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Abstract—Sparse-Matrix Vector products (SpMV) are highly
irregular computational kernels that can be found in a diverse
collection of high-performance science applications. Performance
for this important kernel is often highly correlated with the asso-
ciated matrix sparsity, which, in turn, governs the computational
granularity, and therefore, the efficiency of the memory system.

In this paper, we propose to extend the current set of Kokkos
profiling tools with an autotuner that can iterate over possible
choices for thread-team size and vector width, taking advantage of
runtime information, while, choosing the optimal parameters for
a particular input. This approach allows an iterative application
that calls the same kernel multiple times to continue to progress
towards a solution while, at the same time, alleviating the
burden from the application programmer of knowing details
of the underlying hardware and accounting for variable inputs.
We compare the autotuner approach against a fixed approach
that attempts to use all the hardware resources all the time,
and show that the optimal choice made by the autotuner is
significantly different among the two latest classes of accelerator
architectures. After 100 iterations we identify which subset of the
matrices benefit from improved performance, while others are
near the break-even point, where the overhead of the tool has
been completely hidden. We highlight the properties of sparse
matrices that can help determine when autotuning will be of
benefit. Finally, we connect the overhead of the autotuner to
specific sparsity patterns and hardware resources.

Keywords—Sparse-Matrix, Autotuning, Performance, Accelera-
tors

I. INTRODUCTION

The current high performance computing (HPC) landscape
has become increasingly diverse. High performance nodes
now feature many distinct architectural characteristics that can
significantly affect performance if they are not well utilized.
These features range from the type and number of processing
units to complex memory hierarchies and memory-media types.
Within a processing unit there exists significant variation
across vendor implementations with respect to the number
of threads, vector units, vector widths, and cache hierarchies.
The introduction of accelerator-type devices such as NVIDIA’s
GPUs and Intel’s Xeon-Phi [10] has only exacerbated the
differences. All of these architectural differences can pose
challenges for code portability. In some cases, a significant
tuning effort on the part of the application programmers is
required to run on each different type of architecture, resulting
in an unsustainable burden for maintaining multiple source
codes, or at least multiple compilation configurations, for these
hardware devices.

For these reasons, many mechanisms, such as OpenMP [4],
OpenACC [17], and OpenCL [14], have been created to target
a single source code that can execute on both multi-core
processors and accelerator devices. Each has advantages and
disadvantages over the others. The developer is forced to
determine which mechanism will provide an application with
the greatest performance across all possible hardware devices.
In some cases, such a choice implies a vendor alignment. This
has motivated programming models such as C++AMP [8],
Kokkos [6], [7] and RAJA [9] that seek to provide parallel
abstractions as part of the C++ language. These abstractions
in turn allow the complexity and variety in hardware to be
hidden from the application programmer enabling greater levels
of performance portability and reduced vendor lock-in from a
single application source.

In this paper, we extend the baseline Kokkos programming
model with an online tuner that is able to gradually adjust the
available performance knobs exposed in the Kokkos runtime.
We evaluate the autotuner on the latest classes of HPC devices
— NVIDIA’s Pascal GP100 GPU, and Intel’s Knights Landing
(KNL) architectures. In so doing we make the following
contributions:

e Re-evaluation of Autotuning SpMV Methods on
Contemporary Systems - we provide an overview on
the relative benefits of using autotuning for SpMV on
bleeding-edge computing hardware found in several of
the next-generation of high-performance systems;

e Analysis of Autotuning Performance Improvement
- Applied performance analysis of on our dynamic
autotuner to understand what effects the choices may have
during computation. We have employed best-of-class
vendor supplied performance tools to improve accuracy
and broaden the range of information captured;

e Identification of Important Hardware Restrictions -
We expose important hardware resource/design charac-
teristics and resulting limits that can significantly affect
SpMYV performance that may be used to help optimize
static kernel parameters in situations where iterative
methods may not be present or overheads from autotuning
may be too expensive to warrant their use.

This paper is laid out as follows: Section II provides the reader
with background information on the Kokkos programming
model; Section III provides an overview of our autotuning tool;
in Section IV we provide performance results from using our
tool for tuning SpMV calls and, finally, we provide conclusions
in Section V.



II. BACKGROUND
A. Kokkos

The Kokkos programming model provides the application
programmer the means to abstract their code from the finer
intricacies of hardware details, and at the same time maintain
portability across hardware devices. Kokkos accomplishes these
goals by providing abstractions for the memory space (how and
where is data allocated), and execution space (where parallel
patterns are executed). Parallel patterns in Kokkos form part
of the API and are defined as a simple set of patterns such as
parallel-for, -reduce, and -scan that can be nested within each
other to form more complex schemes. An example of nested
patterns is illustrated in lines 19 to 32 of listing 1.

