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Abstract 22 

In this review article, we trace the history of events leading to the development of individual-based 23 

models (IBMs) to represent aquatic organisms in rivers and streams. As a metaphor, we present this 24 

history as a series of confluences between individual scientists sharing ideas. We describe contributions 25 

of these models to science and management. One iconic feature of river IBMs is the linkage between 26 

flow and the physical habitat experienced by individuals, and the first model that focused on this linkage 27 

is briefly described. We continue by reviewing the contributions of riverine IBMs to eight broad areas of 28 

scientific inquiry. The first four areas include research to understand 1) the effects of flow regimes on 29 

fish populations, 2) species interactions (e.g., size-mediated competition and predation), 3) fish 30 

movement and habitat selection, and 4) contaminant and water quality impacts on populations. Next, 31 

we review research using IBMs 5) to guide conservation biology of imperiled taxa through population 32 

viability analysis, including research 6) to understand fragmentation and reconnection, 7) to understand 33 

genetic outcomes for riverine metapopulations, and 8) to anticipate the future effects of temperature 34 

and climate change. This rich body of literature has contributed to both theoretical insights (e.g., about 35 

animal behavior and life history) and applied insights (e.g., population-level effects of flow regimes, 36 

temperature, and the effects of hydropower and other industries that share rivers with aquatic biota). 37 

We finish by exploring promising branches that lie ahead in the braided channel that represents future 38 

river modeling research. 39 

 40 

 41 

We dedicate this paper to Dr. Webster Van Winkle, who passed away March 29, 2018. Webb was a 42 

facilitator of, and pioneer in, IBM modeling and coauthor of the first IFIM-type river IBMs. 43 
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1. Individual confluences passing streams of memes 44 

Ideas in science rarely emerge intact. Rather the conditions leading to new ideas or ‘memes’ spring up in 45 

different places and follow independent paths that then converge, merge, and spread. This was true for 46 

individual-based modeling (IBM), and later, the development of IBMs for biota in rivers and streams. 47 

Ideas flowing out of tributaries carried advances in computer science, theoretical ecology (e.g., optimal 48 

foraging theory), forest-gap modeling, and physical modeling of dynamic stream habitat.  49 

These ideas co-mingled to generate a diverse, braided complex of downstream channels that continues 50 

to bring new insights (Figure 1). These downstream channels are different in size. A large productive 51 

inSTREAM modeling community of users is an important example. In addition, the initial EPRI models fed 52 

into genetic IBMs (IBM+G) and other variants and these have been used to address a wide variety of 53 

basic and applied scientific questions. 54 

[Figure 1] 55 

The use of individual-based modeling in ecology, as depicted in Figure 1, emerged initially at the 56 

confluence between silvicultural problems (one tributary branch) and technological progress (another 57 

tributary) in the early 1970’s. The technological advance was the increasing power of computers, while 58 

the motivating problems involved how to optimize planted forests; e.g., what trees to plant, and how to 59 

space them (Shugart et al., 2018; Shugart and Woodward, 2011). Computational power allowed Yale 60 

ecologist Daniel Botkin to model a forest in the way that he thought it really worked mechanistically. 61 

Working with James Wallis and James Janak of IBM’s Thomas J. Watson Research Center, Botkin 62 

simulated the growth of individual trees of different species as accurately as possible, given their basic 63 

traits and local soil and climate conditions, and then let trees from different species interact on a small 64 

plot through mutual competition for light. This general type of model was termed an ‘individual-based 65 

model’, or, coincidentally, IBM.  66 
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JABOWA was called a ‘gap-phase replacement’ model because the spatial area simulated was about the 67 

size of a gap left by the death of a large canopy tree (Botkin et al., 1972). JABOWA predicted the 68 

successional dynamics of tree communities in a New Hampshire forest so well that forest ecologists such 69 

as Bormann and Likens (1979) used it to derive their ideas about biomass accumulation in aggrading 70 

forests. Hank Shugart and Darrell West, then research ecologists at Oak Ridge National Laboratory, soon 71 

developed a version of a gap-phase replacement IBM named FORET (Shugart and West, 1977) and other 72 

models followed, as reviewed by Bugmann (2001). By now scores of different forest simulation 73 

platforms with a high degree of detail and sophistication exist and are applied world-wide.  74 

Two factors made fish the next candidate for extensive application of individual-based modeling. The 75 

first factor is that individual size is an important characteristic for piscivorous fish, as it was for trees. As 76 

gape-limited predators, size influences the foraging success of fish and their ability to escape predation 77 

by other fishes. Individual differences in size within a cohort could therefore influence the dynamics of 78 

that cohort. DeAngelis et al. (1980) demonstrated this for a cohort of young-of-the-year largemouth 79 

bass (Micropterus salmoides) in an aquarium. Depending on the initial size distribution, varying degrees 80 

of cannibalism could occur within the cohort, leading to a final number of surviving fish after a couple of 81 

months. The IBM, which followed every fish in the cohort through time, was able to predict the 82 

outcomes of two successive aquarium experiments surprisingly well.  83 

The second factor favoring development of IBMs for fish was the need to understand the effects of 84 

mortality of fish though entrainment and impingement by nuclear power plant cooling systems (Figure 85 

1). A key question was to what extent compensatory mechanisms in the fish populations could mitigate 86 

the loss of perhaps billions of eggs, larval, and other early life-stage fish. At high densities, few offspring 87 

of such species survive to adulthood due to density-dependent mortality. The loss of some fish by non-88 

natural factors such as power plants increases resources available to others. Therefore, increased 89 
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mortality imposed by anthropogenic sources was proposed by some scientists to have little net effect on 90 

recruitment to the adult stage.  91 

To understand and quantify how such compensatory mechanisms work in fish populations, the Electric 92 

Power Research Institute (EPRI) funded a 10-year project, “Compensatory Mechanisms in Young-of-the-93 

