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Abstract

This work presents a stochastic reduced order modeling approach for the solution of uncer-
tainty aware, multi-material, structural topology optimization problems. Uncertainty aware struc-
tural topology optimization problems are computationally complex due to the number of model
evaluations that are needed to quantify and propagate design uncertainties. This computational
complexity is magnified if high-fidelity simulations are used during optimization. A stochastic re-
duced order model (SROM) approach is applied to 1) alleviate the prohibitive computational cost
associated with large-scale, uncertainty aware, structural topology optimization problems; and 2)
quantify and propagate inherent uncertainties due to design imperfections. The SROM framework
transforms the uncertainty aware, multi-material, structural topology optimization problem into a
deterministic optimization problem that relies only on independent calls to a deterministic analysis
engine. This approach enables the use of existing optimization and analysis tools for the solution
of uncertainty aware, multi-material, structural topology optimization problems.

Introduction

A multi-material structural topology optimization problem in the case where the applied load
and compliant material are considered to be random is solved to demonstrate the SROM approach.
The randomness in the applied load and compliant material will be introduced through uncertainty
in the orientation of the applied load and the elastic modulus of the compliant material. The optimal
material distribution will be computed by solving the following uncertainty aware, multi-material,
structural topology optimization problem

X ∗ = argmin
X

: C(X̂ ) = E
[
UT [K(X̂ ,Σ)]U

]
=

M

∑
m=1

Ne

∑
e=1

(ze(x̂
k
m))

µE
[
ūT

e [k̄e(Σ)]ūe
]

subject to : R(U ,X̂ ,Σ;Θ) = 0 in Ω a.s.

:
M

∑
m=1

Ne

∑
e=1

ze(x̂
k
m)γmVe ≤Mmax

: 0≤ xm ≤ 1,

(1)

where X ∗ = {x∗m}M
m=1 is the optimal set of control points, X = {xm}M

m=1 is the set of trial control
points, and X̂ = {x̂m}M

m=1 is the set of filtered control points. Therefore, the total number of
design variables Nx = M×nx, where M is the number of candidate materials and nx is the number
of control points. The density at the control points for a given candidate material is denoted by xm.
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The filtered densities associated with the k set of control points in finite element e and candidate
material m is denoted by x̂k

m. The filtered volume fraction in element e for candidate material m is
denoted by ze. The penalty constant that aims to push the volume fraction in element e to zero is
denoted by µ > 1 and Ne is the total number of finite elements.

In Equation (1), C is the expected value in the structural compliance, Ve is the volume of finite
element e, Mmax is the mass or monetary limit, and γm is the mass density or cost of material m.
The stiffness matrix assembled from random element stiffness matrices [k̄e] is denoted by [K],
The random global displacement vector is U and ūe are the random displacements for element
e. The random residual equation is denoted by R and the computational domain is denoted by
Ω ⊆ Rd, d ∈ {1,2,3}. Finally, Σ is the random elastic modulus for the compliant material and Θ

is the random orientation of an applied load.

The volume constraint is defined using filtered volume fractions ze but the candidate materials’
filtered densities at the control points, x̂m, can be defined as nodal or element control points. Thus,
given x̂m, the filtered material density at each element for candidate material m is defined as:

ze(x̂
k
m) =

1
n̂e

∑
k∈Ke

x̂k
m, (2)

where n̂e is the number of control points in the set Ke of control points associated with element
e. If nodal control points are used in (2), n̂e is equal to the number of nodes on finite element e.
Contrary, if element control points are used, n̂e = 1.

Notice that in (1) the stochastic, multi-material, structural topology optimization problem is
now constrained by a system of stochastic algebraic equations

R(U ,X̂ ,Σ;Θ) = [K(X̂ ,Σ)]U −F (Θ), (3)

where F is the random global force vector. The global displacement and force vectors are now ran-
dom in (3) through their dependence on the random orientation of the applied load and the elastic
modulus of the compliant material. The solution of (1) depends on the suitable parameterization
of Σ and Θ to make the solution of the stochastic partial differential equation and the evaluation of
the expected value in the structural compliance tractable.

The remainder of this article is organized as follows. In the next section, the motivation for
this work is discussed. In the following section, 1) the deterministic, multi-material, structural
topology optimization formulation, 2) the generic description of the SROM approach, and 3) the
uncertainty aware, multi-material, structural topology optimization formulation based on an SROM
representation of the random parameters are presented. In this section, the gradient derivation for
the uncertainty aware, multi-material, structural topology optimization problem using stochastic
reduced order models (SROMs) and the core steps for computing the objective function and gradi-
ent are also presented. Next, a two-dimensional, multi-material, structural topology optimization
example that highlights the advantages of SROMs for uncertainty quantification and propagation
is presented. Finally, the article concludes with a summary of this work.



