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« Shock waves can change the thermodynamic state of a material
over the picosecond time scale.

« Understanding shock initiation of energetic materials requires the
ability to diagnose the state of materials on the picosecond time
scale of shock compression.

Nellis, Rep. Prog. Phys. (2006)
Zeldovich, Theory of Detonation (1960)
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How do we achieve picosecond time resolution?

frequency

e

time
* Measure in time-frequency domain to probe the
material during the initial stages of shock
compression with fast time resolution.
« Ultrafast pulses are linearly chirped to ~350 ps,
which governs the temporal range and resolution of
our measurements.
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* The shock front and metallic
e i
ablator surface (typically
. Aluminum) act as a scanning
unshocked ~ Mdex : .
sample  Matching optical etalon, with a total
reflectance varying as the
Armstrong et al., J. Appl. Phys. (2010) thickness of the shocked region.

Bolme et al., J. Appl. Phys. (2007)
Dlott et al., J. Phys. Chem. B (1998)
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« Good agreement with

previously reported gas 7
gun results on polymer, 6| m@
Sylgard 184. op @%_f@‘;o

* USl results are expected 2, | g 55
to lie on gas gun results 53 5 B
because there are no 5 o8
expected chemicalor % | T
physical changesinthe | | gas gun Sylgard 184 fit
material under shock O 05 1 15 2 25 3
Compression . particle velocity [km/s]

Marsh, LASL SHOCK HUGONIOT DATA (1980)




Polycrystalline PETN Films: = b
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« Vapor deposited PETN — strongly preferred <110> orientation
« USI results should match/agree with unreacted equation of state
(Marsh — quartz impact, wedge, and impedance matching)
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Marsh, LASL SHOCK HUGONIOT DATA (1980)
Halleck et al., J. Appl. Phys. (1976)



Polycrystalline PETN Films: = b
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J. J. Dick et al., J. Appl. Phys. (1991)
Dreger et al., J. Phys. Chem. A (2013)
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* Observation of volume expansion around
~7-12 GPa

« <110> sensitive from 8.5 — 12.5 GPa (most
sensitive orientation)

« Exothermic Chemistry?

Assumptions:

« Sample does not absorb at the
wavelengths of the pulse pair spectrum
(does not change under shock
compression)?!

» Refractive index behind shock follows
Gladstone-Dale relation
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Polycrystalline RDX (a) Films:

40 \
‘\i —-—low pressure fit
35t O — = high pressure fit| |
‘%3 —-—-gas gun fit
&R0 O USIRDX
301 h 0@

pressure [GPa]
o o

—
o
T

Sandia
II'] National

Laboratories

« Vapor deposited RDX — no strongly
preferred orientation

* Observe a similar effect as
polycrystalline PETN films but not as
pronounced — possibly due to
microstructure and orientation

effects
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Dreger et al., J. Phys. Chem. A (2010)
llhyukin et al., Soviet Phys. Doklady (1960)
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« Shock initiation sensitivity for PETN: <110> sensitive from 8.5 — 12.5 GPa
(most sensitive orientation)
« Extremely thin reaction zone for PETN (less than 1 ns)
» MD shock simulations — threshold shock velocity of 5 km/s to initiate
chemical reactions for <110>
Sheffield et al., 9t Det. Symp. (1989)
J. J. Dick et al., J. Appl. Phys. (1991)
Yoo et al., J. Appl. Phys. (2000)
T. Shan et al., J. Phys. Chem. B (2012)




Conclusions: )

« USI has the temporal and spatial capabilities
relevant for measuring shock initiation

* Measure particle and shock velocities right behind
the shock front (< 350 ps)

* Anomalies in shock Hugoniot locus for energetic
materials

« Assuming samples do not absorb at wavelengths
used in the experiment (~800 nm), we observe a
volumetric expansion

* Exothermic chemistry?
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Elastic stiffness modulus <110> Longitudinal ~ 15.235 GPa
Bulk Modulus ~ 9.58 GPa
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PETN:

n=1552 @ 785 nm
density = 1.77 g/cc
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PETN rh) o

« Tetragonal crystal structure: 42m symmetry
» Elastic sound speed <110>: 2.9308 km/s
» Bulk modulus: 9.58 GPa

Vapor-Deposited PETN
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CL-20 (beta)

30 T T T T T

25

- e}
w o
T T

shock pressure [GPa]
o

D 1 1

034 036 038 04 042 044

shock volume [cm

0.46
*1g]

0.48

0.52

7.5

shock velocity [km/s]
- el ;e
o (5] L=l o o =l

.

dv . [kmis]
[ =]

v, =1.930(0.021)" v

, *3.337(0.026)

Sandia
National
Laboratories

particle velocity [km/s]




CL-20

O,N HN"‘: {q,—'NOg
N*"I \“*N
O,N” “NO,

Intensity

4000 p—

3500

3000

2500

2000

1500

1000

500

B CL-20 on fused silica

Sandia
|l1 National

Laboratories

—T 1T | B

(111)

2-theta (degrees)




Notes:
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specific volume Vo