Year Fish”, at Oak Ridge National Laboratory (ORNL), which already had a long history of studying the 94 

effects of power plants on fish (Barnthouse et al., 1984; Boreman et al., 1981; Coutant, 1971). The 95 

project, led by Dr. Webster Van Winkle and stimulated by the success of IBM forest simulations by 96 

colleagues at ORNL, used the IBM approach to try to understand the complex processes of growth and 97 

mortality of young-of-year (YOY) fish of species potentially impacted by nuclear power plants. At 98 

universities across North America, PhD students funded by EPRI developed such models, in the process 99 

training a generation of fish ecologists in modeling. Following the ‘Wisconsin’ school of fish modeling, 100 

the bioenergetics of each fish was modeled in these IBMs, and large numbers of young-of-year fish were 101 

simulated, along with food resources and predation, to estimate the effects of power plants and other 102 

mortality factors. Early papers were published by DeAngelis et al. (1990), Madenjian et al. (1991), and 103 

Deangelis et al. (1991) for fish in lakes. DeAngelis et al. (1993) predicted patterns of recruitment vs. egg 104 

density and the transition from density-dependent to density-independent mortality in YOY fish that 105 

agreed well with empirical patterns. Scheffer et al. (1995) introduced the key IBM modeling technique of 106 

‘super individuals’ to efficiently simulate huge numbers of YOY, most of which die in the first year of life. 107 

Applications of IBMs to fishes were reviewed by (VanWinkle et al., 1993) and more recently by Sibly et 108 

al. (2013).  The growth in IBMs during the late 1980s in all areas of ecology and across taxa stimulated 109 

both a review paper of individual-based modeling in general (Huston et al., 1988) and a workshop at the 110 

University of Tennessee in 1990, published as a proceedings (DeAngelis and Gross, 1992, editors). In a 111 

subsequent review, (DeAngelis and Mooij, 2005) counted over 900 manuscripts using IBMs, over 100 of 112 
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which were applied to fish, though these numbers were surely underestimates. The monograph of 113 

Grimm and Railsback (2005) advanced the theoretical foundations for individual-based modeling. 114 

Modeling of individual activities was influenced by bioenergetics modeling (e.g., the ‘Wisconsin’ school 115 

for fishes, mostly centered on lake fishes), optimal foraging theory, and theories related to habitat 116 

selection and movement (Figure 1). These component sub-models used to represent individual activities 117 

formed the backbone of IBMs. Other early papers described IBMs of riverine populations. (Petersen and 118 

Deangelis, 1992) simulated northern pike fish (formerly squawfish, Esox lucius) predation on juvenile 119 

salmon, addressing the question of how schooling of downstream swimming smolts reduced predation 120 

risk in a Columbia River reservoir, and Rose and Cowan (1993) simulated striped bass in the Potomac 121 

River.  122 

Arguably, river IBMs differ from those applied to organisms in other ecosystems because the dynamic 123 

and directional changes in river habitat are such an important influence on species’ life histories. Thus, 124 

the ability to simulate population-level responses to flow as an outcome of individual behaviors is a 125 

defining characteristic, and development of river IBMs depended on the convergence of two tributary 126 

ideas. One tributary carried the biological IBM and the other carried the Instream Flow Incremental 127 

Methodology or IFIM (Orth and Maughan, 1982). Used to establish minimum flows for fishes below 128 

dams in the United States, the IFIM has two components; (1) physical habitat modeling (for the variables 129 

depth, velocity, and cover) and (2) representation of species preferences for these three habitat 130 

variables (Bovee, 1982; Thomas and Bovee, 1993). Because preference curves are not flow-invariant and 131 

do not necessarily reflect a species’ habitat requirements over time well, the IFIM generated 132 

controversy from its inception (Mathur et al., 1985; Railsback, 2016). In the confluence of the 1980s, Dr. 133 

Mike Sale, a recently-hired environmental engineer, brought his experience with IFIM models to Oak 134 

Ridge, where he recognized the potential for applying IBMs in river ecosystems. The confluence of ideas 135 

among theoretical modelers, environmental engineers, and aquatic ecologists in East Tennessee 136 
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spawned many uses of IFIM models using IBMs to study riverine fishes. These tools have produced 137 

numerous insights, not just in understanding flow responses by fishes and reducing uncertainty in 138 

instream-flow standards (VanWinkle et al., 1997), but also in understanding biological processes. Below 139 

we will highlight aspects specific to lotic habitats. 140 

Over the years, individual- or agent-based modeling has evolved (DeAngelis and Grimm, 2014). For 141 

example, computation times were reduced through the use of various ‘cloning’ methods for 142 

representing meta-individuals started to be used (Rose et al., 1993). An attractive feature of IBMs as 143 

mechanistic process-based models is the ability to ‘validate-by-parts’ and to compare against 144 

intermediate outputs. New techniques were adopted for model-data comparison. One is to compare 145 

patterns produced by the model against those observed (e.g., the use of pattern-oriented model 146 

evaluation (Grimm and Railsback, 2012; Grimm et al., 2005), which is similar to ‘functional validation’ 147 

(Jager et al., 2000). The pattern-oriented approach can be used to select among alternative model 148 

structures that differ in complexity. A protocol for documenting IBMs was developed (Grimm et al., 149 

2010). In addition, significant advances have been made in developing new methods for incorporating 150 

historical data and producing a distribution of model outcomes from a likelihood-weighted joint 151 

distribution of input parameters [e.g., approximate Bayesian computational methods (Piou et al., 2009)]. 152 

Developments specific to riverine IBMs include alternative approaches to representing dynamic stream 153 

habitat (hydrodynamics, stream temperature and water quality), simulation of animal movement in a 154 

directional flow environment, and models that use network theory as a basis for representing dendritic 155 

riverine metapopulations. These advances are described in the sections below. 156 

In this paper, we trace the ideas leading to modeling of river fish populations using IBMs, we highlight 157 

some of the key contributions IBMs have made to understanding aquatic populations in river habitat, 158 

and we suggest future opportunities for new discoveries.  159 
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2. Headwaters of riverine IBMs 160 