Motivation

The intersection of additive processes and design optimization has introduced revolutionary
capabilities for design, product development, and manufacturing. “Complexity is free” has been
a common mantra with additive manufacturing processes [1]. However, anyone involved in the
qualification or certification of additive processes or materials will acknowledge that complexity is
currently not free due to the prevailing lack of understanding of advanced manufacturing processes
[1]. One approach to address the stochastic nature of additive processes is to improve process deter-
minism. An alternate, complementary approach is to account for these inherent uncertainties early
in the design process by providing designers with uncertainty aware computational design tools
that generate solutions that insure performance requirements are met and margins are quantified.

Uncertainties abound in any design scenario and include sources from requirements, boundary
conditions, and environments; not just process capabilities, feedstocks, and final material proper-
ties. Advanced uncertainty quantification and propagation methodologies have been available for
years [2, 3, 4], but even the most basic capabilities for design under uncertainty [5, 6, 7] remain
unavailable to end users. Since existing tools do not account for uncertainties during analyses,
there is no guarantee that their solutions are robust to these sources of uncertainty. While holding
great potential and value for product performance and qualification, design under uncertainty is a
significant challenge due to the computational resources necessary to create high-fidelity solutions.
This computational toll limits the design iterations available to explore solutions robust to uncer-
tainties. Therefore, to make design under uncertainty an integral part of the design process, critical
algorithmic issues must be solved. First, novel sampling algorithms are needed to reduce sample
sizes required to accurately quantify and propagate multiple sources of uncertainty. Second, algo-
rithms must efficiently utilize all available computing resources to increase performance, speed,
and accuracy. Third, these novel algorithms should be integrated into a reliable computational
design tool accessible to end users.

A relatively untapped benefit of additive manufacturing is its potential to control material at
the voxel level. This feature expands the design space available to designers and enables the fab-
rication of multi-functional parts that are not possible to create with conventional manufacturing
processes today. Multi-material 3D printing is only a budding technology, but will certainly lead
to increasingly functional designs. Gaynor et al. [8] realized compliant mechanism designs based
on three-phase [9, 10, 11] topology optimization using the PolyJet additive manufacturing technol-
ogy, which can print bulk materials covering a wide range of elastic moduli [12]. Even using single
material printers, functional designs have been fabricated by varying the microstructure through-
out the print to achieve varying elastic properties [13]. Although the ability to control material
properties at the voxel level is attractive, it also presents risk and uncertainty since defects can
subsequently be introduced at similar scales. Thus, novel uncertainty aware synthesis optimization
tools are needed to aid designers explore this new multi-material design space and insure designs
against the inherent imperfections that multi-material 3D printers can facilitate.

This work aims to apply SROMs to account for the uncertainty in the orientation of an applied
load and elastic modulus of the compliant material while solving a multi-material structural topol-
ogy optimization problem under uncertainty. An SROM is a low-dimensional, discrete approxi-
mation to a continuous random element comprised of a finite and usually small number of samples



with varying probabilities. This non-intrusive approach enables efficient stochastic computations
in terms of only a small set of samples and probabilities. The SROM concept was originally pro-
posed in [14] and then further refined in [15]. The SROM approach has been demonstrated in multi-
ple applications, including the determination of effective conductivities for random microstructures
[16], the estimation of linear dynamic system states [17, 18], inverse problems under uncertainty
[19], the quantification of uncertainty in intergranular corrosion rates [20], and the prediction of the
structural reliability of components containing laser welds [21]. The primary strengths of SROMs
are their ability to represent an underlying random quantity with low-dimensionality and to sub-
sequently solve uncertainty propagation problems in a fraction of the computational time required
by Monte Carlo methods.

This work, to the best of our knowledge, represents the first application of SROMs to multi-
material structural topology optimization under uncertainty. The SROM framework represents a
practical approach with the following strengths shown in this work: 1) it relies entirely on calls to
existing deterministic solvers and optimization libraries, 2) it is easily parallelized and scalable, and
3) it is not specific to normally distributed random quantities. Additionally, SROMs give higher
weight to important areas of the probability space [19]. This property yields low-dimensional
approximations and thus relatively few calls to deterministic models.

Formulation

Lets define the Hilbert space H = L2(Ω;Rd) of measurable and square intregrable functions en-
dowed with inner product 〈φ ,ψ〉H =

∫
Ω

φ ψ for φ ,ψ ∈H and norm ‖φ‖H = 〈φ ,φ〉1/2
H . Lets also de-

fine the Sobolev space H1 as the set of all functions φ ∈H such that every multi-index α with |α| ≤
a, the mixed partial derivative Dαφ = ∂ |α|φ/∂ α1xα1

1 · · · ∂ α1xαn
n exists in the weak sense, where

a = 1. The Sobolev space H1 is endowed with inner product 〈φ ,ψ〉H1 = ∑
a
i=0〈Diφ ,Diψ〉H and

norm ‖φ‖H1 =∑
a
i=1 ‖Diφ‖H . Lets now define finite dimensional spaces U := span{φi}, φi ∈H1 for

i= 1, . . . I, I∈N, Y := span{ψj}, ψj ∈ L2(Ω) for j= 1, . . .J, J∈N, and Vi = span{ϕk}, ϕk ∈H1 for
k = 1, . . .K, K ∈ N. The finite dimensional approximations for the displacements, control points,
and Lagrange multipliers are defined as u = ∑

I
i=1 âiφi, âi ∈ R ∀ i = 1, . . . I, x = ∑

J
j=1 b̂jψj, b̂j ∈

R ∀ j= 1, . . .J, and λ= ∑
K
k=1 ĉkϕk, ĉk ∈R ∀ k= 1, . . .K, respectively. The subsequent derivations

will be based on the mathematical preliminaries presented above.