Kokkos works on top of an abstract machine model, which
assumes multiple types and numbers of computing units within
a node. Each compute unit comes with one or more memory
spaces optimized for that unit. The execution space represents a
group of homogeneous units within the machine model. These
units are used to execute a parallel pattern. The programmer
can then create multiple instances of execution spaces that
target different units. The process of compiling and running
computational kernels on these different spaces is abstracted
completely by Kokkos. This ability largely removes the need
for hardware-specific optimizations to be part of the main code
base although these can be added by the programmer and
interoperated with where desired. Kokkos can provide further
tuning through parameters passed to the Kokkos API. We use
these parameters for the autotuner proposed in this paper. The
memory spaces follow the same logic as the execution spaces.
Different instances can represent different types of memory
within a node, such as conventional DDR, on-package High-
Bandwidth Memory (HBM), as well as future devices such as
non-volatile memory. For accelerators, a memory instance can
be used to describe various types of memory such as shared,
texture, and global memory.

B. Sparse-Matrix Vector Multiplication (SpMV)

Sparse matrix-vector multiplication (SpMV), defined as y = Az
where A is a sparse input matrix, = is a dense input vector,
and y is the vector product, is a widely used computational
kernel found in many scientific applications. The performance
of this operation is of great importance for iterative linear
solvers since, SpMV can potentially be called up to many
thousands of times until solution convergence. Due to its
importance there exists a large variety of implementations
and extensive literature dedicated to it. Unlike dense matrix-
vector operations, SpMV has to deal with a broad range of
irregularity, in particular regarding the sparsity of the matrix.
This asymmetry makes it difficult to develop general-purpose,
high-performance solutions. Implementations often struggle
to make successful use of caches, memory hierarchies, and
available computational resources. An extensive summary of
approaches by Vuduc [16] is a good overview of this area.
Using Kokkos to write a portable high-performing SpMV kernel,
we have to deal with the same obstacles. Tuning parameters
have to take into account the hardware as well as the matrix
characteristics. By making use of KokkosP (‘“Kokkos-Profiling”)

TABLE I: Search-Space bounds per architecture: The limits
for each device were determined by running a large number of
SPMV problems. The resulting bounds nicely match hardware
characteristics of each device. It is important to note that the
search space for the KNL is about 3 times larger than the
Pascal search space

Max Min Max Min
Team Size  Team Size  Vector Width ~ Vector Width

Pascal 1024 32 32 1
Knights Landing 2048 1 16 1

Architecture

runtime performance hooks that are built directly into the
Kokkos-runtime, we develop an autotuning framework that can
use runtime timing information to search for the best performing
set of parameters for a particular matrix on a particular hardware
device. A skeleton implementation of SpMV using Kokkos
can be seen in listing 1. In this implementation we utilize the
standard Compressed-Row Storage (CRS) format since this
is the most commonly occurring format in the Trilinos linear
solver portfolio (where Kokkos is heavily used to implement
next-generation solver capabilities). The algorithm is defined
within a functor from line 19 to 32. It uses a series of nested
parallel patterns in lines 19 and 22 to represent the behavior
of the SpMV abstractly. This functor is instantiated in line 5
and used as the last parameter for the parallel pattern in line
11. This pattern breaks the problem size into groups of team
threads and determines vector widths.

Listing 1: Kokkos SPMV skeleton code

int team_size;
int vector_length;

//instantiate SPMV functor
SPMV_Functor <...> func (...):

//registration of the team_size and vector_length parameters
Kokkos :: Profiling :: autoTune(&team_size & vector_length);

//These parameters are use by the Kokkos TeamPolicy to map to hardware
Kokkos :: parallel_for ("SPMV”,
Kokkos :: TeamPolicy <Kokkos :: Schedule<Kokkos :: Dynamic> >
(league_size ,team_size , vector_length), func);
/o
struct SPMV_Functor {
V72

operator () (const team_member& dev) const
Kokkos :: parallel_for (Kokkos :: TeamThreadRange (dev ,0 ,rows_per_team ) ,[=](...) {
/o
//perform vector reduction
Kokkos :: parallel _reduce (Kokkos:: ThreadVectorRange (dev ,row_length) ,[=](..) {
/o
Isum += ...;
}.sum);
// Add the results once per thread
Kokkos :: single (Kokkos :: PerThread (dev), [&] () {
/o
m_y(iRow) = sum

