23**, 830-837

493 11. Sielaff, B. and Tsai, F.T.F. (2010) The M-domain controls Hsp104 protein remodeling
494 activity in an Hsp70/Hsp40-dependent manner. *J. Mol. Biol.* **402**, 30-37

495 12. Miot, M., Reidy, M., Doyle, S.M., Hoskins, J.R., Johnston, D.M., Genest, O. et al. (2011)
496 Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance
497 and protein disaggregation. *Proc. Natl. Acad. Sci. USA* **108**, 6915-6920

498 13. Striebel, F., Kress, W. and Weber-Ban, E. (2009) Controlled destruction: AAA+ ATPases in
499 protein degradation from bacteria to eukaryotes. *Curr. Opin. Struct. Biol.* **19**, 209-217

500 14. Sauer, R.T. and Baker, T.A. (2011) AAA+ proteases: ATP-fueled machines of protein
501 destruction. *Annu. Rev. Biochem.* **80**, 587-612

502 15. Hung, G.C. and Masison, D.C. (2006) N-terminal domain of yeast Hsp104 chaperone is
503 dispensable for thermotolerance and prion propagation but necessary for curing prions by
504 Hsp104 overexpression. *Genetics* **173**, 611-620

505 16. Lum, R., Niggemann, M. and Glover, J.R. (2008) Peptide and protein binding in the axial
506 channel of Hsp104: insights into the mechanism of protein unfolding. *J. Biol. Chem.* **283**,
507 30139-30150

508 17. Tipton, K.A., Verges, K.J. and Weissman, J.S. (2008) *In vivo* monitoring of the prion
509 replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. *Mol. Cell*
510 **32**, 584-591

511 18. Sweeny, E.A., Jackrel, M.E., Go, M.S., Sochor, M.A., Razzo, B.M., DeSantis, M.E. et al.
512 (2015) The Hsp104 N-terminal domain enables disaggregase plasticity and potentiation. *Mol.*
513 *Cell* **57**, 836-849

514 19. Gates, S.N., Yokom, A.L., Lin, J., Jackrel, M.E., Rizo, A.N., Kendersky, N.M. et al. (2017)
515 Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104.
516 *Science* **357**, 273-279 10.1126/science.aan1052

517 20. Li, T., Weaver, C.L., Lin, J., Duran, E.C., Miller, J.M. and Lucius, A.L. (2015) *Escherichia*
518 *coli* ClpB is a non-processive polypeptide translocase. *Biochem J.* **470**, 39-52

519 21. Deville, C., Carroni, M., Franke, K.B., Topf, M., Bukau, B., Mogk, A. et al. (2017) Structural
520 pathway of regulated substrate transfer and threading through an Hsp100 disaggregase. *Sci.
521 Adv.* **3**, e1701726

522 22. Lee, J., Kim, J.-H., Biter, A.B., Sielaff, B., Lee, S. and Tsai, F.T.F. (2013) Heat shock protein
523 (Hsp) 70 is an activator of the Hsp104 motor. *Proc. Natl. Acad. Sci. USA* **110**, 8513-8518

524 23. Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in
525 oscillation mode. *Methods Enzymol.* **276**, 307-326

526 24. Vagin, A. and Teplyakov, A. (1997) MOLREP: an Automated program for molecular
527 replacement. *J Appl Cryst* **30**, 1022-1025

528 25. Lee, J., Sung, N., Mercado, J.M., Hryc, C.F., Chang, C., Lee, S. et al. (2017) Overlapping
529 and specific functions of the Hsp104 N domain define its role in protein disaggregation. *Sci.
530 Rep.* **7**, 11184

531 26. Emsley, P. and Kevin, C. (2004) Coot: model-building tools for molecular graphics. *Acta
532 Crystallogr.* **D60**, 2126-2132

533 27. Adams, P.D., Afonine, P.V., Bunkóczki, G., Chen, V.B., Davis, I.W., Echols, N. et al. (2010)
534 PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta
535 Crystallogr. D Biol. Crystallogr.* **66**, 213-221

