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Outline 

 Traditional picture of high-frequency vibrations in energetic 
solids.  

 Correlation between intermolecular bonding and sensitivity of 
PETN analogs. 

 Conceptual Introduction to Two Dimentional Infrared 
Spectroscopy:  Direct measure of weak vibrational coupling.

 2D IR spectra of thin film and acetone solutions of PETN under 
ambient conditions. 

 Spatially delocalized NO2 stretch and rapid intermolecular 
energy transfer via weak intermolecular interactions. 
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Vibrational Energy Transfer leading up to 
Reaction / Intermolecular bonds
 Multiphonon up-pumping (Dlott/Fayer)

 Low frequency vibrations ( ring motions, bends) are strongly coupled to high 
frequency phonons.

 Energy transferred up through phonons and doorway modes to spatially-
localized, high-frequency vibrations (NO2 stretch) weakly coupled to low 
frequency motions. 
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Dlott and Fayer, JCP 1990



Vibrational Energy Transfer leading up to 
Reaction / Intermolecular bonds
 Sensitivity differences between Pentaerythritol tetranitrate (PETN) 

vs. analogs (e.g. Erythritol tetranitrate (ETN).  Stabilizing vs. 
destabilizing intermolecular interactions. 
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Zhurova et al, JACS 2006

Manner et al, Crystal Growth and Design 2014

PETN
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2D IR Spectroscopy: Conceptual 
Introduction
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2D IR directly measures the relationship between response to 
pump (e.g. absorption) and changes in the probe spectrum.
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Interpreting a 2D IR Spectrum

Homogenous/Inhomogeneous line width, anharmonicity and 
vibrational coupling directly measured in 2D spectra. 6
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Rapid-scan 2D IR Spectroscopy
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Scanning the t1- t2 delay using a pulse shaper: (1) Improves phase 
stability, (2) Reduces scanning time by a factor of 1000 and (3) 
Assures proper phase matching. 



Linear IR ~ |μ|2

2D IR ~ |μ|4

FTIR c||2ℓ

2D IR c||4ℓ

Transition dipole strengths reveal coupling (Grechko et al. JCP, 2012)

2D IR is more sensitive 
to coupling



Spectroscopy/structure: amide I mode of peptides

random coil beta-sheet
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All physics that can be very accurately modeled.



Comparison between solid and 
solvated PETN (IR and pump-probe)

 FTIR spectra of thin film PETN spectrally broadened compared to 
PETN solution in acetone.

 Sub picosecond decay in dipole orientation only seen in thin film. 
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Evidence of vibrational coupling/energy transfer.



2D IR spectra of PETN

Cross peak observed in vapor-deposited PETN not present in solvated PETN 
data.  Additional evidence of coupling and shift vibrational energy.  

11



Transition Dipole Coupling Model  (TDC) 
used to interpret FTIR and 2D IR features.

 DFT model of PETN dimer predicts intermolecular coupling between nitrate esters 
(−4.60 cm−1) larger than intra molecular couplings ( ~2 cm-1)  . 

 Transition Dipole Coupling Model (128 molecules) reproduces features in FTIR 
and 2D IR spectra. 

 Transition Dipole strength measured from FTIR/2D-IR spectra show asymmetric 
NO2 mode delocalized over 15-30 nitrate esters. 
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FTIR 2D IR
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 Repeat for PETN analogs (e.g. ETN)

 Look for changes in delocalization under static 
compression ( hydrostatic and non-hydrostatic).

 Use 2D-SFG to measure changes in changes in 
delocalization near PETN surface. Compare to 
delocalization within crystal.

Future Directions:
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Conclusions
 We report the first 2D IR spectrum of explosive molecules in 

the solid-state.

 2D IR spectra reveal one important pathway through cross 
peak growth in crystalline PETN not present in solvated PETN.

 PETN FTIR and 2D IR spectra are consistent with delocalized 
vibrations arising from intermolecular coupling.

 Delocalized high-frequency vibrations may have important 
implications for shock sensitivity of energetics. 
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Dipole randomization with frequency 

 Average orientation of excited 
vibrations randomize over time by 
rotation or vibrational energy transfer. 

 Anisotropy of PETN varies from 0.4 
(initial orientation maintained) to 0 
(vibration delocalized in 3D). –does not 
address negative features in 2D. 

 Homogeneous kinetics within the 
vibrational band in solutions of PETN.

 Frequency dependent relaxation 
kinetics to low frequency 
intramolecular and phonon modes in 
thin-films of PETN.
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Previous pump-probe data on solvated 
explosive.
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 Fast vibrational relaxation observed of the asymmetric NO2 stretch 
in acetone or ethanol solutions for multiple explosives (2-6 ps).   

Aubuchon et al, Chem.Phys.Lett. 1999