138
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e

III. AUTOTUNER

The autotuner is implemented using the KokkosP performance
tools interface. This is an experimental runtime hooks interface
which is able to connect deep into the Kokkos runtime to receive
rich notifications on the start of parallel execution, data-structure
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allocation, migration and other important application events.
An important characteristic of KokkosP is that it maintains an
identical event model across the architectures and backends
supported by Kokkos enabling portability even for performance
analysis tools, and, in the case of this paper, dynamic autotuners.
In recent internal research prototypes the hooks have also
been demonstrated as a mechanism for provided enhanced
information on application behavior for third party tools such
as Intel’s VTune Analyzer XE [11] and NVIDIAs’s NSight
[1] GPU profiler. We utilize the connectivity to Intel’s VTune
profiling tools later in this work.

Each of the tools written to utilize KokkosP are dynamically
loaded and can be enabled by defining an environment
variable. The autotuner was developed within the same profiling
framework but with the difference that it can run as a dynamic
tool that uses runtime information provided by the hooks as
feedback to improve the parameters that are usually left for
the application scientists to determine. We note the significant
utility of being able to dynamically load autotuners into Kokkos
applications, opening the door for application, or even, problem
specific tuners to be utilized by our complex solver libraries.
The autotuner consists of two main components, the parameter
registration interface, and the search space iterator.

A. Tuning Parameter Registration Interface

For the autotuner to be able to modify the parameters that are
fed into the existing Kokkos API, the user must first register
the tunable parameters using the registration interface designed
for the autotuner. An example of the registration interface can
be seen in line 8 of code listing 1. Registration works by
keeping track of the pointers to those variables and updating
them with new values as improved choices become available.
These variables are internally associated with a parallel pattern
label (in this case, the parallel_for label, “SPMV* in line 11
of the same code listing). The association is formed by storing
registered parameters and mapping these to a parallel pattern
the moment it is first executed. This implies that variable
registration should follow a particular order. Registration must
be followed by a parallel pattern. If, for example, multiple pairs
of parameters are registered in a row, only the last registration
will be associated when the next parallel pattern is executed.
Because the registration works by the aliasing of pointers and
not any data copying, it has a negligible overhead.

B. Search Space Iterator

Once a set of parameters is registered and associated with
a particular parallel pattern label, the search space iterator
(SPI) is responsible for keeping track of the currently selected
parameter choices. In this case study we modify the “team size”
and “vector width” parameters which adjust the mapping of
parallelism onto the hardware platforms being used (see [15]
for discussion of how these are utilized by Kokkos). The SPI is
also responsible for iterating through the possible combinations
of parameters for any specific piece of hardware. Each hardware
platform has a different search space, which relates directly
to the architecture features of a device. The search space for

the architectures used in this paper are illustrated in Table I.
The limits for each device were determined by running a
large selection of SpMV problems with different sparsity and
structure characteristics. We then picked the highest and lowest
optimal parameters. Results confirm the close relationship
between performance and hardware features. For the Pascal
architecture team sizes should not go below 32 due to the warp
size execution being an integral part of GPU architecture. No
optimal combination of team size and vector width will go over
1,024 due to hardware limits. For Knights Landing (KNL) [12],
vector size should not exceed 16 since no more vector lanes
are available to use. In this case each processor core has two
512-bit vectors that can handle up to eight double-precision
elements each. The team size is limited by hardware resources.
If we utilize all hyper-threads on the KNL by using all 72
cores and the max four hyper threads per core and fully use
the vector lanes to execute 16 elements we get 2,304, which is
slightly above 2,048.

The SPI is triggered whenever the same parallel pattern label
is encountered. When executing a parallel pattern, the autotuner
maintains a map of all pre-existing labels (and associated
registered tuning parameters). Each parallel pattern label record
stores the kernel’s name, number of times it has been called,
and total execution time. We further extend the information
tracked to include data about the current and best team size
and vector width. Thus, upon finding a matching label, the
autotuner will trigger the SPI by updating the record.