One of the first IBMs applied to riverine populations in the early 1990’s sought to understand the effects 161 

of regulated flow regimes on fish in the North Anna River, Virginia, USA. The model, focused on 162 

smallmouth bass (M. dolomieu), was published in the journal, Rivers, that is no longer in existence (Jager 163 

et al., 1993)(see Supplemental Information). This model evolved from a version developed by Deangelis 164 

et al. (1991) for lakes (Figure 1). The lake model simulated gape-limited optimal foraging on a spectrum 165 

of invertebrate (e.g., zooplankton) prey, ontogenetic size-based shifts in optimal diet, smallmouth bass 166 

bioenergetics, as well as nesting and reproduction. 167 

To represent fish in a river environment, other processes became important to include.  Representation 168 

of physical habitat linking time series of flow and temperature to 2-dimensional fields of depth and 169 

velocity, and the responses of each biological process to those fields is depicted in Figure 2 and 170 

described below. 171 

[Figure 2]  172 

Physical habitat. Flow is such an important driver of habitat for fishes and other river biota that much 173 

more attention to dynamic simulation of habitat was required. This was achieved by coupling hydraulic 174 

simulation portion of the Physical Habitat Simulation System (PHABSIM) directly with an individual-175 

based model for nesting, reproduction, and YOY dynamics (Figure 2). To represent hydrodynamics, the 176 

data requirements were significantly higher than those of previous IBMs. PHABSIM relies on 177 

measurements of depth and velocity along fixed transects at different flows, as well as substrate and 178 

cover. A representative stream reach was partitioned into spatial cells containing measurement stations 179 

from a PHABSIM survey of the reach. The model required daily predictions of average depth and velocity 180 

for each grid cell in the representative reach as a function of daily average flow (Figure 2). In later 181 
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models, changes in velocity with depth and presence of cover were represented as well (Van Winkle et 182 

al., 1998). Water temperature was also simulated, influencing fish growth and development. 183 

Movement. The smallmouth bass IBM uses departure rules to simulate fish movement (Jager and Tyler, 184 

2001). Each individual fish’s growth over time is tracked. In a time-for-space substitution, movement is 185 

initiated when growth falls below the fish’s long-term expectation. 186 

Foraging. Foraging differs substantially in flowing rivers compared with lentic habitats. Regeneration of 187 

prey is affected by flow, and by the local habitat’s carrying capacity, setting an upper limit on standing 188 

biomass. Larger invertebrate prey items and crayfish are simulated because these can be important in 189 

streams, especially for larger bass. The model was able to reproduce fish growth in the North Anna 190 

River. 191 

Mortality. Mortality factors in rivers and streams differ from those in lakes because of the risk of being 192 

swept away by high flows or dewatered during non-mobile life stages (i.e., eggs and larvae during 193 

nesting). One insight produced from this river IBM is a recognition that non-mobile life stages are the 194 

most vulnerable when examining responses to disturbance regimes. 195 

Reproduction. Reproduction and early development are affected by different abiotic effects in rivers 196 

than they are in lakes. Nesting and guarding of nests by males were represented in both the lake and 197 

versions of the model. However, to understand nesting success in dynamic rivers, it is important not 198 

only to simulate disturbance of nests by flow extremes (e.g., floods or dewatering), but also to provide 199 

the opportunity for renesting if disturbance is early in the season. We compared simulated reproductive 200 

success and first year growth with field observations from the North Anna River in Virginia. The timing of 201 

nesting was well-simulated based on water temperature (see Supplemental Information), and renesting 202 

occurred on three occasions in 2-year simulations. 203 
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In summary, this first IBM linking river habitat dynamics to fish populations explored previously 204 

unappreciated facets of riverine fish responses and adaptation to flow. But more importantly, it laid the 205 

groundwork for subsequent modeling efforts to evaluate the influence of alternative flow regimes, as 206 

the authors continued to deploy river IBMs, with the next applications focused on trout (Van Winkle et 207 

al., 1998) and Chinook salmon (Jager et al., 1997), as well as numerous others reviewed below. 208 

3. How have river IBMs contributed to ecology? 209 

Since the early models described above, river IBMs have fanned out to address a varied set of questions, 210 

illustrated by the braided channel in Figure 1, yielding different kinds of insights. Spatially explicit IBMs 211 

are well-suited for many questions involving aquatic populations in river habitats for several reasons. 212 

First, as noted by Anderson et al. (2013b) properties that emerge from transient, non-equilibrium 213 

dynamics are particularly important in disturbance-dominated ecosystems like rivers (Strange et al., 214 

1993). Second, risks are dependent on attributes of individuals. In addition to size-dependent predation 215 

risk, in regulated rivers, entrainment and survival of turbine passage both depend on fish size. 216 

HIJ conducted a Web of Science search of “individual-based model” in the title and (‘river’ OR ‘stream’), 217 

which found 54 publications, with an average of 25 citations per publication.  When ‘individual-based’ 218 

was not required to be in the title, and extraneous topics were excluded, just under 200 papers were 219 

identified between 1992 and 2018 and these produced an average of 36.2 citations per item. The 220 

number of publications increased near-linearly over time. Many of these publications were produced by 221 

a few individuals (Dr. Steve Railsback, with coauthor Dr. Brett Harvey authored 8.2 and 7.1% of papers 222 

based on the InSTREAM model). Other authors represented many countries, with more than half from 223 

the USA, roughly 10% each from England, Canada, and France, followed by Germany, the Netherlands, 224 

China, Japan, and Norway and twelve other countries. Papers were published in the journal Ecological 225 

Modeling (16%), fisheries journals (28%), and general ecology and conservation journals (16%), 226 
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especially PLOS One and Ecological Applications, with the remaining journals represented by fewer than 227 

two papers each. Two studies were published in the Proceedings of the National Academy of Sciences, 228 

USA. 229 

Processes in rivers, as in most ecosystems, span multiple scales (Anderson et al., 2005). Likewise, 230 

riverine IBMs with different purposes fall along a range of scales from a focus on spatial questions 231 

related to fish responses to flow- and temperature-mediated variation in habitat (lower left in Figure 3) 232 

to questions related to metapopulation dynamics in river networks (upper right in Figure 3). 233 

[Figure 3] 234 

The specific questions which river IBMs have been used to address (Figure 5) have evolved over time, 235 

but at least one general purpose (e.g., understanding the effects of river regulation) has remained an 236 

active area of research throughout. One significant shift in emphasis has been from models to manage 237 

stream habitat for fisheries to Population Viability Analysis (PVA) models designed to guide recovery of 238 

rare species of high conservation concern. Below, we briefly discuss four categories of IBM studies 239 

focused on single tailwaters or reaches in which higher spatial resolution is used (bottom left in Figure 3) 240 

and four categories of IBM modeling studies involving long-term projections of meta-populations over 241 

broader spatial scales (upper right portion of Figure 3).  These studies relate to the questions depicted in 242 