Governing linear elastostatic equation

A multi-material structural topology optimization problem in linear elastostatics seeks to find
the set of material points ω = {x ∈ Rd} ⊂ Ω ⊆ Rd and the spatial distribution of material tensor
D(x) such that an objective function is extremized, an arbitrary constraint (or set of constraints) is
satisfied, and the displacement field u ∈U satisfies the governing equations∫

ω

D(x)∇u : ∇δu dω =
∫

Γt

t ·δu dΓt ∀ δu ∈U0. (4)

In Equation (4), Ω denotes the computational domain with spatial dimension d and boundary
Γ = Γu ∪Γt , Γu ∩Γt = /0. The set of control points ω defines the optimal geometry, U = {u ∈
H1 : u=u0 on Γu} is the set of trial functions, u0 is the set of prescribed displacements (Dirichlet



conditions), U0 = {δu ∈ H1 : δu= 0 on Γu} is the set of test functions, Γu ⊂ Γ is the portion of
the boundary were Dirichlet conditions are prescribed, and Γt is the portion of the boundary where
surface tractions are applied (Neumann conditions).

The optimal set of control points are defined by an indicator function χω(x) defined as

χω(x) =

{
1 if x ∈ ω

0 if x ∈Ω\ω
. (5)

The spatial distribution of material tensor D(x) is selected from a finite set of candidate material
tensors at each control point such that

D(x) = φ(D), (6)

where D = {Dm(x)}M
m=1 is the set of candidate material tensors at control point x and φ is a choice

function for which φ(D) ∈D holds. With Equations (5) and (6) defined, Equation (4) is recast as∫
Ω

(χω(x)φ(D))∇u : ∇δu dΩ =
∫

Γt

t ·δu dΓt ∀ δu ∈U0. (7)

Equation (7) is impractical to consider for multi-material structural topology optimization since
finding ω and D(x) becomes a large-scale integer programming problem. Therefore, χω(x) and
φ(D) are recast as a set of m continuous material density fields defined as P = {ρm}M

m=1, where
ρm ∈ L2(Ω) and ρm(x) ∈ [0,1]. The total density (i.e. volume fraction) at control point x is
defined as ρT (x) = ∑

M
m=1 ρm(x). The magnitude of ρT is used to determine the contribution of

each candidate material at control point x according to a Discrete Material Optimization (DMO)
interpolation function, β (x) = η(ρm(x),Dm(x)), where β ∈ R. The DMO interpolation function
aims to improve the approximation of the integer programming problem and discourage material
mixing [22, 23]. In this work a summation interpolation rule is used as the DMO interpolation
function [24, 25]. Thus, (7) is recast as∫

Ω

η(ρm(x),Dm(x))∇u : ∇δu dΩ =
∫

Γt

t ·δu dΓt ∀ δu ∈U0, for m = 1, . . .M. (8)

Note that the formulation in (8) enables the use of gradient-based optimization algorithms.

To avoid the numerical artifacts (e.g. checkerboard patterns) [26, 27] that may result from
the discretization of the candidate density fields due to unstable finite element formulations, each
candidate density field is filtered by convolution as follows

ρ̂m(x) = (F ∗ρm)(x) =
∫

BR

F(x,y)ρm(x)dy. (9)

In Equation (9), ρ̂m(x) is the filtered density field for candidate material m, y ∈ Ω, and BR is the
ball of radius R that defines the radius of influence. The material interpolation function in (8) can
be re-written in terms of the m candidate filtered density fields from (9). Therefore, the governing
linear elastostatic equation becomes∫

Ω

η(ρ̂m(x),Dm(x))∇u : ∇δu dΩ =
∫

Γt

t ·δu dΓt ∀ δu ∈U0, for m = 1, . . .M. (10)



Deterministic multi-material structural topology optimization

After applying the finite element method [28] to (10) and discretizing the computational do-
main into finite elements, a multi-material structural topology optimization problem based on the
Solid Isotropic Material with Penalization (SIMP) [29, 30] approach can be written as

X ∗ = argmin
X

: C(X̂ ) = uT [k(X̂ ,E )]u=
M

∑
m=1

Ne

∑
e=1

(ze(x̂
k
m))

µuT
e [ke(εm)]ue

subject to : r(u,X̂ ,E ;ϑ) = 0 in Ω

:
M

∑
m=1

Ne

∑
e=1

ze(x̂k
m)γmVe ≤Mmax

: 0≤ xm ≤ 1,

(11)

where
r(u,X̂ ,E ;ϑ) = [k(X̂ ,E )]u−f(ϑ) (12)

is the deterministic residual equation. In Equation (11), εm is the elastic modulus for candidate
material m and E = {εm}M

m=1 is the set of elastic moduli, [k] is the global deterministic stiffness
matrix and [ke] is the deterministic element stiffness matrix, u is the global deterministic displace-
ment vector, and f is the global deterministic force vector resulting from an applied load with
orientation ϑ .