We implemented the SPI using a naive approach of iterating
over all possible options by increasing the vector size by
multiplying by two until the maximum vector length is reached.
At this point we switch to increase the team size by multiplying
by two and reset the vector length to the minimum size. The
algorithm increases the vector size and the team size by two
due to hardware features such as vector widths and number
of hyper-thread being designed to be powers of two. When
the SPI is activated it will record the current set of parameters
and the corresponding execution time. It will then check if
the current execution time is faster than the current fastest
set of parameters. If so, it will update the current best team
size and best vector width accordingly. Finally, the SPI will
update the current set of parameters to reflect the next set in the
search space to be used when encountering this parallel pattern
again. When all the possibilities in the search space have been
attempted, the SPI will default to the best set of parameters
and turn itself off to prevent continuous auto-tuning overhead
interfering with the full application. This approach hinges on
iterative applications that call the same computational kernels
multiple times during execution of the program, where each
time the SPI will attempt a new set of parameters. Kernels
that are only executed a few times during the lifetime of an
application will not be able to take advantage of this system.

C. Non-Zero (NNZ) Count Hint

In many cases, not all iterations of a search space are worth
exploring due to the characteristics of a particular matrix. If
a matrix has a low number of non-zeros per row, we may
choose to skip some of the search space iterations that we



suspect won’t result in improved performance by taking that
information into account. Some of the vector width choices in
the search space can be discarded if we know there are not
enough non-zero elements in a row to take advantage of all
the vector lanes. Thus we can shrink the search space, and
therefore reach the optimal configuration faster, by adding a
check that will limit the SPI to only iterate through parameters
that can meet the above criteria. We accomplish this by adding
an extra optional parameter to the autotuner that will register
the number of non-zero elements per row that will later be
used by the SPI for shrinking the iteration space. We call this
extra optional parameter that represents the number of non-zero
elements per row hint NNZ.

IV. RESULTS

In this section, we present an evaluation of the effectiveness of
the autotuner tool with and without the number of non-zeros per
row hint. We compare it with two other schemes: the “Fixed”
approach, and the “Oracle”. The Fixed approach stands for the
conservative choice made by an application programmer that
is likely going to use most of the available resources of the
hardware without taking into account any matrix characteristics.
We define the fixed parameters as {team size, vector width}
of {4, 8} for the KNL devices and {32, 32} for GPUs. The
Oracle will always use the best configuration from the start. We
evaluate these schemes using 22 sparse matrix-vector problems
taken from the University of Florida Sparse Matrix Collection
[5], which contains a set of real-world matrices of different sizes
and sparsity patterns from a wide variety of domains. Table II
shows a description of the matrices used. We show that after
100 iterations, the autotuner is useful in finding the most optimal
setup, in some instances incurring some significant overhead
when compared with the Fixed approach and in some cases
substantially outperforming it. Furthermore, a clear difference
between architecture can be observed, as some architectures
are more sensitive to suboptimal choices than others.

A. Experimental Setup

All experiments were run on the two proposed hardware
systems — a Tesla P100-SXM2 GPU part of the NVIDIA
Pascal architecture, and Intel’s Xeon-Phi Knights Landing
self-hosted processor. Table III summarizes these architectures
in more detail. For runs on the Pascal GPU we utilize the
CUDA 8.0.44 toolkit and GCC 5.4.0 as the host compiler. On
the KNL we configure the SpMV kernels to be compiled
with Intel’s 17 Update 1 compiler with flags enabled to
generate optimized KNL-specific (AVX512) instructions. In
both hardware environments RedHat Enterprise Linux 7.3 is
used. For the Intel KNL we also explore different configurations
that are possible with this architecture. We chose from a number
of different clustering styles and memory type partitions since
its High-Bandwidth Memory can be used in “flat” (as a memory
for which direct allocation can occur) as well as “cache” where
the hardware utilizes the memory to cache data from the DDR4
memory pool. We ran on seven different setups that are possible
from the many combinations and show results for the best
performing configuration: flat.

TABLE II: Attributes of each of the matrices that were used.
The number in parenthesis after the name is the average number
of non-zero elements per row. The rest of the table shows the
number of rows, columns and the total number of non-zero
elements in the matrix.

Matrix Name  Number of Rows ~ Number of Columns  Non-Zeros
0Ilm2000(3) 2,000 2,000 7,996
relat9(3) 12,360,060 549,336 38,955,420
mc2depi(3) 525,825 525,825 2,100,225
Insp131(4) 131 131 536
memship(5) 2,707,524 2,707,524 14,810,202
Insp511(5) 511 511 2,796
atmosmodl(6) 1,489,752 1,489,752 10,319,760
dc1(6) 116,835 116,835 766,396
fullship(8) 2,987,012 2,987,012 26,621,990
ex18(12) 5,773 5,773 71,805
cagel0(13) 11,397 11,397 150,645
coater1(14) 1,348 1,348 19,457
cagel3(16) 445,315 445,315 7,479,343
cagel4(18) 1,505,785 1,505,785 27,130,349
coater2(21) 9,540 9,540 207,308
ex25(29) 848 848 24,612
rmal0(50) 46,835 46,835 2,374,001
invextr1(58) 30,412 30,412 1,793,881
raefsky3(70) 21,200 21,200 1,488,768
ns3Da(82) 20,414 20,414 1,679,599
RMO7R(98) 381,689 381,689 37,464,962
fluorem(140) 2,017,169 2,017,169 283,073,458