536 28. Taylor, D., Cawley, G. and Hayward, S. (2014) Quantitative method for the assignment of
537 hinge and shear mechanism in protein domain movements. *Bioinformatics* **30**, 3189-3196

538 29. Carter, S.G. and Karl, D.W. (1982) Inorganic phosphate assay with malachite green: an
539 improvement and evaluation. *J. Biochem. Biophys. Methods* **7**, 7-13

540 30. Biter, A.B., Lee, J., Sung, N., Tsai, F.T.F. and Lee, S. (2012) Functional analysis of
541 conserved *cis*- and *trans*-elements in the Hsp104 protein disaggregating machine. *J. Struct.
542 Biol.* **179**, 172-180

543 31. Derkatch, I.L., Bradley, M.E., Zhou, P., Chernoff, Y.O. and Liebman, S.W. (1997) Genetic
544 and environmental factors affecting the de novo appearance of the [PSI⁺] prion in
545 *Saccharomyces cerevisiae*. *Genetics* **147**, 507-519

546 32. Haslberger, T., Bukau, B. and Mogk, A. (2010) Towards a unifying mechanism for
547 ClpB/Hsp104-mediated protein disaggregation and prion propagation. *Biochem. Cell Biol.* **88**,
548 63-75

549 33. Heuck, A., Schitter-Sollner, S., Suskiewicz, M.J., Kurzbauer, R., Kley, J., Schleiffer, A. et al.
550 (2016) Structural basis for the disaggregase activity and regulation of Hsp104. *Elife* **5**,
551 e21516

552 34. Wang, P., Li, J., Weaver, C., Lucius, A. and Sha, B. (2017) Crystal structures of Hsp104 N-
553 terminal domains from *Saccharomyces cerevisiae* and *Candida albicans* suggest the
554 mechanism for the function of Hsp104 in dissolving prions. *Acta Cryst* **D73**, 365-372

555 35. Song, H.K., Hartmann, C., Ramachandran, R., Bochtler, M., Behrendt, R., Moroder, L. et al.
556 (2000) Mutational studies on HsIU and its docking mode with HsIV. *Proc. Natl. Acad. Sci.
557 USA* **97**, 14103-14108

558 36. Sousa, M.C., Trame, C.B., Tsuruta, H., Wilbanks, S.M., Reddy, V.S. and McKay, D.B.
559 (2000) Crystal and solution structure of an HsUV protease-chaperone complex. *Cell* **103**,
560 633-643

561 37. Glynn, S.E., Martin, A., Nager, A.R., Baker, T.A. and Sauer, R.T. (2009) Structures of
562 asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-
563 unfolding machine. *Cell* **139**, 744-756

564 38. Wang, F., Mei, Z., Qi, Y., Yan, C., Hu, Q., Wang, J. et al. (2011) Structure and mechanism
565 of the hexameric MecA-ClpC molecular machine. *Nature* **471**, 331-335

566 39. Li, J. and Sha, B. (2002) Crystal structure of *E. coli* Hsp100 ClpB nucleotide-binding domain
567 1 (NBD1) and mechanistic studies on ClpB ATPase activity. *J. Mol. Biol.* **318**, 1127-1137

568 40. Lum, R., Tkach, J.M., Vierling, E. and Glover, J.R. (2004) Evidence for an
569 unfolding/threading mechanism for protein disaggregation by *Saccharomyces cerevisiae*
570 Hsp104. *J. Biol. Chem.* **279**, 29139-29146

571 41. Schlieker, C., Weibezahn, J., Patzelt, H., Tessarz, P., Strub, C., Zeth, K. et al. (2004)
572 Substrate recognition by the AAA+ chaperone ClpB. *Nat. Struct. Mol. Biol.* **11**, 607-615

573 42. Wang, J., Song, J.J., Franklin, M.C., Kamtekar, S., Im, Y.J., Rho, S.H. et al. (2001) Crystal
574 structure of the HsIVU peptidase-ATPase complex reveal an ATP-dependent proteolysis
575 mechanism. *Structure* **9**, 177-184