Figure 4. 243 

[Figure 4] 244 

3.1 Research to understand the effects of flow regimes on fish populations 245 

Understanding how flow regimes influence fishes is a fundamental area of river research has been, and 246 

continues to be, explored by IBMs (Figure 6a). From an early emphasis on determining ‘how much flow a 247 

river needs’ through setting minimum flow standards, to the more-recent emphasis on flow variability, a 248 
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mechanistic understanding of the linkages between flow regimes is needed, and spatially explicit IBMs 249 

provide this capability. Some of the more recent research is described in section 3 under ‘Research to 250 

understand habitat selection and movement’. The purpose of early river IBMs was to improve the ‘fish 251 

preference’ curves used in IFIM. Although IFIM is typically used in a regulatory context to set minimum 252 

flows, IBMs made it possible to address questions about flow regimes. For example, optimization flow 253 

releases from reservoirs was used to benefit downstream fishes, such as Chinook salmon (Oncorhynchus 254 

tshawytscha) (Jager and Rose, 2003). A key finding has been that thermal effects tend to have more 255 

biological importance than those of flow alone (Jager et al., 1997) (Tyler and Rutherford, 2007; Xu et al., 256 

2010). In addition, IBMs have enabled researchers to evaluate the mechanisms behind ecological 257 

riverflow (i.e., properties of flow regimes including variation in flows) that benefit tailwater fish 258 

populations (Tyler and Rutherford, 2007) as well as ways in which ‘natural flows’ can be improved on. 259 

For example, one [non-IBM] study found that timing of releases earlier in spring than the natural snow-260 

melt pulse produced floodplain inundation that allowed juvenile salmon to grow faster and exit the 261 

system before river temperatures became dangerously warm (Jager, 2014). Thus, an ‘unnatural’ flow 262 

regime performed better than the way that the river was historically regulated, which usually produced 263 

suboptimal flows for fishes. 264 

[Figure 5] 265 

Moving from an initial focus on setting minimum flow regulations, river managers now also focus on 266 

understanding elements of flow regimes that have high ecological value, and these are often the 267 

seasonal pulse flows (for example produced by snowmelt) to which native species are adapted in 268 

temperate rivers. In regulated rivers, flow augmentation ensures that high flows are available to 269 

downstream biota when needed. These pulse flows may facilitate migration and improve temperatures 270 

below dams. For example, cold, augmentation flows from Dworshak Reservoir are an important part of a 271 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

13 
 

strategy to facilitate salmon and steelhead migration through the hydrosystem of the lower Columbia 272 

River in spring. Augmentation may also be needed to provide flow in cases of extreme dewatering. In a 273 

more-arid climate, Pine et al. (2017) used a population viability analysis (PVA) IBM model to evaluate the 274 

potential benefits of augmenting flows to two federally-listed fish species in an arid New Mexico, USA 275 

stream.  276 

Another important research area for regulated rivers is to understand trade-offs between operating in 277 

‘peaking’ or ‘load-following’ mode, whereby flows are released when electricity demand (and value) is 278 

high. Rapid fluctuations in flow can have adverse effects on biota, and these can be modeled by IBMs 279 

that simulate influences on bioenergetics and on non-mobile life stages. For example, an IBM of the 280 

Green River below Flaming Gorge Dam predicted the effects of flow fluctuations on nursery habitats of 281 

the Colorado pikeminnow (Ptychocheilus lucius) (Grand et al., 2006).  282 

3.2 Research to understand species interactions 283 

IBMs can be used effectively to study species interactions (Figure 6b). For example, the spread of 284 

invasive aquatic species is a significant threat to native species worldwide, and one associated with 285 

human activity (Leprieur et al., 2008). Stream IBMs can be used to understand biologically mediated 286 

invasion dynamics. For example, topological properties of river networks and the spatial distribution of 287 

larval habitat within them controlled the spread of sea lamprey (Neeson et al., 2012).  288 

The use of an IBM is particularly important when individual characteristics influence the outcome of 289 

such interactions. For example, representing individual size differences among fishes was an early 290 

emphasis because it highlighted the role of size-based (gape-limited) predation (Rice et al., 1993). Size 291 

was also the focus of the first application of an IBM to fish stocking, as resource managers became 292 

aware that releasing fish at a larger size could enhance survival (Madenjian et al., 1991). In situations 293 

when spatial resources can be defended (e.g., drift-feeding territories, high-quality spawning habitat), 294 
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size-based competition for space occurs. This has been represented in models for salmonids. Similarly, 295 

competition for mates and female fecundity are functions of size or condition (Van Winkle et al., 1998). 296 

The need to grow beyond a certain size prior to a stressful period (e.g., winter), and the population 297 

resilience created by ‘contest’ competition and compensatory (density-dependent) mortality were two 298 

insights gained through individual-based modeling (DeAngelis et al., 1993). In rivers, the first application 299 

with a focus on size-mediated effects simulated predation on migrating salmon smolts (Petersen and 300 

Deangelis, 1992, 2000). These size-based algorithms were later incorporated into models of bass 301 

predation on salmon juveniles in rivers, particularly deep pools (Jager et al., 1997). The interaction 302 

between warming rivers and predation by warm-water fishes on cold-water salmonids remains an 303 

important concern for species listed under the Endangered Species Act in rivers of the western US. 304 

Trophic dynamics in rivers have been represented by IBMs (Anderson et al., 2012; Giacomini et al., 2009; 305 

Railsback and Harvey, 2013; Robson et al., 2017). Simulating predation required some changes when 306 

applied to species in flowing rivers. In lentic habitats, modelers typically assume that the geometry 307 

defined by the reaction distance of the fish and its speed define a cylindrical volume of pelagic prey, or a 308 

truncated volume of benthic prey, available to foraging fishes. In rivers, a strategy of ‘sit-and-wait’ drift 309 

feeding becomes possible (Fausch, 2014). Therefore, at low and high velocities, individuals are predicted 310 

to adopt a search strategy, whereas at intermediate velocities, profitability of a drift-feeding strategy is 311 

higher (Van Winkle et al., 1998). Another consideration is the relationship between flow and turbidity 312 

for visual-feeding fishes. Increased turbidity can lead to reduced feeding and subsequent starvation 313 