For the KNL-Flat configuration, the HBM memory ex-
tends the physical address space with the DDR4 memory.
We ran in this configuration with the HBM used as both
the default and non-default memory (i.e. using DDR4) to
study the effects of the HBM on the autotuner and overall
performance. Finally, for all KNL-Flat configurations we ran
with two environment variables. OMP_ NUM_THREADS=256,
and KMP_AFFINITY=compact, to control the number of
threads and placement. The results are labeled to indicate the
memory partition used — either DDR4 or HBM. All results
are from executing the SpMV kernel for 100 iterations which,
anecdotally, represent a reasonable number of calls when the
kernel is used in a more complex solver.

B. Experimental Results

1) NVIDIA P100 Pascal GPU: The normalized performance
of the autotuner on the NVIDIA P100-SXM2 can be observed in
Figure 1. These results are sorted based on the sparsity pattern
of each test matrix, from very sparse on the left to increasing
density on the right. The number of non-zero elements per
row is shown in parentheses next to the each matrix name.



TABLE III: Table of Architecture Details [2][13]

Architecture Cores  Logical Cores  Frequency GFLOPs (double)  Max. Memory Max. Memory B/W
NVIDIA Tesla P100-SXM2 GPU (Pascal) 56 3584 1328 MHz 5,427 16 GB (HBM2) 732 GB/s
Intel Xeon Phi (Knight’s Landing) 72 288 1.5 GHz 3,543 384 GB (DDR4) 90 GB/s (DDR4)

16 GB (HBM) 400 GB/s (HBM)

Pascal

n
2
=

BRNNZ
B Regular
= Fixed

Normalized Execution Time

Oracle

Fig. 1: Results for the NVIDIA P100-SXM2 Pascal architecture
(lower is better). All results are normalized based on the Oracle.
The autotuner strategies are explained in the first paragraph of
section IV

We can immediately notice a clear distinction based on the
above description. Matrices that have a low number of non-
zero elements per row perform very poorly when using a fixed
size for the thread teams and vector width. This performance
can be explained due to there not being enough uniform work
per row take full advantage of a large degree of threads per
team. It is important to note, based on Table II, that matrices
that have this behavior like relat9, mc2depi, memship
and atmosmodl are vast matrices containing well over a
million elements. It is well known that large irregular data sets
perform poorly on the GPU due to divergence as shown in [3].
By forcing a large team of threads, it enforces a significant
divergence penalty. For other highly sparse but far smaller
matrices like 01m2000, 1nspl131, Insp511, and dc1 that
only have a few thousand elements, by choosing a larger
size team of threads and vector size, the SPI will not incur
significant amounts of divergence penalty. Thus the Fixed choice
performs almost optimally when compared to the Oracle. When
we analyze the effectiveness of the autotuner for the large
matrices with a low number of non-zero elements per row, 100
iterations are enough to make the online autotuner worth using.
It performs much better than the Fixed choice, the benefit in
performance ranging from 3.5x to 5X faster, and only 12% to
23% slower than the Oracle. The improvement for these type of
matrices from the Regular approach to the NNZ approach varies
between 11% in the best case to only about 5% in the worst case.
For small matrices with a low number of non-zeros per row,

there is essentially no benefit from the NNZ hint, and in many
cases it will hinder performance. The reason for this drop in
performance is due to the optimal choice for vector width being
larger than the number of non-zeros per row. Thus the NNZ
approach never reaches the most optimal setup. As an example,
we look more deeply into the different configurations chosen
for 01m2000 and 1nsp511. For 01m2000 the number of
non-zero elements per row is three. The NNZ approach limits
the vector width to two due to a vector width of four being
larger than the number of elements per row. When we ran the
Regular approach, which searches the entire search space, the
most optimal vector width was determined to be four. Thus, the
Regular approach performs 2.4X faster than the NNZ approach.

