SAND2017- 7012C

—— Experimental 20 Slice|

—_ ——Simulated 2D Slice
8
d 806 4

>

‘@

504 i

<

202 -

o

7] ‘ \k Y

- \lH (Ul s, ;
1620 1640 1660 1680 1700
z X

Frequency (cm™')

Energy Transfer Between Coherently Delocalized States in
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Outline ) 2=,

= Traditional picture of high-frequency vibrations in energetic
solids.

= Correlation between intermolecular bonding and sensitivity of
PETN analogs.

= Conceptual Introduction to Two Dimentional Infrared
Spectroscopy: Direct measure of weak vibrational coupling.

= 2D IR spectra of thin film and acetone solutions of PETN under
ambient conditions.

= Spatially delocalized NO, stretch and rapid intermolecular
energy transfer via weak intermolecular interactions.




Vibrational Energy Transfer leading up to (=

Reaction / Intermolecular bonds
= Multiphonon up-pumping (Dlott/Fayer)

= Low frequency vibrations ( ring motions, bends) are strongly coupled to high
frequency phonons.

= FEnergy transferred up through phonons and doorway modes to spatially-

localized, high-frequency vibrations (NO, stretch) weakly coupled to low
frequency motions.
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Vibrational Energy Transfer leading up to e
Reaction / Intermolecular bonds

= Sensitivity differences between Pentaerythritol tetranitrate (PETN)
vs. analogs (e.g. Erythritol tetranitrate (ETN). Stabilizing vs.
destabilizing intermolecular interactions. :
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2D IR Spectroscopy: Conceptual = g
Introduction 2D IR Wait
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2D IR directly measures the relationship between response to
pump (e.g. absorption) and changes in the probe spectrum. 5




Interpreting a 2D IR Spectrum ) .
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Ghosh, A.; Ostrander, J.S.; Zanni, M.T. Chem. Rev. 2017

Homogenous/Inhomogeneous line width, anharmonicity and
vibrational coupling directly measured in 2D spectra. 6




Rapid-scan 2D IR Spectroscopy ) B,
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Scanning the t;- t, delay using a pulse shaper: (1) Improves phase
stability, (2) Reduces scanning time by a factor of 1000 and (3)
Assures proper phase matching.




2D IR is more sensitive oo " - "
to coupling 5o _C'_OIR
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Transition dipole strengths reveal coupling (Grechko et al. JCP, 2012)




Spectroscopy/structure: amide | mode of peptides
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All physics that can be very accurately modeled.



Comparison between solid and = e
solvated PETN (IR and pump-probe)
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= FTIR spectra of thin film PETN spectrally broadened compared to
PETN solution in acetone.

= Sub picosecond decay in dipole orientation only seen in thin film.

Evidence of vibrational coupling/energy transfer.




2D IR spectra of PETN =

PETN in Acetone Vapor-deposited PETN
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Cross peak observed in vapor-deposited PETN not present in solvated PETN

data. Additional evidence of coupling and shift vibrational energy. ”




Transition Dipole Coupling Model (TDC) i
used to interpret FTIR and 2D IR features.
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= DFT model of PETN dimer predicts intermolecular coupling between nitrate esters
(-4.60 cm™1) larger than intra molecular couplings ( ~2 cm-1) .

= Transition Dipole Coupling Model (128 molecules) reproduces features in FTIR
and 2D IR spectra.

= Transition Dipole strength measured from FTIR/2D-IR spectra show asymmetric
NO, mode delocalized over 15-30 nitrate esters.
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Future Directions: 7l

Laboratories
= Repeat for PETN analogs (e.g. ETN) Of&--—-o
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= Look for changes in delocalization under static
compression ( hydrostatic and non-hydrostatic).

Electromagnetic Radiation

ple
acking Plate

= Use 2D-SFG to measure changes in changes in
delocalization near PETN surface. Compare to
delocalization within crystal.




Conclusions Ll

= We report the first 2D IR spectrum of explosive molecules in
the solid-state.

= 2D IR spectra reveal one important pathway through cross
peak growth in crystalline PETN not present in solvated PETN.

= PETN FTIR and 2D IR spectra are consistent with delocalized
vibrations arising from intermolecular coupling.

= Delocalized high-frequency vibrations may have important
implications for shock sensitivity of energetics.
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Dipole randomization with frequency @

Solution 2D Anisotropy (t2=100 fs)
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Average orientation of excited
vibrations randomize over time by
rotation or vibrational energy transfer.

Anisotropy of PETN varies from 0.4
(initial orientation maintained) to O
(vibration delocalized in 3D). —does not
address negative features in 2D.

Homogeneous kinetics within the
vibrational band in solutions of PETN.

Frequency dependent relaxation
kinetics to low frequency
intramolecular and phonon modes in
thin-films of PETN.
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Previous pump-probe data on solvated o
explosive.

= Fast vibrational relaxation observed of the asymmetric NO, stretch
in acetone or ethanol solutions for multiple explosives (2-6 ps).
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