576 43. Hinnerwisch, J., Fenton, W.A., Furtak, K.J., Farr, G.W. and Horwich, A.L. (2005) Loops in
577 the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation.
578 *Cell* **121**, 1029-1041

579 44. Siddiqui, S.M., Sauer, R.T. and Baker, T.A. (2004) Role of the processing pore of the ClpX
580 AAA+ ATPase in the recognition and engagement of specific protein substrates. *Genes Dev.*
581 **18**, 369-374

582 45. Weibezahn, J., Tessarz, P., Schlieker, C., Zahn, R., Maglica, Z., Lee, S. et al. (2004)
583 Thermotolerance requires refolding of aggregated proteins by substrate translocation through
584 the central pore of ClpB. *Cell* **119**, 653-665

585 46. Park, E., Rho, Y.M., Koh, O.J., Ahn, S.W., Seong, I.S., Song, J.J. et al. (2005) Role of the
586 GYVG pore motif of HsIU ATPase in protein unfolding and translocation for degradation by
587 HsIV peptidase. *J. Biol. Chem.* **280**, 22892-22898

588 47. Nelson, R., Sawaya, M.R., Balbirnie, M., Madsen, A.O., Riek, C., Grothe, R. et al. (2005)
589 Structure of the cross-beta spine of amyloid-like fibrils. *Nature* **435**, 773-778

590 48. Lewandowska, A., Matuszewska, M. and Liberek, K. (2007) Conformational properties of
591 aggregated polypeptides determine ClpB-dependence in the disaggregation process. *J. Mol.*
592 *Biol.* **371**, 800-811

593 49. Doyle, S.M., Hoskins, J.R. and Wickner, S. (2012) DnaK-dependent disaggregation by
594 Caseinolytic Peptidase B (ClpB) mutants reveals functional overlap in the N-terminal domain
595 and nucleotide-binding domain-1 pore tyrosine. *J. Biol. Chem.* **287**, 28470-28479

596 50. Winkler, J., Tyedmers, J., Bukau, B. and Mogk, A. (2012) Hsp70 targets Hsp100 chaperones
597 to substrates for protein disaggregation and prion fragmentation. *J. Cell Biol.* **198**, 387-404

598 51. Tessarz, P., Mogk, A. and Bukau, B. (2008) Substrate threading through the central pore of
599 the Hsp104 chaperone as a common mechanism for protein disaggregation and prion
600 propagation. *Mol. Microbiol.* **68**, 87-97

601

602 **FIGURE LEGENDS**

603 **Figure 1. Crystal structure of Hsp104₁₋₃₆₀**

604 Superposition of the three Hsp104₁₋₃₆₀ monomers shows the *en bloc* mobility of the N domains.
605 Atomic structures were superimposed through their AAA-1_{large} domain. Molecule 1 (mol 1) is
606 shown in teal, molecule 2 (mol 2) in magenta, and molecule 3 (mol 3) in yellow.

607

608 **Figure 2. Stereochemistry of molecular interactions between AAA-1 pore loops and a
609 substrate mimic**

610 (A) Stereo-view of the molecular contacts between loop-1/2 of mol 1 (teal) and mol 2 (magenta)
611 and the N' domain of an NCS-related neighboring molecule that mimics a bound substrate. The
612 C α positions of Tyr257 (loop-1) and of Asn292 (loop-2) are shown as spheres. The protein-
613 translocating channel that traverses the Hsp104 hexamer is indicated by the 6-fold axis. The
614 figure shows that loop-2 adopts an “up” and “down” configuration in the crystal, which may
615 resemble ATP-driven conformations associated with substrate translocation. (B) Molecular
616 interface between loop-1 and the bound substrate mimic. Loop-1 residues are shown in teal and
617 N' domain residues in grey. The inset shows a close-up view of the same interface.