When the number of elements per row increases to the
beyond 10, we see a slightly different result. In all cases,
the autotuner performs only marginally better than the Fixed
choice. The performance benefits range from 17% to 64%.
When compared to the Oracle, the autotuner performs only
1% to 30% slower. With small matrices suffering almost no
overhead and large matrices with millions of elements reaching
up to 30%. What this means is that 100 iterations are just
enough to amortize the overhead of the tool to at least break
even regarding performance compared to the fixed choice. For
some of these matrices, such as cagel3 and cagel4 the
differences between the Fixed and the Oracle are as high as
2X. In other words, once beyond the break-even point, because
the difference between the Fixed and Oracle is significant, it
would only take a few more iterations to make a noticeable
improvement in performance using the autotuner.

Finally, when the matrix row density increases, we see that
the difference in performance between the autotuner and the
Fixed approach worsen, and the difference between the Fixed
approach and the Oracle shrinks substantially. This behavior
is also explained by warp divergence. Because the number of
non-zeros per row reaches and surpasses the size of a CUDA
warp, 32, the penalty of warp divergence is no longer an issue.
What this means is that, by around 50 non-zero elements per
row, it would require a substantial increase in iterations to break
even against the fixed approach, and after breaking even, it
would take a further increase in iterations for the autotuner to
make a significant difference. We also notice that the autotuner
starts to perform worse compared to the Oracle when the
density of non-zero elements per row increases. Meaning that
a suboptimal choice of thread size and vector with by the
autotuner has a larger penalty. A more sophisticated autotuning
tool would disable itself based on this information. We plan to
use all of these observations to improve the performance of the
autotuner tool further by taking into account more properties of
the matrix such as total size and the total number of iterations
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Fig. 2: Results for the Knights Landing architecture using the

KNL-Flat DDR4-only Memory configuration (lower is better).

All results are normalized based on the Oracle. The autotuner
strategies are explained in the first paragraph of section IV

in the simulation when possible.

2) Knights Landing KNL-Flat: The results for the Knights
Landing architecture using the KNL-Flat configuration are
shown in Figure 2 and 3. These results are presented in the
same fashion as previous results. Unlike the GPU results, this
figure shows results for two different execution modes. The first
mode shown in Figure 2, uses the standard DDR4-only memory
in the KNL. This mode also uses two environment variables to
control the number of threads and placement. The second mode,
HBM, shown in Figure 3 is similar to the DDR4 mode with the
only difference being the type of memory specified to the KNL
changed to High Bandwidth Memory (i.e., this runs entirely
in the high-bandwidth resource). The Fixed approached was

defined to be four threads per team with a vector width of eight.

This setup was chosen because it maximizes the available hyper
threads per core available in the KNL, and when all threads
are vectorizing, they will adequately fill the available vector
resources.

The performance of the autotuner can be classified into
three different groups, A, B, and C. When using the autotuner,
the worst performing group of matrices is group A. This
group is composed of relat9, mc2depti, memchip,

atmosmodl, dcl, fullchip, cagel3, and cageld.

Looking at Table II, we can characterize this group as having
large sparse matrices, with a large number of rows and
columns but very few non-zero elements. For these type of
matrices, the autotuner Regular scheme performs between
2.1X to 4.4X slower than the Oracle. The NNZ approach can
trim the search space, and lower this difference to between
1.9X to 2.6X. We can explain the performance of the autotuner
through cache behavior. For relat 9, the optimal combination
of threads per team and vector width is {1, 1}. This choice is
excellent for large sparse matrices because the few non-zero
elements are not contiguous and do not benefit out of a large
number of threads in a team. A representative example of

TABLE IV: KNL-Flat performance and cache metrics for relat9
using different configurations: Ideal CPI of KNL is 2. SIMD
compute metrics report the ratio of SIMD compute instructions
to the total number of memory loads

SIMD compute ~ SIMD compute

Execution Type ~ CPI L2 Hit rate to L1 access to L2 access
Oracle {1, 1} 39 0.687 0.451 37.838
Fixed {4, 8} 4.0 0.736 0.307 31.375
Fixed {256, 16} 8.9 0.565 0.065 11.847

