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Seed Questions
1. How do we infer that there are missing/more important signatures from our 

experiments? What in our experimental design might lead us to make such 
an inference?

2. How do we design experiments to optimally identify connection between 
process variable(s)  and product observable(s)?

3. What is the “right” mix between experimentalists, theoreticians, and 
production experts to develop the experimental approach to signature 
identification? 

4. Within the context of our limited laboratory experimental scope, how do we 
address the changes that occur in a process when going from lab scale work 
to production scale work?

5. How might we approach the experimental design of an SEM round-robin to 
calibrate our instruments across our enterprise and standardize the results 
and reporting thereof? 

6. What approaches to experimental design are applied by our laboratories and 
how might we optimize our experimental work?



Purpose of Talk

 Statistical perspective on experimental design
 General steps to design an experiment
 Contributions/responsibilities of all parties:

 SME’s
 Experimentalists
 Statisticians

 Connection to seed questions 
 Some guidance to help answer them 
 Definitive answers not necessarily available



What is a Designed Experiment?

Planned series of tests where systematic changes are 
made to inputs so we can identify sources of change in 
outputs 

Maximize information
Minimize cost

Accelerate learning

Change these 
systematically

Account for 
these

Figure adapted from: Montgomery, D.C. Design and analysis of Experiments 

Process

Controllable input factors

Uncontrollable input factors

Outputs



What is a Designed Experiment?

 Ultimately – it’s a list of tests in a certain order

Test (Run) Factor 1 Factor 2 Factor 3 ….

1 Level 1 Level 1 Level 1 ….

2 Level 1 Level 2 Level 2 ….

3 Level 2 Level 2 Level 1 ….

4 Level 1 Level 1 Level 1 ….

…. …. …. …. ….

 Chosen to match the objectives

 Order matters: often randomized to mitigate unknown effects

 Can be run sequentially
 Information from first set of tests can inform the choice of a next set of 

tests



All Experiments are Designed…

Some poorly …



Example of a poorly designed experiment

Wire Bonding (WB) of Integrated Circuits (IC)

 Goal/Objective: Determine the sources of variation in bond 

strength

Data for 11,000 pull tests across many

• Devices

• Operators doing the wire bonding

• Operator doing the pull test



Poorly Designed Experiment Example

 Experimental Protocol
 Operators chose their bonding machine (each had favorites)

 They pull-tested the wires they themselves bonded

 Experiment did not control the bonder, bonding 
machine, or puller. 

 Observed differences in bond strength could be due to:
1. Bonding operator 

2. Testing/Pulling operator 

3. Bonding machine 

4. A combination of the above three

 Follow-up designed experiment de-confounded effects 
with ~75% less data

 Risks of poorly designed experiments
 extra cost, confounding,…



General Steps to take when 
designing an experiment…



Designing Experiments

Example: Pu (III) Oxalate Bench-Scale Study

1. Clearly define objectives

 Identify signatures of nuclear forensic value that can be 
related to the processing conditions used to produce 
them

 Inform choice of processing conditions for the large-
scale study



Designing Experiments

2. List response variables and factors

Considerations
 Final list of factors chosen from much larger list

 Expert opinion, costs, goals – trying to do too much can be detrimental
 Controllability of the factors (both varying and fixed)
 # of levels to use
 Ability to measure (e.g., SEM’s)

Oxalate feed: 
Solution (0.9M) & Solid

Reagent add./dig. timing:
0/40, 20/20, 40/0

Nitric acid 
concentration:
1M, 2M, 3M

Mixing sequence: 
Direct & Reverse

Precipitation Temperature: 
30°C & 50°C

Feed concentration of Pu: 
10g/L, 30g/L, 50g/L

Factors Responses

Many – some not known 
yet. 
Size distributions (SEM)
XRD strain
XRD crystallite size
Pycnom density
…



Designing Experiments

3. Design the Experiment
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 Connect objectives with statistical theory 
 I-optimality – minimize average 

prediction variance
 Some good properties

 Tests spread across space
 Replicates

Considerations
 Run order

 Material Availability



Connections to seed questions 2 and 3

2. How to design experiments to optimally identify 
connection between process variable(s)  and product 
observable(s)?

3. What is the “right” mix between experimentalists, 
theoreticians, and production experts to develop the 
experimental approach to signature identification? 

 Modified terminology – SME, experimentalists, and statisticians



How to?  And Right  ‘Mix’?

1. Clearly defined objectives

SME/Experimentalists

Statisticians

• Brings problem/goals to table 

• Maps goals to statistical objectives -
what data is needed to achieve the 
objectives?  



How to?  And Right  ‘Mix’?

SME/Experimentalists

Statisticians

2. List response variables and factors

• Creates these (usually long) lists 
• Prioritized factors using perceived 

effects 

• # of levels needed 
• sample size



How to?  And Right  ‘Mix’?

SME/Experimentalists

Statisticians

3. Design the Experiment

• Constraints?
• Feasibility of proposed designs

• Objective based (e.g. optimal design)
• Provide options: evaluate pros/cons



Iterative Nature of Experimentation



Iterative Nature of Experiments

Experimentation is part of The Scientific Method

Experiment

Analyze
Analyze

Hypothesize

Analyze

Hypothesize Hypothesize

Factor A

Smaller experimental efforts precede and inform  larger efforts

Factor A
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Factor A

Narrow down long 
list of potential 

factors

Understand large 
directional effects of 

each variable

Pin down input-
output relationship 

further

Experiment Experiment
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If feasible: 
results from 

each new test 
can be used 

to choose the 
next test 

(sequential 
designs)



Seed Question 4

4. Within the context of our limited laboratory 
experimental scope, how do we address the changes that 
occur in a process when going from lab scale work to 
production scale work?