A kernel filter was used to avoid numerical artifacts that may result from the discretization of
the control points with possibly unstable finite element formulations. Specifically, a linear kernel
filter [31, 32]

Fik = max
(

0,1− d(i,k)
R

)
(13)

is applied to the control points to avoid the aforementioned numerical artifacts. Therefore, the
filtered control points x̂k

m for candidate material m are given by

x̂k
m = ∑

i=1
= wikxi

m, (14)

where the weights in (14) are defined as

wik =
Fik

∑l∈Nk
Flk

. (15)

In Equations (13)-(15), d(i,k) is the distance between control points xi
m and xk

m for candidate
material m and R is the filter’s radius of influence. Nk = {xi

m : d(i,k) ≤ R} is the neighborhood
of control points that are inside the radius R, including the control points on the boundary of the
radius, with respect to control point xk

m.

Generic Description of SROM

An SROM is a discrete approximation of a random quantity (variable, vector, etc.) defined
by a finite and generally small number of samples with varying probability. In this work, an



SROM Θ̃ defined by parameters {θ̃ (u), p(u)
θ
}sθ

u=1, is used as low dimensional approximations of
random parameter Θ. The SROM Θ̃ has size sθ with samples {θ̃ (u)}sθ

u=1 and probabilities pθ =

(p(u)
θ
, . . . , p(sθ )

θ
) associated with each sample, where p(u)

θ
≥ 0 ∀ u= 1, . . . ,sθ , sθ ∈N and ∑

sθ

u=1 p(u)
θ

=

1. The cumulative distribution function (CDF) of the SROM Θ̃ is expressed as

F̃(θ) = P(Θ̃≤ θ)

=
sθ

∑
u=1

p(u)
θ
1

Θ̃

(
θ̃
(u) ≤ θ

)
, (16)

where 1
Θ̃
(θ̃ (u) ≤ θ) is an indicator function defined as

1
Θ̃
(θ̃ (u) ≤ θ) :=

{
1 if θ̃ (u) ∈ Θ̃

0 if θ̃ (u) /∈ Θ̃
, (17)

while qth order moments are given by

µ̃(q) = E
[
Θ̃

q]
=

sθ

∑
u=1

p(u)
θ
(θ̃ (u))q. (18)

The SROM Θ̃ is constructed such that it approximates Θ as best as possible in a statistical
sense. For a given random variable Θ with known CDF, F(θ), and moments, µ(q), this is done by
selecting the defining SROM parameters through the following optimization problem

Θ̃ := argmin
{θ̃},pθ

(
α1

∫
Iθ

(
F̃(θ)−F(θ)

)2 dθ +α2

q̄

∑
q=1

(
(µ̃(q)−µ(q))

µ(q)

)2
)

(19)

subject to :
sθ

∑
u=1

p(u)
θ

= 1 and p(u)
θ
≥ 0 ∀ u = 1, ...,sθ .

In Equation (19), α1 is the weighting factor controlling the relative importance of matching the
target CDF, α2 is the weighting factor controlling the relative importance of matching the moments
up to order q̄, and

∫
Iθ

is the support of Θ. More details on the solution of (19) can be found in [15].

Multiple sources of uncertainty with SROMs

An additional strength of the SROM approach is that it can be naturally extended to handle
problems with multiple sources of uncertainty. Consider the case where, in addition to the pa-
rameter Θ, the state solution U also depends on a separate and independent source of randomness
represented by the random element Σ. This could occur, for example, when the variability in the
state is influenced by both internal randomness (e.g. material properties) as well as uncertainty
from external sources (e.g. applied load). In this case, the residual equation takes the form of (3),
where Σ is the random elastic modulus of the compliant material and Θ is the random orientation
of the applied load. Note that the random parameters could be encapsulated as Y := [Θ Σ], which



enables to use a single random parametric representation in (3). However, for convenience, we will
not use the encapsulation of the random parameters, Y , in the subsequent derivations.