group A is atmosmodl. Using a larger number of threads
and a large vector width causes cache trashing and cache
misses. In Table IV, we showed the results of running Intel’s
VTune profiling tool and compared the Cycles Per Instruction
(CPI) Rate, L2 Hit Rate, SIMD compute-to-L.1 access, and
SIMD compute-to-L2 access for the Oracle {1, 1}, standard
Fixed {4, 16}, and an alternative Fixed {256,16} for the
relat9 matrix that confirms our reasoning. The ideal CPI rate
for KNL is 2, The Oracle{1, 1} manage to achieves a CPI
of 3.9 compared to a CPI of 8.9 when using a Fixed {265,
16}. A high CPI value usually indicates latency in the system
that could be improved. The L2 Hit Rate, which measures
the ratio of requests that hit the L2 to the total number of
request serviced, is better in Oracle as well. Perhaps the most
significant penalty suffered by a large number of threads per
team is the poor SIMD compute-to-L.1 access. This metric
provides the ratio of SIMD compute instructions to the total
number of memory loads to the L1 cache. It is important for
the KNL that this ratio is large to ensure the efficient usage of
computing resources. The difference between the Oracle and
a Fixed {256,16} is of 7X. There is also a difference of 3X
for the similar metric of SIMD compute-to-L2 access. The
autotuner Regular approach by attempting larger threads and
vectors sizes suffer from substantial overhead penalties when
iterating through the entire search space. The NNZ approach
performed better by avoiding many of the expensive wrong
choices. Finally, the Fixed approach of {4, 8} that we use as
the standard choice for most matrices performs 2.2X slower
than the Oracle for realt9, very close in performance to
the NNZ approach. We can conclude that for this group of
matrices the autotuner is not beneficial, and a smart heuristic
should disable the autotuner based on the matrix characteristics.

Group B is characterized as having far smaller and slightly
denser matrices than group A, with a larger number of non-
zero elements per row. Examples of these are ex18, cagelO,
coater2, rmal0, invextrl, raefsky3 and ns3Da. For
these type of matrices, the autotuner performs about 1.5X to
2.0X slower for the Regular, and 1.4X to 1.9X for NNZ when
compared to the Oracle. The Fixed approach {4, 8}, performs
only about 5% slower than the Oracle in general. Because this
group of matrices is made up of smaller matrices that are more
densely packed, there is a higher chance that better performance
could be achieved by the use of more threads per team or wider
vector length. One such matrix is cage10 [5]. We looked at
the top three configurations chosen by the autotuner for this



TABLE V: Memory access metrics for large sparse matrices
with and without HBM enabled. DRAM Bandwidth Bound is
the percentage of time system spend on DRAM access.

Matrix Memory DRAM Bapflwif]th
Mode Bandwidth Bound  Utilization
RMO7R DDR4 29.9% 83 GB/s
RMO7R HBM 0% 167 GB/s
fluorem DDR4 45% 86 GB/s
fluorem HBM 0% 207 GB/s

matrix. We see that the set of team size and vector width chosen
where {4, 1}, {4, 2}, and {4, 8} respectively. The difference
in performance between the top three choices is on the scale of
hundredth of a second. In fact, this small difference continues
to be true for the top 10 choices. What this means for the
autotuner is that a suboptimal choice does not incur such large
penalty as group A. The Fixed {4, 8} happens to be among the
best options for these type of matrix. We can conclude that for
this group, 100 iterations is not enough to offset the overhead
of online tuning. A conservative Fixed choice that attempts to
use the available resources in the hardware will perform almost
optimally.

For group C, the autotuner performs with the lowest overhead
and closer to the Oracle performance. The Regular approach has
about 13% to 45% performance loss compared to the Oracle,
and the NNZ approach has about 13% to 26% loss. To explain
the performance of the autotuner, we have to subdivide this
group into two sub-categories C1 and C2. The first subgroup,
C1, is composed of small, sparse matrices such as 01m2000,
Inspl31, 1lnsp511, coaterl, and ex25. Some of these
matrices have only a few hundred or few thousand non-zero
elements. Similarly to Group B, due to the small size of these
matrices, the few non-zero elements have a higher probability
of being clustered in contiguous memory locations, benefiting
from a larger number of threads per team and wider vector
width. The only difference between this subgroup and group
B is that subgroup C1 has far smaller matrices. The Fixed
approach performs very slightly worse than Group B, averaging
about 10% slower when compared to the Oracle due to misuse
of resources. The Oracle choice for 1nspl131 is {16, 2},
taking advantage of a higher number of threads than the
Fixed approach but also reducing the vector width. The second
subgroup, C2, is composed of two very dense matrices having
more than a 30 million non-zero elements such as RMO7R,
and fluorem. The bandwidth explains the performance for
the autotuner and Fixed approach. These matrices do not fit
in cache, and the bottleneck becomes more dependent on the
bandwidth to the higher-level memory subsystem. Thus the
SpMV kernel becomes bandwidth bound compare to compute
bound. Choosing the best configuration to maximize compute
resources becomes less necessary to the overall performance.
The autotuner suboptimal choices suffer from the least overhead
penalties. Figure V shows bandwidth profiling metrics taken
using Intel Vtunes for these two matrices with and without
HBM enabled.