(Harvey and Railsback, 2009). 314 

3.3 Research to understand fish movement and habitat selection 315 

One of the most important reasons for adopting an individual-based approach is the need to represent 316 

movement at a relatively fine resolution (i.e., multiple reaches or patches within reaches versus a few 317 
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different habitats). Understanding animal behavior (Figure 6c), including movement and habitat 318 

selection, has been studied by postulating and testing movement rules (Rohlf and Davenport, 1969), and 319 

this was greatly facilitated by using IBMs. This research was initially influenced by the wealth of 320 

literature in ecology on optimal foraging theory and decision rules for switching prey and habitat 321 

departure. Economic concepts, such as the marginal value theorem, were used in deciding when model 322 

organisms should leave a patch when searching for food (or other resource) (Rashleigh and Grossman, 323 

2005; Tyler and Brandt, 2001). Early stream IBMs partitioned the day into resting and foraging portions, 324 

based on reaching a maximum daily ration within daylight hours (Van Winkle et al., 1998). An 325 

individual’s departure from a patch was simulated to occur when its expectation of a higher ratio of 326 

growth to predation risk (or product of growth and survival) exceeded the value in the current stream 327 

cell (Jager et al., 1993; Railsback and Harvey, 2002; Van Winkle et al., 1998). Later models have 328 

identified situations in which the distribution of individuals does not reflect the fitness landscape, as is 329 

expected under an ‘ideal-free distribution’ produced by departure rules that optimize fitness (Railsback 330 

et al., 2003). The limited perceptual ability of individuals to sense conditions beyond their current 331 

location is one factor that can negatively influence the ability of a population to produce a distribution 332 

that tracks the fitness landscape (Jager and Tyler, 2001; Pe'er and Kramer-Schadt, 2008; Railsback et al., 333 

1999, 2001).  334 

Understanding movement is not merely a theoretical exercise. The use of spatially explicit IBMs can help 335 

resource managers by providing more-sophisticated movement algorithms to understand how 336 

management decisions influence fish populations (Railsback, 2016). In one example, simulation of flow 337 

responses by two carp species in China suggested relatively little effect of regulation, but did suggest 338 

improved timing of reservoir water releases during spring (Li et al., 2010). Understanding the effects of 339 

dams on downstream migration by juvenile salmon has been a strong area of applied research in the 340 

Columbia River Basin, where a large proportion of US hydropower is generated. Computational fluid 341 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

16 
 

dynamics has been used to understand juvenile salmonid movements through passage facilities (Gao et 342 

al., 2016; Romero-Gomez and Richmond, 2014; Weber et al., 2006). Typically, a combined Eulerian-343 

Lagrangian-Agent (ELAM) approach (i.e., fish trajectories modeled through a fixed gridded physical 344 

habitat representation of a river) is employed (Goodwin et al., 2006). A hypothesis to explain the 345 

navigation of juvenile salmonids downstream through surface collectors and other devices at dams was 346 

the strain-velocity-pressure hypothesis, whereby juveniles are assumed to minimize total hydraulic 347 

strain (Nestler et al., 2008). This hypothesis has since been supplanted, as water acceleration alone 348 

appears to do a better job of predicting the movements of salmon. The resulting models  simulate the 349 

ability of salmon to navigate safely through passage routes at large dams by modulating their swimming 350 

orientation and speed to water acceleration (Goodwin et al., 2014). The ELAM model differs from earlier 351 

PHABSIM models in that fish are simulated on a dynamic habitat represented by high-resolution 352 

computational fluid dynamics models (Weber et al., 2006). 353 

The approaches above make sense for animals that can control movements. However, for some species 354 

and life stages, movement is passive and determined by flow fields. Fonseca (1999) used an IBM to 355 

examine the consequences of movement rules related to drift of blackfly larvae in a fluid medium and 356 

was able to reproduce spatial patterns of settling in depositional zones. In fragmented rivers, 357 

downstream drift of larvae was found to be an important effect on upstream population persistence. 358 

Thus, the most vulnerable life stages are those that are incapable of directed movement, whether 359 

because they are sessile (eggs, mussels) or because they lack apparatus for swimming well.  360 

One situation where IBMs suggest that passive drift can be important is in coastal rivers, where salinity 361 

can play a role in movement and survival of early life stages that are not-yet salt-water tolerant (Jager et 362 

al., 2013a; Rose et al., 2014). Premature exposure to salinity was a leading cause of mortality for juvenile 363 

shortnose sturgeon (Acipenser brevirostrum) in an IBM for a river in coastal, Georgia, USA (Jager et al., 364 
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2013a). If confirmed by fieldwork, this risk will increase as sea level rises. Canals and water diversions 365 

can also influence exposure to high salinity in coastal rivers, as can intrusion of saltwater due to 366 

excessive groundwater pumping. 367 

3.4 Research to understand contaminant and water quality impacts 368 

One important ecosystem service provided by rivers is to transport and purify waste water from 369 

watersheds that support human activities. Riverine populations are affected along the way, and the 370 

population-level effects of individual exposure to contaminants and poor water quality have been 371 

quantified by using IBMs (Figure 6d). As stochastic models, IBMs represent realistic variation in 372 

exposure. Research in this area involves linking IBMs with dynamic and spatial models of water quality, 373 

and past examples have focused on reservoirs. For example, in the US, particle-based (Lagrangian) 374 

approaches have been used to simulate fish movements in a 2-dimensional reservoir (Nestler et al., 375 

2002; Scheibe and Richmond, 2002). Blueback herring, Alosa aestivalis, were simulated in Strom 376 

Thurmond  Reservoir in the southeastern US by using rules to simulate swimming in the direction of 377 

optimal habitat quality (Nestler et al., 2002). Reservoir habitat was represented by a laterally averaged 378 

CE-QUAL-W2 model of hydrodynamics, temperature, and dissolved oxygen (Nestler et al., 2002). Nestler 379 

et al. (2002) adjusted the parameters of conditional movement rules to produce reasonable seasonal 380 

responses. In another particle-based model, a vertically-averaged representation of a reservoir was used 381 

to evaluate exposure of juvenile salmon to dissolved gases while migrating near the water’s surface 382 

through dams on the Columbia River (Scheibe and Richmond, 2002). Sullivan et al. (2003) used a 383 