The procedure for solving (3) using multiple SROMs is consistent with the approach described
previously for Θ with the caveat of treating the additional random element Σ. The SROMs Θ̃ :=
{θ̃ (u), p(u)

θ
}sθ

u=1 and Σ̃ := {ε̃(v), p(v)ε }sε

v=1 must be respectively formed in this case for both Θ and
Σ by solving the optimization problem in (19) given the probabilistic description of each random
parameter. Therefore, after the SROM Θ̃ and Σ̃ have been determined through (19), these SROMs
can be used to efficiently and non-intrusively propagate uncertainty through (3). In a manner
analogous to Monte Carlo methods, this is done by evaluating the deterministic model in (12)
su = sε × sθ times as

R(ū(w),X̂ , ε̃(v); θ̃
(u)) = 0, u = 1, . . . ,sθ , v = 1, . . . ,sε , (20)

where w = (v− 1)× sε + u, sε ∈ N is the size of SROM Σ̃, and su ∈ N is the size of SROM
Ũ . The resulting set of state samples, {u(w)}su

w=1 and probabilities p(w)
u = p(u)

θ
× p(v)ε define an

SROM Ũ for random vector U . The statistics of U can then be estimated using the analogous
multidimensional versions of Equations (16) and (18). It has been shown in previous work [15,
20] that the number of model evaluations, su, required by SROMs can be substantially less than
traditional Monte Carlo while retaining similar accuracy. In this way, SROMs can be viewed as
a smart Monte Carlo method, where preprocessing is done through the optimization problem in
(19) to yield a set, or sets, of probabilities that are tuned to best reflect the original statistics of the
random inputs.

Multi-matrial structural topology optimization using SROMs

Lets consider an uncertainty aware, multi-material, structural topology optimization problem
where the number of candidate materials is set to two (M = 2), the stiffer material properties
are known (the stiff material properties are deterministic), and the randomness in the model is
introduced through uncertainty in the elastic modulus od the compliant material and the orientation
of the applied load. The SROMs Θ̃ and Σ̃ are first generated by solving (19) and optimizing for the
defining SROM parameters {θ̃ (u), p(u)

θ
}sθ

u=1 and {ε̃(v), p(v)ε }sε

v=1, respectively. The parameterization
of the random direction, Θ, and elastic modulus, Σ, via SROM enables us to recast (1) as

X ∗ = argmin
X

: C̃(X̂ ) = E
[
UT [K(X̂ , Σ̃)]U

]
=

sε

∑
v=1

sθ

∑
u=1

p(v)ε p(u)
θ
(ũ(w))T [K(X̂ , ε̃(v̂))]ũ(w)

=
sε

∑
v=1

sθ

∑
u=1

p(v)ε p(u)
θ

M

∑
m=1

N

∑
e=1

(ze(x̂
k
m))

µ(ũ
(w)
e )T [ke(ε̃

(v̂))]ũ
(w)
e

subject to : R(u(w),X̂ , ε̃(v̂); θ̃
(u)) = 0 in Ω a.s., for w = (v−1)× sε +u

:
M

∑
m=1

Ne

∑
e=1

ze(x̂k
m)γmVe ≤Mmax

: 0≤ xm ≤ 1,
(21)



where
R(u(w),X̂ , ε̃(v̂); θ̃

(u)) = [K(X̂ , ε̃(v̂))]ũ(w)−F (θ̃ (u)). (22)

In Equations (21) and (22), v̂ = v× (m− 1)+ 1, where the first entry of the set of elastic moduli
is reserved for the deterministic candidate material. Note that the stochastic algebraic constraint
in (22) has been transformed into a set of su independent deterministic constraint equations us-
ing the SROM. The decoupling of these equations allows them to be evaluated in parallel with
simultaneous calls to the original deterministic analysis software.

Gradient Derivation

The adjoint approach based on a Lagrangian formulation was used to derive the gradient of
the objective function in (21) with respect to the set of control points X . Lets assume that the
objective function in (21) is differentiable with respect to the m candidate control points xm and
that the formulation is based on nodal control points. Then, the Lagrangian function for (21) is
defined as

L (X̂ , λ̃(w)) := C̃(X̂ )+(λ̃(w))T ([K(X̂ , ε̃(v̂))]ũ(w)−F (θ̃ (u))), for w = (v−1)× sε +u, (23)

where λ̃(w) ∈ RNλ denotes the w-th sample of the vector of Lagrange multipliers and Nλ is the
total number of Lagrange multipliers. Since R(u(w),X̂ , ε̃(v̂); θ̃ (u)) = 0 is satisfied for all choices
of λ̃(w), the gradient of the objective function with respect to the m control points, xm, is given by
dL
dxm

. Therefore, by using the fact that the displacement samples, {ũ(w)}su
w=1, are viewed as implicit

functions of xm, the derivative of (23) with respect to the m control points is given by

dL (X̂ , λ̃(w))

dxk
m

=
∂C̃(X̂ )

∂ ze

∂ ze

∂ x̂k
m

∂ x̂k
m

∂xk
m
+

∂C̃(X̂ )

∂ ũ
(w)
e

∂ ũ
(w)
e

∂xk
m

+(λ̃
(w)
e )T

(
∂R(ũ(w),X̂ , ε̃(v̂); θ̃ (u))