The results for KNL-Flat using the HBM memory mode is
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Fig. 3: Results for the Knights Landing architecture using the
Flat HBM memory configuration, (lower is better). All results
are normalized based on the Oracle. The autotuner strategies
are explained in the first paragraph of Section IV

shown in Figure 3. The behavior of the autotuner and Fixed
approach behave very similarly as the DDR4 mode except for
four matrices. The four matrices that behave differently are
cagel3, cageld, RMO7R, and fluorem. These matrices
can be characterized as vast and dense enough to be affected
by the bandwidth to the memory subsystem. It is exactly
for this kind of matrix that the type of memory we are
using is of significance. If we look at Table III we can
see the difference in peak bandwidth between the DDR4
and HBM memory in the KNL. When the performance of
a matrix is bottlenecked primarily by the bandwidth then
choosing suboptimal configurations of threads and vector width
won’t suffer from a significant penalty. Because the Bandwith
drastically increases from 90GB/s to 400GB/s for the HBM
mode, then the bottleneck of the performance goes back to
compute. In this mode, choosing a suboptimal configuration
that does not map well to the available resources will suffer
from significantly performance penalty. This explains the
performance deterioration for the autotuner and Fixed approach
for those four matrices when switching between DDR4 and
HBM memory mode. Finally, we compare the performance
of the Oracle between the DDR4 and HBM memory. We see
that as stated above the matrices that depend heavily on the
bandwidth perform much better under the HBM. For the two
largest and matrices the performance improvement between
DDR4 and HBM matches the ratio of bandwidth between
the two memory modes, about 4X. What this means for the
autotuner is that taking in consideration the overall bandwidth
of the system as well as the density and size of the matrix
could be of value.

C. Autotuner selection

To emphasize the importance of using an autotuner to
find the most optimal set of parameters we present Table
VL In this table, we have picked a subset of the matrices



TABLE VI: Best Performing Selection by the Autotuner

Pascal KNL DDR4 KNL HBM

Matrix # Of Non Zeros Per-row

Team Size | Vector Width | Team Size | Vector Width | Team Size | Vector Width |

relat9 3 128 2
Insp131 4 32 32
6

8

5

atmosmod] 64 4
fullship 32 32
cagel0 13 32 4
coaterl 14 32 8
coater2 21 64 8
rmal0 50 32 16
raefsky 70 32 16
fluorem 140 32 32
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used for out experiments, and for each matrix we show the
most optimal team size and vector width for each architecture
and configuration. What we can clearly see from the table
is that each architecture had a substantially different set of
optimal parameters. Even the two KNL configurations, which as
expected have the most similar set of parameters, have the same
parameters less than half the time. What this would mean is that
for the most optimal application performance, the programmer
would have to re-tune his or her application when porting it
between configurations of the same architecture. Lastly, the
Pascal’s optimal parameters show in GPU’s preference for

a large team size when compared to the KNL type devices.

We also see that the vector width of the Pascal, and KNL
Flat using only the DDR4 memory increases as the as the
number of non-zeros per row increases, showing how the
autotuner adapts to matrix features. The trend is not particularly
true for KNL Flat with HBM enable as it may depend more
heavily on other matrix features such as matrix size. This
means that portability across and within architectures has to be
done by taking into account small hardware details and data
characteristics, highlighting the need for automated adaptive
runtime tools.

V. CONCLUSION

The broad range of optimal parameters found during our
experiments shows an uneasy problem — that in order to obtain
the best performing SpMV operations, each instance of the
kernel may require considerable tailoring. We propose to extend
the current set of KokkosP-based performance tools with an
autotuner that iterates over possible candidate parameters that
are fed to generic Kokkos parallel patterns. In this paper
we have shown that for the Pascal architecture, after about
100 iterations, a near optimal choice can be made by the
autotuner that is, in many cases, beneficial to the overall
performance. This behaviour, was most commonly encountered
with very large sparse matrices. For KNL, we showed that

in most cases the autotuner suffers from substantial overhead.

Only when the matrix was of a very small dimensions did
the autotuner perform on par with the Fixed approach. This
outcome reflects experience that the basic configuration of
parallel kernel execution is much more important on the GPU
where poorly tuned parameters can have a significant effect
on execution times. This strongly motivates the need to have
simple, low overhead methods for tuning dynamic properties
of the execution at runtime. For both architectues we have
identified matrix characteristics that affect the performance

of the autotuners. Finally, this paper highlights the need for
automated tools by presenting the large variability in optimal
parameters among and within different architectures for the
same and different matrices.
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