Eulerian approach to simulating movements of white sturgeon, A. transmontanus, in response to 384 

dissolved oxygen and temperature in the bottom layer of a Snake River reservoir. Two studies of fish 385 

movements have pointed to interactions between predation and dissolved oxygen. In one study, 386 

juveniles were spatially concentrated and therefore increasingly vulnerable to predation (Breitburg et 387 

al., 2003). Another study of simulated movement indicated how, depending on its location, hypoxia can 388 
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create a barrier in reservoirs, as well as an ‘ecological sink’ for  scavengers attracted to carcasses 389 

(Sullivan et al., 2003).  Survival estimates for individuals produced by these IBMs can then be used to 390 

project population-level responses. 391 

A handful of studies have used IBMs to evaluate contaminant effects at the population level and a few 392 

examples pertain to rivers. Salice et al. (2011) evaluated alternative strategies for Polychlorinated 393 

Biphenyl (PCB) cleanup on mink. The study determined that early cleanup was the best option. A study 394 

to rank threats to shortnose sturgeon used an IBM to evaluate risk from mercury (Jager et al., 2013b). 395 

Recently, Dohmen et al. (2016) compared toxicity from farm chemicals in ditches at the edge of a field 396 

using models representing hydrodynamics as a moving stream versus a deep pool. In shallow waters, 397 

toxicity was found to be higher primarily because of higher temperatures. Another comparison found 398 

drift in flowing waters to have an influence on population recovery (Van den Brink et al., 2007). In 399 

another recent example, Brito et al. (2017) evaluated sewage treatment options to select one most 400 

likely to protect the silver catfish (Rhamdia quelen). 401 

The considerable research on contaminant transformation, fate and transport within rivers, floodplains, 402 

and reservoirs has not been married with the mechanistic power of river IBMs to aggregate individual-403 

level exposure and effects to the population-level for riverine species. The studies above did not 404 

simulate detailed adverse outcome pathways experienced by individuals. To this end, a working group 405 

hosted by the National Institute for Mathematical and Biological Synthesis is currently evaluating ways 406 

to combine Dynamic Energy Budget (DEB) models with IBMs to scale the effects of  contaminant 407 

exposure to understand effects at the population-level (Forbes et al., 2016).  408 

3.5 Research to understand the conservation biology of rare fishes and other taxa 409 

Perhaps it is ironic that understanding density dependence and compensatory mechanisms led to the 410 

development of IBMs for fish populations, because applications to understand threats to rare or 411 
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endangered species are now more prominent (Peterseni et al., 2008). At the low end of the population 412 

density spectrum, Allee effects are as important as compensatory effects at high densities when 413 

developing IBMs for small populations. In conservation biology, questions about minimum population 414 

sizes for persistence emerge, and this is related to the question of whether there is sufficient habitat to 415 

support a viable population. In advective river environments, downstream drift is a dominant feature 416 

that influences population persistence (Kolpas and Nisbet, 2010). Generally speaking, species evolve 417 

spatial life histories that counteract this tendency. Fragmentation by dams can interrupt ‘conveyer-belt’ 418 

life histories characteristic of rivers and prevent access to the variety of habitat required to sustain 419 

viable populations.Therefore, assessing long-term viability involves understanding spatial 420 

metapopulation structure and mechanisms by which genetic structure is maintained.   421 

An important use of PVAs is to rank threats to small populations (Caughley, 1994)(Figure 6e). IBMs used 422 

for PVA accomplish this by comparing scenarios with different assumptions about potential threats 423 

(Loos et al., 2010; Peterseni et al., 2008). The response variables in PVA’s are those associated with 424 

population recovery; i.e., the likelihood of extirpation (or persistence), population trends, spatial 425 

diversity, and genetic diversity. Therefore, genetic models are appropriate. For example, an IBM+G PVA 426 

model was developed to rank risks linked to white sturgeon (A. transmontanus) populations in the 427 

middle Snake River (Jager et al., 2007). PVA studies typically require summarizing results from a large 428 

number of replicate [meta]populations and projecting many generations into the future. The 429 

combination of simulating many individuals and running Monte Carlo simulations is a significant 430 

computational challenge.  431 

 Applications of IBMs in conservation biology is especially important for river species because freshwater 432 

ecosystems contain some of the most imperilled taxa (Dudgeon et al., 2006; Jelks et al., 2008; Johnson 433 

et al., 2013; Richman et al., 2015; Warren and Burr, 1994). Freshwater mussels are a particularly 434 
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vulnerable group that provides important water-filtration services (Layzer et al., 1993). In addition to 435 

being sessile, and therefore unable to move to avoid disturbance, many mussels depend on fishes to 436 

colonize new sites. As larvae (glochidia), they attach to the gills of a host fish, where they develop during 437 

transport to a new site. In rivers, upstream colonization is particularly important for these taxa (Terui et 438 

al., 2014). Lee and DeAngelis (1997) developed a structured model to study the spatial spread of mussel 439 

populations. The model showed that colonization patterns resembled a traveling wave front, with a 440 

faster velocity for mussel species maturing at an earlier age (Lee and DeAngelis, 1997). Understanding 441 

colonization rates is important to predicting recovery from disturbances, such as dredging, 442 

sedimentation, or chemical spills. In a subsequent paper, Lee et al. (1998) evaluated metapopulation 443 

dynamics of various Unionid mussels. A key result was that mussel species associated with a fish host 444 

having a restricted movement range require a high success rate of finding fish host to achieve at least an 445 

intermediate level of abundance. Mussel species with fish hosts having a limited range, coupled with a 446 

low success rate of finding a host, tend to be rare in numbers and sparsely distributed (Lee et al., 1998).  447 

3.6 Research to understand the effects of river fragmentation and reconnection 448 

IBMs have been used to understand the potential costs and benefits of reconnection options, including 449 

translocation and passage (Figure 6f). One result is that fish in upstream reaches are more likely to 450 

experience higher risk of extirpation than those in downstream reaches when barriers prevent upstream 451 

movement (Harvey and Railsback, 2012). An important finding is that export of larvae from short 452 

segments to downstream reaches can deplete upstream segments, a general result in physical systems 453 

where migration is asymmetric (Jager et al., 2001). These results emphasize the general idea that 454 

upstream recolonization is a fundamental problem for organisms in directional, advection-dominated 455 

systems. 456 
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A series of simulation experiments to compare reconnection options were conducted with an IBM of 457 

white sturgeon in the Middle Snake River. Translocation was found to be most successful when adults 458 

were transported upstream as far as possible to a reach with good habitat conditions (Jager, 2006b). In 459 

addition, a strategy of screening upstream reaches to prevent downstream movement was shown to be 460 

successful for simulated white sturgeon (Jager, 2006b). Conditions under which passage (Jager, 2006a) 461 

and translocation (Jager, 2006b) were beneficial depended on whether the recipient was upstream, 462 

having sufficiently large amount of habitat, and whether screening by trash racks to prevent large 463 

objects (including sturgeon) from entering turbine intakes was sufficiently narrow to prevent 464 

entrainment into turbines during downstream migration. Thus, mortality risk during migration through 465 

dams is an important consideration. In another study, a PVA model was used to evaluate the benefits of 466 

translocation for the humpback chub (Gila cypha) in the Colorado River, USA (Pine et al., 2013). The 467 

success of translocation depended on the relative survival in the donor and recipient reaches (Pine et al., 468 