∂ ze

∂ ze

∂ x̂k
m

∂ x̂k
m

∂xk
m
+

∂R(ũ(w),X̂ , ε̃(v̂); θ̃ (u))

∂ ũ
(w)
e

∂ ũ
(w)
e

∂xk
m

)
,

(24)

where (24) is explicitly expressed as

sε

∑
v=1

sθ

∑
u=1

(
p(v)ε p(u)

θ

(
µ(ze(x̂

k
m))

µ−1 ∂ ze

∂ x̂k
m

∂ x̂k
m

∂xk
m
(ũ

(w)
e )T [ke(ε̃

(v̂))]ũ
(w)
e

+(λ̃
(w)
e )T

(
µ(ze(x̂

k
m))

µ−1 ∂ ze

∂ x̂k
m

∂ x̂k
m

∂xk
m
[ke(ε̃

(v̂))]ũ
(w)
e

))
+
(

p(v)ε p(u)
θ

(
2(ze(x̂

k
m))

µ [ke(ε̃
(v̂))]ũ

(w)
e

)
+(λ̃

(w)
e )T (ze(x̂

k
m))

µ [ke(ε̃
(v̂))]

)
∂ ũ

(w)
e

∂xk
m

)
.

(25)

Since the the adjoint method is being applied to derive the gradient of (21), the third term in
(25) is eliminated by choosing the Lagrange multipliers such that they satisfy

(ze(x̂
k
m))

µ [ke(ε̃
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Therefore, the gradient of (23) is recast as
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(27)

Since [ke] is self-adjoint and non-singular, the Lagrange multipliers can be explicitly expressed as

λ̃
(w)
e =−2p(v)ε p(u)

θ
ũ
(w)
e . (28)

Next, Equation (28) is plugged into (27), which enables Equation (27) to be recast as
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Equation (29) yields the gradient of the objective function defined in (21).

Finally, the derivative of the mass or monetary constraint for candidate material m is defined as

∂ ze(x̂
k
m)

∂ x̂k
m

∂ x̂k
m

∂xk
m

γmVe. (30)

Note that ∂ ze(x̂
k
m)/∂ x̂k

m = 1 if element control points are used instead of nodal control points.
Furthermore, ∂ x̂k

m/∂xk
m will depend on the type of kernel filter used to solve (21).

The sequence of steps for computing the objective function and gradient for the uncertainty
aware, multi-material, structural topology optimization problem defined in (21) are summarized
next. After solving the optimization problem in (19) for the set of SROM parameters, {θ̃ (u), p(u)

θ
}sθ

u=1

and {ε̃(v), p(v)ε }sε

v=1, the following procedure is repeated during optimization to compute the objec-
tive function and gradient of (21) at each iteration:

1. Solve su decoupled, physics problems for the displacement samples, {ũ(w)}su
w=1, using (22).

2. Evaluate the expected value in the structural compliance, C̃(X̂ ), defined in (21).

3. Compute the gradient of the objective function using (29).

Notice that computing the objective function and its gradient at each iteration require su determin-
istic model evaluations. However, since the solves are decoupled and thus independent of each
other, they can be easily parallelized and solved simultaneously to minimize computational cost.
Furthermore, it is worth noting that the Hessian (or the application of the Hessian on a vector) can
be easily derived along similar lines to the approach used for the deterministic case [33].



Figure 1: Problem domain used to solve the uncertainty aware, multi-material, structural topol-
ogy optimization problem. The left pane shows the computational mesh. The right pane shows
the isosurface and the corresponding boundary conditions used to solve the uncertainty aware,
multi-material, structural topology optimization problem.

Numerical Examples

In this section, the SROM approach is used to solve a multi-material structural topology op-
timization problem where randomness is introduced through uncertainty in the orientation of the
applied load and the elastic modulus of the compliant material. The SROM approach described in
the previous section, Equation (19), was implemented using the optimization toolbox in MATLAB
[34]. The implementation is based on the fmincon function for constrained nonlinear optimization.
In all the examples presented herein, the interior-point algorithm was used along with a L-BFGS
[35] Hessian approximation.

A sketch for the problem domain can be seen in Figure 1. Figure 1 shows that fixed boundary
conditions were applied along the top surface of the allowable design domain, while a compressive
force along the y-axis with magnitude of one was applied on the right-hand corner. The compu-
tational mesh with 6,400 four-node quadrilateral finite elements was created with Cubit [36]. The
Intrepid partial differential equation (PDE) discretization package from Trilinos [37] was used to
build the finite element model and the direct solver from MATLAB [34] was used to solve the
finite element system of equations. The elastic modulus and Poisson’s ratio for the stiff material
were set to 1 and 0.3, respectively. The Poisson’s ratio for the compliant material (soft material)
was set to 0.3.

