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SciDAC “PISCEES” = Predicting Ice Sheet Climate Evolution at Extreme Scales
R 5 year SciDAC3 project began in June 2012; proposal for 5 year

thawugh

Advanced Compusing continuation project submitted to SciDAC4 call.

PISCEES Project for Land-Ice Modeling )

Sandia’s Role in the PISCEES Project: to develop and support a robust and scalable land
ice solver based on the “First-Order” (FO) Stokes equations — Albany/FELIX*

Requirements for Albany/FELIX:

e Unstructured grid finite elements.
* Scalable, fast and robust. N
* Verified and validated.

* Portable to new architecture machines.

* Advanced analysis capabilities:
deterministic inversion, calibration,
uncertainty quantification.

%
As part of ACME DOE Earth System 3
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*Finite Elements for Land Ice eXperiments
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The First-Order Stokes Model ) e,

* Ice behaves like a very viscous shear-thinning fluid (similar to lava flow).

* Quasi-static model with momentum balance given by “First-Order” Stokes PDEs: “nice”
elliptic approximation* to Stokes’ flow equations.

é1T = (2é11 + é22:é121é13)
—V - (2ue,) = —pgg—s €, = (2615, €1y + 269 €23)
x . 1/0u; OJu;

¢ ds ’ in €} E = — _* + _]
-V - (2ue,) = —PY5, b 2\0x;  Ox;

e Viscosity u is nonlinear function given by “Glen’s law”:
Surface boundary I’

11
1 e, \@2) .
pu=sAT) " (EZ €; ) (n=3) Ice sheet

ij
/ <— Lateral boundary T,
=

Basal boundary I',

* Relevant boundary conditions:

* Stress-free BC: 2u€;-n = 0,onl,
* Floating ice BC:

. . _[pgzn ifz >0
He "'{0, ifz <0’ °n

* Basal sliding BC:
2u€;-n+ B(x,y)u; = 0,0on Ty

*Assumption: aspect ratio § is small and normals to upper/lower surfaces are almost vertical.
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Thickness & Temperature Equations )

* Model for evolution of the boundaries (thickness
evolution equation):

0H

E=—V'(UH)+b

where u = vertically averaged velocity, b = surface mass
balance (conservation of mass).

» Temperature equation (advection-diffusion):

oT
peor = V-(kVT)—pcu-VT + 2€0

(energy balance).

* Flow factor A in Glen’s law depends on temperature T: Ice-covered (“active”)
A= AT). cells shaded in white
(H > Hpin)

* |ce sheet grows/retreats depending on thickness H.
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Qol in Ice Sheet Modeling: total ice mass loss/gain
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Qol in Ice Sheet Modeling: total ice mass loss/gain
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* Climate forcings (e.g., surface mass balance).
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* Geothermal heat flux.
* Model parameters (e.g., Glen’s
flow law exponent).
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Estimation of Ice Sheet Initial Condition ()&,

UQ Workflow Goal: find ice sheet initial state that:
* matches observations (e.g. surface velocity,
stage 1: temperature, etc.).
Estimate ice sheet initial * matches present-day geometry (elevation,
condition (MAP point). thickness).

e isin “equilibrium” with climate forcings (SMB).




Available Data & Assumptions

Available data/measurements:
* ice extent and surface topography.
* surface velocity.
» surface mass balance (SMB).
* ice thickness h (sparse measurements).

Fields to be estimated:
* ice thickness h (allowed to vary but weighted
by observational uncertainties).
* basal friction 8 (spatially variable proxy for all
basal processes).

Modeling Assumptions:
* ice flow described by nonlinear first-order
Stokes equations.
* ice close to mechanical equilibrium.

Sources of data: satellite
infrarometry, radar,
altimetry, etc.

N

Ice sheet

.Bearock




Deterministic Inversion -

U: computed depth averaged velocity

First-Order Stokes PDE-Constrained optimization

problem for initial condition*: h: ice thickness

: basal sliding friction coefficient
minimize g p m(B, h) p &

s.t. FO Stokes PDEs T,: surface mass balance (SMB)

R(B, h): regularization term

1
m(B, h) = f — |u — ubs|2ds surface velocity mismatch
r Ou
1 :
+ J — Idw(Uh) — TS|2dS SMB mismatch
r Oz
+ [ = |h — hobs|2ds thickness mismatch
Oh
+ R(B, h) regularization terms

-
* Perego, Stadler, Price, JGR, 2014.



