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Microenergetics Objective Substrate Surface Energy and Contaminant/Oxide Profile
Microscale processing and testing of energetic materials at Sandia Demonstrate the influence of substrate contamination on surface Cleaning treatments outside of vacuum yield low surface energy (<80
National Laboratories has enabled investigation into the field of energy, and In turn, microstructure and morphology evolution of mJ/m?). 30
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“microenergetics.” PETN films grown via Physical Vapor Deposition (PVD).
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In-vacuum cleaning treatments
yield lowest equivalent contaminant
thickness, and therefore

-Small-scale explosive samples can be used
for the study of ignition, combustion, and
detonation phenomena at sub-millimeter scales.

Substrate Preparation
Silicon wafers (1 cm x 1cm, 525 um thick, <100>, polished) were prepared
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technique for achlevmg more precise -C1. As-received from vendor -C5. Ar ion etch in-situ -'.I'_heor.etlcal value for ‘clean’ <100> O *
control of eXplOS|Ve morphology and -C2, Aged in room air for one week 'C6, Glass Cleaning silicon is 2130 mJ/m2. c1  C12 Cszurfaiiz_'zrreafrinentm_z 6 C7
microstructure at length scales of interest. _.C3. Solvent clean _.C7. Piranha etch

Vapor-deposited PETN film on
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-Crystal structure/orientation, porosity, grain size, and local density ultimately

polycarbonate substrate in "G4, Plasma clean, various wait times T >Hdrogarban Thdtess | 90 |-
Microstructure and morphology of explosive microdetonation test setup. - %2000 """""""""""""""""""""""""""""""""""""""" .OmdeTlcness """""""" E@gg 0 1 e
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dictate key detonation parameters such as detonation velocity, yield, initiation -Provides quantitative value_ of S U R T T T O T T O L ML O I O O O O A N A A
threshold, and critical detonation thickness. substrate surface energy prior to e BT /’ 0 2 4 5 8 101214 16 18 20 22 24 26 28 30 32
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MEMS-based fabrication technigues have been applied to energetic films yi(l+cos8) _ (4 P D : :
depostted via PVD 1o alter detor?ation characteristl?cps g Igength \/T’ = ;—l}) Ys +VVs Contact angle of non-polar liquid Morphology and Microstructure of PETN Films
- 2 . : : : _ ..
scales i on Si substrate. PETN films deposited on substrates cleaned ex-situ all exhibited similar
| -Acid-Base Theory: morphology, typical of 3D island growth. Films on substrates cleaned in-

4 PETN films patterned using femtosecond — =
" laser micromachining (far left) and plasma Yi(1+cos0) =2 [\/YISJWY{JW +YsVi +\Vs ﬁ]

etching (left). Scale bar is 50 pm.
I . Tappan et al., Int. Det. Symp., 2006.

situ resulted in smooth, dense films, representative of 2D layer growth.

" Optical microscopy of
| ~10 um PETN films

Angle-resolved X-ray Photoelectron ?/oavfl)osrucrlfapcoeSietr?grgS .

Spectroscopy (AR-XPS): | substrate (far left),
Variation in substrate and deposition conditions (homologous temperature, -Provides quantitative evaluation of i and high sburface o
etc.) has been shown to dramatically alter microstructure in PETN films contaminant and oxide profile on — energy substrate (left).
created via PVD. substrate at Angstrom-length scales. Overtayer
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Substrate surface roughness:

-Non-contact 3D profiler.
-All substrate preparations have
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SEM micrographs of
top surface of ~10 um

R, <2nm. PETN films vapor
L . . L — Substrate roughness not Schematic of AR-XPS measurements. gepositedion iows
Variation in microstructure of PETN films due to varying substrate conditions . L Three | Al vielfd ¢ surface energy Si
bstrate material and temperature). Knepper et al., J. Mat. Res., 2011 afactor in depositions. ok Ayl IO P Vel IS T substrate (right), and
(sU ' v ' substrates 100 nm thick. _ gnt),
high surface energy
: - - : substrate (far right). g2 i
Interfacial Effects on Explosive Microstructure & Morpholo PETN Film Growth ; (far right) B P
Interfacial effects (substrate-energetic interaction) during PVD appear to Deposition chamber can be used to grow organic crystalline energetic
play a key role in explosive film characteristics. films via PVD with carefully controlled deposition conditions.

2 Fracture cross sections
of ~10 um PETN films

For practical surfaces, surface energy Is largely dominated by atmospheric The unique faclility enables cleaning of surfaces in-situ using Ar ion vapor deposited on low-

contaminants. Even at Angstrom-length scales, these contaminants source, followed by PVD of PETN without breaking vacuum (and exposing 23[)f:t‘3rztee”(?;?>l’efst') o
determine surface energy. to atmospheric contaminants). high surface energy
substrate (left). Note
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77 /W Metal Oxides 200-500 \Tﬂ evolution of PETN films deposited via PVD.
i v ectron source o . . . . .
Metals 1000-5000 s oodeart « Densification of PETN films can be achieved using substrate cleaning

Electron beam deposition source

IN-situ to achieve high surface energy during deposition.

Understanding of adsorbed layers on an engineering surface, c. 1968 (left). Typical
surface energy values for surface layers (right). Atmospheric contaminants adsorb to
surfaces to minimize the free energy of the interface. Castle, J. Adh., 2008.

Future work includes study of micro-topographic effects on energetic
film morphology, and engineering of interfaces for optimized
detonation characteristics in explosive films.

High Vacuum Chamber for Performing PVD (left), Schematic of PVD
process (center), and Model of Deposition Fixture (right).
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