The SROM approach was used to solve (21) when considering randomness in the orientation
of the applied load and the elastic modulus of the compliant material. The mass or monetary limit,
Mmax, was set to 0.4. The orientations were taken as samples, {θ̃ (u)}sθ

u=1, drawn from a standard
beta distribution, beta(2.1667,4.3333), on the interval [67.5◦ 135◦]. The elastic moduli for the
compliant material were taken as samples, {ε̃(v)}sε

v=1, drawn from a standard beta distribution,
beta(1.6250,4.8750), on the interval [0.6 1.4]. The stiff and soft candidate materials’ mass density



Figure 2: Convergence of the SROM construction problem (19) with increasing SROM size. The
left pane shows the convergence for the SROM constructed for the random direction of the ap-
plied load, Θ̃. The right pane shows the convergence for the SROM constructed for the random
elastic modulus for the compliant material, Σ̃.

or cost, γm, were set to 1 and 0.95, respectively. A MATLAB implementation of the globally
convergent method of moving asymptotes (GCMMA) algorithm [38] implemented by the authors
was used to solve (21). The algorithm was terminated based on a tolerance on the relative change
in the solution between iterations or the maximum number of iterations, specified as ε ≤ 10−2 or
100, respectively. The initial guess for the set of control points, X̂ , were set to the target mass or
monetary limit. The filter’s radius of influence was set to two times the smallest element length,
i.e. R = 2`e.

The first step to solve (21) was to generate the SROMs Θ̃ and Σ̃ for the random orientations of
the applied load and the elastic modulus for the compliant material, respectively. This process was
done offline as a preprocessing step before the uncertainty-aware, multi-material, structural topol-
ogy optimization problem was solved. With the known expressions for the beta random variable
statistics, the SROM optimization problem in (19) for uncertainty propagation in forward models
is solved to generate Θ̃ and Σ̃ for a range of model sizes sθ = sε = {5,10,15,20}. The CDF and
moment error terms, (16) and (18) respectively, are given equal weight in the objective function
in (19), i.e. α1 = α2 = 1.0. The convergence of the load orientation and elastic modulus SROMs
construction problem with increasing SROM size is shown in Figure 2. It is clearly seen that with
further refinement of the SROMs, the approximation of the statistics of the underlying random
orientation and elastic modulus are improved. Note that the computational cost of the uncertainty
aware, multi-material, structural topology optimization problem increases proportionally to the
size of the SROMs. Therefore, the smallest SROM representation yielding an acceptable error
should be used in practice to minimize the computational cost associated with (21). In Figures 3
and 4, the corresponding load and material SROMs CDFs approximation are compared to the true
CDF for different SROM sizes. Clearly, the discrete nature of the SROM approximation improves
with increased SROM size.

Next, lets study the behavior of the objective function (19) for increasing SROM size as shown
in Figure 2. As expected, the objective function value decreases with increasing SROM size. An



(a) sθ = 5 (b) sθ = 10

(c) sθ = 15 (d) sθ = 20

Figure 3: Comparison of the SROM CDFs with the true distribution of the direction of the ap-
plied load, Θ, for different SROM sizes.

SROM with more parameters should be capable of better approximating the statistics in the random
orientation of the applied load as well as the random elastic modulus of the compliant material.
Figure 2 shows that a relatively small number of samples and probabilities defining Θ̃ and Σ̃ were
able to produce a small discrepancy between computed and observed moments. Indeed, very little
improvement in the final objective function value is observed as the SROMs size is increased from
15 to 20. Furthermore, notice that only a small-size SROM is needed to accurately capture the
true statistics of both random inputs, the load of the applied load and the elastic modulus for the
compliant material. This SROM feature enables the prompt quantification and propagation of the
uncertainties introduced by the random inputs during the solution of (21).

Finally, the SROM approach was used to design an L-bracket such that the rigidity of the struc-
ture was maximized while its mass or cost was minimized. Two candidate materials were used to
design the L-bracket. For this design problem, the orientation of the applied load and the elastic
modulus of the compliant material were considered to be random. The main design objective is
to compute the optimal geometry and placement of the candidate materials such that the design
requirements described above are satisfied. Figure 5 compares the optimal geometries obtained by



(a) sε = 5 (b) sε = 10

(c) sε = 15 (d) sε = 20

Figure 4: Comparison of the SROM CDFs with the true distribution of the elastic modulus for the
compliant material, Σ, for different SROM sizes.

solving (21) with different SROM sizes to the optimal geometries obtained by solving the deter-
ministic multi-material structural topology optimization problem defined in (11). These designs
show that the deterministic and uncertainty aware, multi-material, structural topology optimization
problems yield different solutions. Indeed, the deterministic solution does not have any additional
support material connecting the two main vertical supports (i.e. columns). Contrary, the uncer-
tainty aware solution places additional support material between the two columns to counter the
possibility of a small misalignment in the orientation of the applied load. A small misalignment in
the orientation of the applied load could cause unexpected failures due to bending. Furthermore,
instead of using the stiff material to produce the additional support structures connecting the two
main columns, the algorithm uses mostly soft material to generate the additional support structures.
Regardless of the increased deformations due to the randomness in the orientation of the applied
load, these deformations are rather small compared to the deformations closer to the applied load.
Thus, creating additional support structures made out of soft material is viable since they should be
able to withstand the smaller deformations induced by the random orientation in the applied load.