618

619 **Figure 3. Loop-1 mediates protein-protein interactions essential to Hsp104 function**

620 (A) Ribbon diagram showing the location of loop-1 relative to loop-2 (grey). Residues of the
621 ²⁵⁶Lys-Tyr-Lys²⁵⁸ tri-peptide motif that mediate substrate interaction are colored and shown as
622 stick model. (B) Size-exclusion chromatograms of Hsp104 and loop-1 mutants. (C) ATPase
623 activities of loop-1 mutants. Mutated residues are shown in red. (D and E) Coupled chaperone
624 assay showing the relative recovery of enzymatic activity by loop-1 mutants in the presence of

625 the Hsp70 chaperone system with (D) chemically denatured FFL and (E) heat-aggregated β -gal
626 as substrate. Means of three independent measurements \pm S.D. are shown. (F) Induced (top) and
627 basal (bottom) thermotolerance of $\Delta hsp104$ yeast expressing the empty vector, Hsp104, or loop-1
628 mutants.

629

630 **Figure 4. Loop-2 is sensitive to mutation and potentially promotes substrate unfolding**

631 (A) Ribbon diagram generated by superimposing the AAA-1_{large} domain of mol 1 (light gray)
632 and mol 2 (dark gray), showing the location of loop-2 (magenta/teal) relative to loop-1 (grey).
633 Loop-2 adopts an “up” (magenta) and “down” configuration (teal) that may mimic
634 conformations associated with substrate unfolding. C α positions of loop-2 residues are shown as
635 spheres. (B) Size-exclusion chromatograms of Hsp104 and loop-2 mutants. (C) ATPase
636 activities of loop-2 mutants. Mutated residues are shown in red. (D and E) Coupled chaperone
637 assay showing the relative recovery of enzymatic activity by loop-2 mutants in the presence of
638 the Hsp70 chaperone system with (D) chemically denatured FFL and (E) heat-aggregated β -gal
639 as substrate. Means of three independent measurements \pm S.D. are shown. (F) Induced
640 thermotolerance of $\Delta hsp104$ yeast expressing the empty vector, Hsp104, or loop-2 mutants.

641

642 **Figure 5. Loop-3 is critical for substrate binding and translocation through the distal ring**

643 (A) Ribbon diagram of *C. thermophilum* Hsp104 [33] showing the location of loop-3 with the
644 side chains of Tyr662 and Val663 represented as green stick model. (B) Size-exclusion
645 chromatograms of Hsp104 and loop-3 mutants. (C) ATPase activities of loop-3 mutants. Mutated
646 residues are shown in red. (D and E) Coupled chaperone assay showing the relative recovery of
647 enzymatic activity by loop-3 mutants in the presence of the Hsp70 chaperone system with (D)

648 chemically denatured FFL and (E) heat-aggregated β -gal as substrate. Means of three
649 independent measurements \pm S.D. are shown. (F) Induced thermotolerance with $\Delta hsp104$ yeast
650 cells expressing the empty vector, Hsp104, or loop-3 mutants.

651

652 **Figure 6. Protein disaggregation by Hsp104 hetero-oligomers composed of active and**
653 **inactive pore loop mutant subunits**

654 (A) Ribbon diagram of a composite model of an Hsp104 monomer generated by superposing the
655 AAA-1_{large} domain of yeast Hsp104₁₋₃₆₀ onto the crystal structure of *C. thermophilum* Hsp104
656 [33]. Channel facing loops are colored in teal (loop-1), red (loop-2), and green (loop-3). (B, C, D,
657 and E) Relative recoveries of FFL and β -gal activities by Hsp104 hetero-oligomers composed of
658 wild-type and pore loop mutant subunits in the presence of the Hsp70 chaperone system. Means
659 of three independent measurements \pm S.D. are shown. The dashed line represents the linear
660 decrease expected if the activity of the Hsp104 hexamer is proportional to the number of wild-
661 type subunits present. Buffer only dilutions are also shown. (B) Hsp104:Hsp104_{GAG} (loop-1), (C)
662 Hsp104:Hsp104_{4D} (loop-2), (D) Hsp104:Hsp104_{Y662A} (loop-3), and (E) Hsp104:Hsp104_{V663G}
663 (loop-3).