2013).  469 

3.7 Research to understand genetics in riverine metapopulations 470 

Simulating population and metapopulation (spawning populations linked by infrequent migration) 471 

genetics is an important reason for choosing to use IBMs (Figure 6g). Although substantial literature 472 

exists that uses non-IBM models, these typically require either an assumption of two important alleles 473 

or many alleles with small effects (i.e., statistical models that rely on a normal distribution of trait 474 

values). The earliest IBMs were more akin to genetic algorithms, motivated by the need to examine 475 

mutation effects (e.g., mutation meltdown) in small populations (Gabriel et al., 1993; Lynch et al., 1995). 476 

These models, used in conservation biology, focused strictly on neutral inheritance and not on selection 477 

resulting from decisions or activities of organisms. 478 
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The first genetic IBM (IBM+G) model was applied to the question of selection on fish size due to fishing 479 

(Martinez-Garmendia, 1998). In rivers, the first IBM+G quantified the effects of population isolation of 480 

white sturgeon between dams in the Snake River (Jager, 2001). These models simulated both selection 481 

and neutral genetics. They have many advantages over non-IBM population genetic models, including 482 

the flexibility to represent different genetic systems (e.g., polyploidy), intermediate numbers of alleles, 483 

interactions among loci, control genes, and effects of mating systems and other behaviors (e.g., homing 484 

migration) (Jager, 2001). 485 

In many cases, IBM+Gs are used to understand the genetic effects of anthropogenic influences (e.g., 486 

harvest size selection, hatchery operation, fragmentation by dams, reconnection, climate change). 487 

Models of hatchery influences, for example, have shown that supplementation of lake sturgeon had 488 

little effect on allele retention and inbreeding (Schueller and Hayes, 2011). Modifying the numbers 489 

released to reduce selection was shown not to be effective. Once introduced to a growing population 490 

(such as one supported by supplementation), a few ‘alien’ alleles can quickly increase in frequency until 491 

they reach an equilibrium (Jager, 2005). Results from these IBM+Gs confirm that ensuring demographic 492 

health of populations often alleviates genetic concerns. Another purpose has been to explore the risk of 493 

hybridization, for example between pallid (Scaphirhynchus alba) and shovelnose sturgeon (S. 494 

platorynchus) (Jager unpublished data).  495 

One exciting research direction is to understand how dendritic network properties influence riverine 496 

metapopulations. This has been explored using IBM+Gs (Labonne et al., 2008; Landguth et al., 2014). In 497 

one case, the combined effects of asymmetric dispersal along river networks, combined with overland 498 

movement (e.g., for amphibians or for fishes transported through floodplain inundation or being carried 499 

by non-aquatic organisms), was considered (Chaput-Bardy et al., 2009). The role played by traits that 500 

control homing behavior and spawning fidelity have not been fully explored. However, studies that 501 
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simulate selection and genetic adaptation have been performed. These have shown that local 502 

adaptation can ‘rescue’ isolated populations in stream networks (Coombs et al., 2010; Letcher et al., 503 

2007). Network properties were found to influence Chinook salmon growth in warmer thermal regimes 504 

(Fullerton et al., 2017). Juveniles in the least complex network grew faster and were ready to smolt 505 

earlier than those in more complex river networks (Fullerton et al., 2017). Other studies using IBM+G 506 

models to explore the ability of fishes to adapt to climate warming are discussed in the section below.  507 

3.8 Research to understand the effects of warming and flow shifts under climate change 508 

Modeling research using IBMs has addressed the potential effects of warming stream temperatures, as 509 

well as the effects of shifts in hydrology and timing of flows. A hypothesis has been that populations 510 

would shift toward cooler headwaters in response to warming, and concerns have been raised about 511 

barriers (e.g., dams) preventing such movements.  512 

One study of potential effects of climate change evaluated interactions between shifts in flow (early 513 

snowmelt) and warming on a fall- and a spring-spawning trout (Jager et al., 1999) (Figure 6h). An 514 

unexpected result was earlier maturation of the spring spawning rainbow trout life history under 515 

warming. Similar results have been observed in currently forested streams where wildfire has removed 516 

canopy cover and warmed stream temperatures (Rosenberger et al., 2015). Simulating interactions 517 

between warming and changes in flow can produce complex effects. For example, brown trout, a fall 518 

spawning species, was not impacted as expected by scouring of redds (nests) when high flows shifted 519 

from spring to winter. Warming benefited both species in the upstream, but not the downstream reach. 520 

This supports the idea that climate warming will cause movement toward cooler headwaters (Jager et 521 

al., 1999). This result was also produced by a study of brook (S. fontinalis) and rainbow trout (O. mykiss) 522 

in the Appalachian Mountains, USA (Clark et al., 2001). More recently, an IBM+G developed from 523 

inSTREAM determined that declines in biomass and extinction risks were substantially larger under 524 
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combined warming and flow reduction scenarios, despite stronger evolutionary responses (Ayllon et al., 525 

2016). The traits that varied in this study were size at emergence and maturity size threshold (Ayllon et 526 

al., 2016). 527 

Ultimately, it will be important to use IBM+Gs to address questions about adaptation to climate change. 528 