Figure 5 also shows that the support structures made out of soft material are thicker in the



(a) Deterministic (b) sθ = sε = 5

(c) sθ = sε = 7 (d) sθ = sε = 10

(e) sθ = sε = 15 (f) sθ = sε = 20

Figure 5: The optimized topology for increasing SROM sizes for Θ̃ and Σ̃, where red denotes the
stiff material and green denotes the soft material. (a) Deterministic solution, where C̃ ≈ 2.808e−5

and Mass ≈ 0.4; (b) Optimized topology for SROMs Θ̃ and Σ̃ of size five, where C̃ ≈ 3.543e−5

and Mass≈ 0.4; (c) Optimized topology for SROMs Θ̃ and Σ̃ of size seven, where C̃ ≈ 3.757e−5

and Mass ≈ 0.4; (d) Optimized topology for SROMs Θ̃ and Σ̃ of size ten, where C̃ ≈ 3.683e−5

and Mass≈ 0.4; (e) Optimized topology for SROMs Θ̃ and Σ̃ of size fifteen, where C̃ ≈ 3.632e−5

and Mass ≈ 0.4; and (f) Optimized topology for SROMs Θ̃ and Σ̃ of size twenty, where C̃ ≈
3.784e−5 and Mass≈ 0.387.



(a) Deterministic (b) sε = 5

(c) sε = 10 (d) sε = 15

Figure 6: The optimized topology for increasing SROM sizes for Σ̃, where red denotes the stiff
material and green denotes the soft material. (a) Deterministic solution, where C̃ ≈ 2.808e−5 and
Mass ≈ 0.4; (b) Optimized topology for SROM Σ̃ of size five, where C̃ ≈ 2.828e−5 and Mass ≈
0.4; (c) Optimized topology for SROM Σ̃ of size ten, where C̃ ≈ 2.826e−5 and Mass ≈ 0.4; and
(d) Optimized topology for SROM Σ̃ of size fifteen, where C̃ ≈ 2.814e−5 and Mass≈ 0.4.

deterministic solution than in the uncertainty aware solutions. This is probably induced by the fact
that the additional support connecting the two main columns is made out of soft material. Recall
that the main design goal is to maximize stiffness such that the mass or cost of the structure is
minimize. Therefore, to meet these design requirements, thinner support structures made out of
soft material were created. Furthermore, notice that additional stiff support material was added
close to the sharp corner in the uncertainty aware solutions shown in Figure 5. This is not only
induced by the thinning of the supports made out of soft material, but also by the uncertainty
in the elastic modulus of the soft or compliant material. Figure 6 shows the optimal geometries
obtained by solving an uncertainty aware, multi-material, structural topology optimization problem
in the case where only the elastic modulus of the soft material is considered random. The same
problem parameters used to solve (21) were used to solve the uncertainty aware, multi-material,
structural topology optimization problem with one random parameter. Therefore, the orientation
of the applied load was assumed to be known (i.e. deterministic). Similar to the uncertainty aware
solutions with two random parameters, the uncertainty aware solutions with one random parameter
place more stiff material closer to the sharp corner. Indeed, the stresses are higher closer to the



sharp corner and thus more stiff support material is placed around the sharp corner to insure the
design against the random soft material. These examples highlight the importance of accounting
for inherent design uncertainties when designing a structure since these uncertainties could cause
unexpected failures.

Conclusions

In this study, a novel framework for multi-material structural topology optimization under un-
certainty using stochastic reduced order models (SROMs) is proposed. By considering the struc-
tural topology optimization problem as a constrained stochastic optimization problem, the ap-
proach was formulated in terms of minimizing the expected value of the objective function with a
stochastic model constraint. The non-intrusive nature of the SROM approximation transforms the
constrained stochastic optimization problem into a deterministic one with decoupled, deterministic
physics model constraints. Therefore, the use of SROMs allows for a widely applicable method
that relies solely on calls to existing deterministic analysis solvers and optimization libraries. Fur-
thermore, since the model evaluations are completely independent from one another, the approach
is embarrassingly parallel and hence scalable to large design problems.

The effectiveness of the proposed SROM framework on a multi-material structural topology
optimization problem with a random load and candidate material was demonstrated. Through
two numerical examples, the importance of accounting for uncertainties due to multiple inherent
design imperfections when designing a structure was shown. Furthermore, the approach can ac-
curately and efficiently quantify and propagate the statistics of a random load and material during
optimization. The method was shown to require a small number of samples to characterize the
statistics of multiple random inputs, drastically reducing the computational cost associated with
the multi-material structural topology optimization problem under uncertainty.
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