Bench-Scale vs. Lab-Scale 

Pu (III) Oxalate Bench-Scale Study

 76-run design, ~10g per test

 Understand as much as possible

Informs the larger Lab-scale study

 Smaller set of runs 

 ~200g per test

Compare

 Look for empirical differences

 Match to what science suggests

Approach being taken in Pu Signatures Project

Iterative approach is 
the only feasible 
approach



Seed Question 1

How do we infer that there are missing/more important signatures 
from our experiments? What in our experimental design might lead 
us to make such an inference?

Note on terminology
• Signature = set of measurements with NF value

We cannot evaluate if we don’t have data 
Wise to start with as rich a set of responses as possible
• Range of factors, responses, using principled DoEx
• Can always down-select later 



Data Analysis
 Important measurements/signatures have strong 

relationships with the processing parameters

Unit 
cell

Crystallite 
size

Pycnom 
Density

Strain

Digestion time Addition time

First set of data from Pu 
Bench Scale Study:
• Strong relationships with 

digestion and addition 
time?

• Flat lines would indicate 
little or no linear 
relationship

• Still too early to be 
confident



Data Analysis
 Multiple measurements in combination can be 

more informative than individual measurements

Models calibrated with initial 
experiment:
Y1 ≈ f1(X1,…,X4)
Y2 ≈ f2(X1,…,X4)
Y3 ≈ f3(X1,…,X4)

Example:
New observation
(Y1,Y2,Y3) = (79,3500,2)

Suggests (X1,X2, X3, X4) ≈
(-0.2,1.0,84,180)

Y1 (solid)

Y3 (shaded)
X1

X
2

X3

X
4

Need enough measurements to obtain unique solutions

Y2 (dashed)



Data Analysis
 Multiple measurements in combination can be 

more informative than individual measurements

� = {9,10,11,12}� = 1,2, … , 16

Don’t necessarily need all measurements

 Prediction variance under different signature sets

 Average variance 1.6x larger – but with ¼ of the 
measurements.
E.V. Thomas, J.R. Lewis, C.M. Anderson-Cook, T. Burr, M.S. Hamada, Selecting an informative/discriminating 
multivariate response for inverse prediction. (2017). Journal of Quality Technology.



 Analysis of experimental data can:
 Identify empirical relationships for the inverse prediction

 Identify important measurements/signatures

 Poor predictive performance?
 Could be a sign of missing measurements/signatures

 Requires SMEs to relate empirical results to scientific knowledge

 Experimental design is important
 Better design -> better information from data analysis

 Design philosophy for signature discovery 
 Span factor space where inverse model predictions are to be applied

 Allow development of accurate models of the relationships

Summary of Question 1



Seed Question 5

5. How might we approach the experimental design of an 
SEM round-robin to calibrate our instruments across our 
enterprise and standardize the results and reporting 
thereof? 



SEM Round-Robin Studies

Are the differences we see 
across runs due to:

 varying processing 
conditions? 

 the measurement system? 

DoEx principles 
can be utilized



Measurement Capability Studies

 Two sources of variation in 
measurements

 Differences caused by treatments 

 Imperfections in taking 
measurements

 Objectives:
 To understand the capability of a 

measurement system

 Identify factors that influence the 
measurement performance 

Essential Question: Can we measure what we want to 
measure precisely/accurately enough?






Accurate and Precise







Precise but not Accurate

 







Accurate but not Precise

Accuracy and Precision



Example: R&R Studies

 DoEx: full factorial experiment with factors
 Pu Specimen

 Operators (Could be sample preparer, SEM operator, or a combination)

 Replication is needed: each operator measures each specimen multiple times

Objective
Determine how much of the observed variation is due to 
the measurement system (e. g.: SEM, MAMA software, etc.)

Specimen-to-specimen variation

Idea
• Want to attribute specimen-to-

specimen variation to production 
parameters.

• Need within-specimen variation to 
be small compared to s specimen-
to-specimen variation.

Within-specimen variation

R&R = Repeatability and reproducibility  



Summary

 Experimental design is a collaborative process

 SME/Experimenters have valuable domain knowledge

 Statisticians have valuable design and statistical knowledge

 Designs should be tailored to the objectives of the study

 Seed questions: Provided at least partial answers to all but one

 6. What approaches to experimental design are applied by our 
laboratories?…
 We are not sure…

 and how might we optimize our experimental work?
 At least one piece of this optimization should be the use of principled 

experimental design

 Webinar was meant as a very quick intro to this topic



Back up slides



Accuracy

Components of accuracy

 Bias - The difference between the observed average measurement and a master 
(true) value.

 Linearity - Measure of how the size of the part affects the accuracy of the 
measurement system. It is the difference in the observed accuracy values through 
the expected range of measurements.

Must compare physical measurements to know reference values

Accuracy: difference between the measurement and the true value.

B
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s
 

Reference value

Leads to the question: are there such reference materials for SEM measurements?



Precision

Components of Precision in SEM measurements
• Repeatability- Variation that occurs when the same SEM operator/sample 

preparer repeatedly implements the entire measurement process with the 
same tools (sample prep, SEM, MAMA software) 

• Reproducibility - Variation that occurs when different SEM operators/sample 
preparers implement the entire measurement process with the same tools. 

Same operator measures the same sample several times with 
two different SEM devices - device B is more repeatable than 
device A because it has less variation

Several operators measure the same sample several times. 
Variation in average measurements between operators 1 and 
2 is much less than between operators 1 and 3 – The device 
demonstrates poor reproducibility

Precision: variation when you measure the same sample repeatedly with the same 
device. 

Device = SEM + Analysis Software (e.g., MAMA)