For example, climate adaptation via plasticity in growth has been explored for Atlantic salmon 529 

populations (Piou and Prevost, 2012, 2013). In another study, Anderson et al. (2013a) simulated 530 

phenotypic plasticity in adapting to shifts in seasonal events using an IBM. Model results suggested that 531 

population extinction can occur if the rate of change in the bioclimatic envelope exceeds the rate that 532 

the population’s phenology can change, or if the variability in the envelope exceeds the population's 533 

inherent capacity for withstanding climate variability. The perceptual abilities of individuals again play a 534 

role in framing the ability of populations to adapt. For example, a population with migration timing cued 535 

by photoperiod exhibited weaker phenotypic plasticity than one cued by temperature (Anderson et al., 536 

2013a). Anderson et al. also found that a threshold leading to population extinction was foreshadowed 537 

by increased variability in average individual condition across years.  538 

One concern is that climate change will have a ‘bottleneck’ effect on populations whereby decreased 539 

population size and the associated decrease in genetic diversity will prevent adaptation. A landscape-540 

genetics IBM of bull trout (Salvelinus confluentus) model suggests that populations isolated by low flows 541 

under climate warming will face a risk of losing genetic diversity (Landguth et al., 2014). 542 

Not all studies using IBMs to simulate population-level responses to climate change have predicted large 543 

effects. For example, Clark et al. (2001) found that species differences in fecundity explained their 544 

competitive outcomes better than the influence of climate. Another notable feature of that study was 545 

the use of a geographic information system to allow the model to be distributed across streams in a 546 

large region. More recently, an IBM was used to examine interactions between forest harvest and 547 
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climate change in the Pacific Northwest, USA (Penaluna et al., 2015). Individual- and population-level 548 

responses were variable. In some cases, forest harvest countered the effect of climate change through 549 

increased summer flow. The most consistent response was earlier emergence of fry, but this change in 550 

timing did not necessarily result in population-level differences (Penaluna et al., 2015).  551 

4. Where will the flow of ideas go next?  552 

Dendritic networks, one-directional flows, and adaptations to predictable and unpredictable features of 553 

flow (and temperature) are defining characteristics of river habitats used by aquatic biota. Increasingly, 554 

questions about the viability of fish and mussel populations in river networks are being asked (Thomaz 555 

et al., 2016), and riverine IBMs are a logical tool to apply. Advances in network theory and modeling 556 

tools, used in conjunction with IBMs, can be used to understand basic questions, e.g., “How organisms 557 

maintain distributions in river networks?” and applied questions, e.g., “What is the optimal placement 558 

and management of dams?” Clearly, the mechanisms by which riverine metapopulations in dendritic, 559 

directional networks recolonize tributaries are fundamental to understanding river ecology and 560 

integrating network modeling frameworks with IBM+Gs will be required to address these questions. 561 

The literature reviewed here reveals a strong bias toward IBMs describing fishes. Few examples exist of 562 

IBMs applied to aquatic species at risk other than fishes, suggesting an opportunity for future modeling 563 

research to rank threats and guide restoration efforts for mussels, gastropods, crayfishes, and other 564 

imperiled taxa (Jelks et al., 2008; Johnson et al., 2013; Richman et al., 2015). We see opportunities to 565 

help evaluate strategies for conserving non-fish imperiled taxa as well, and the ability to represent 566 

species interactions that may depend on species densities and individual encounters in flowing media 567 

(e.g., those between mussels broadcasting glochidia and their migrating fish hosts). 568 

A strength of IBMs is the ability to simulate the decisions by individual organisms in response to the 569 

environment and each other. Capitalizing on this strength, we see considerable opportunity for 570 
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implementing IBM algorithms for movement in robotic fishes used for research to understand the 571 

effects of hydropower and other industries that rely on rivers (Garcia-Magarino et al., 2017). By applying 572 

our knowledge about animal and group social behavior, motivation and responses to environmental 573 

fields, and our understanding of animal perceptual limitations and capabilities (which are often different 574 

from ours) (Pe'er and Kramer-Schadt, 2008), we see opportunities for advancement in this area. 575 

On a related theme, integration between social agent-based models for human actors and IBMs for the 576 

riverine biota that are affected by their decisions is another frontier in applied research. Agent-based 577 

modeling has been used to allocate waste loads and water. Models fully integrating human decision 578 

makers with animals in downstream ecosystems have not been explored. We see this as part of a 579 

general trend toward integrating human and societal systems with ecological systems.  580 

Finally, a frontier of research that remains is to integrate individual-based models with biogeochemical 581 

models and functionally-defined ecosystem states requiring mass balance (Grimm et al., 2017). This 582 

challenge is starting to be addressed by merging IBMs with dynamic ecosystem models (Strauss et al., 583 

2017). The science to understand carbon and nutrient dynamics is increasingly focusing on the incidence 584 

of ‘hot spots and hot moments’ at the terrestrial-aquatic interface. Although biotic processes strongly 585 

mediate biogeochemical cycles at the terrestrial-aquatic interface, the challenge of developing hybrid 586 

models that combine these conceptually distinct approaches remains for our metaphorical 587 

‘downstream’ researchers.  588 

These are a few examples of many possible future directions, or unwinding braids, in the channel of 589 

riverine ecology aided by IBMs. Undoubtedly many others will emerge (Figure 1). 590 
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6. List of Figures  915 

Figure 1. Ideas originating in upstream tributaries merge at river confluences representing interactions 916 

among scientists bringing together ideas that influenced the development of river IBMs. Downstream, 917 

multiple channels represent downstream opportunities for future research. Motivating questions or 918 

topics are indicated by questions in italics and methodological influences and advances are in bold. 919 

Figure 2. Schematic of a model for stream populations of fishes illustrating linkages between hysical 920 

Habitat Simulation (PHABSIM) as a function of flow and an individual-based model (IBM) of processes 921 

(reproduction, growth, movement, and mortality) that regulate each life stage. Population responses are 922 

illustrated for smallmouth bass, as simulated by (Jager et al., 1993).  923 

Figure 3. Stommel diagram showing the range in spatial and temporal scales addressed by spatially 924 

explicit river IBMs. On the left, we indicate the reasons for adopting a spatially-explicit model and 925 

reasons for using an IBM. 926 

Figure 4. Research questions addressed by riverine IBMs include those to understand a) population-level 927 

effects of flow regimes, b) species interactions, c) fish movement, and d) contaminant exposures. Other 928 

questions concern e) the conservation biology of imperiled riverine taxa including f) the effects of river 929 

fragmentation and reconnection, g) population-level genetic outcomes of management decisions, and h) 930 

future effects of global climate change. 931 
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