Deterministic Inversion -

U: computed depth averaged velocity

First-Order Stokes PDE-Constrained optimization

problem for initial condition*: h: ice thickness

. B basal sliding friction coefficient
minimize 3 , m(B, h)

s.t. FO Stokes PDEs T,: surface mass balance (SMB)

R(B, h): regularization term

m(B,h) = j iz |lu — uobs|2ds surface velocity mismatch
r Ou
1 :
+ f — |div(Uh) — 14|%ds SMB mismatch
r Oz
+ [ = |h — hobs|2ds thickness mismatch
Oh
+R(B,h) regularization terms

Solving FO Stokes PDE-constrained optimization problem for initial
condition significantly reduces non-physical model transients!

-
* Perego, Stadler, Price, JGR, 2014.



Deterministic Inversion Algorithm & Software

First-Order Stokes PDE-Constrained optimization

problem for initial condition*: Solved via embedded adjoint-based
o — PDE-constrained optimization
T g, El ) algorithm in Albany/FELIX.

s.t. FO Stokes PDEs

Finite Element Method discretization Albany
Quasi-Newton optimization (L-BFGS) ROL
Nonlinear solver (Newton) NOX
Krylov linear solvers AztecOO+Ifpack/ML

] R™

e Some details:

* Regularization: Tikhonov.

 Total derivatives of objective functional m(3, h) computed using adjoints and
automatic differentiation (Sacado package of Trilinos).

* Gradient-based optimization: limited memory BFGS initialized with Hessian
of regularization terms (ROL) with backtrack linesearch.

* Perego, Stadler, Price, JGR, 2014.




Deterministic Inversion: 1km Greenland @ e=
Initial Condition

|u| observed |u| computed 3 Errorin |u| computed
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UQ Workflow

Stage 2:

Update prior uncertainty in ice
sheet initial condition
using observational data
and steady state model

N

Goal: solve inverse problem for ice sheet
initial state but in Bayesian framework

Naive parameterization: represent each degree
of freedom on mesh be an uncertain variable

B(x) — (erZZI ""anof)

Intractable due to curse of
dimensionality: n4,s = 0(100K)!

To circumvent this difficulty: assume B (x) can
be represented in reduced basis (e.g., KLE
modes, Hessian eigenvectors*) centered around
mean [ (x):

d
log(8(x)) = log(§) + )\ di(x)z
i=1

* |saac, Petra, Stadler, Ghattas, JCP, 2015.



Bayesian Inference ) s,

Laboratories

Goal: solve inverse problem for ice sheet

initial state but in Bayesian framework

UQ Workflow
* Naive parameterization: represent each degree
of freedom on mesh be an uncertain variable
IB(x) = (Z1; Z2) weey anof)
'Stage 2: - Intractable due to curse of
Update prior uncertainty in ice dimensionality: Ndof = 0(100K)!

sheet initial condition
using observational data

I e T —|  To circumvent this difficulty: assume £ (x) can

be represented in reduced basis (e.g., KLE
modes, Hessian eigenvectors™) centered around
mean [(x):

d
N4 log(8(x)) = log() + ) V& ¢}z
i=1

« Mean field B(x) = initial condition.




Bayesian Inference
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UQ Workflow

Stage 2:

Update prior uncertainty in ice
sheet initial condition
using observational data
and steady state model

N

Goal: solve inverse problem for ice sheet
initial state but in Bayesian framework

Deterministic inversion is consistent

with Bayesian analog: it is used to find

the MAP point of posterior.

Naive parameterization: represent each degree
of freedom on mesh be an uncertain variable

IB(x) = (Zl,Zz, ""anof)

Intractable due to curse of
dimensionality: n4,f = 0(100K)!

To circumvent this difficulty: assume B (x) can
be represented in reduced basis (e.g., KLE
modes, Hessian eigenvectors™) centered around
mean S(x):

d
log(8(x) = log(8) + ) /A (%)
i=1

« Mean field B(x) = initial condition.




Bayesian Inference Assumptions =
* Additive Gaussian noise model: y°°$ = f(z) + €, € ~ N(0, o)
= Mismatch functional to be minimized:
1
m(2) = 7 (y°b f(Z)) ons (¥ — f(@)
* Gaussian prior with exponential covariance.
Notation*:

* Constantine, Kent, Bui-Thanh, SISC, 2016.

y°PS= observations
Z = random params
f(z) = deterministic
map from params to
observables.




Bayesian Inference Assumptions ri) s

* Additive Gaussian noise model: y°°$ = f(z) + €, € ~ N(0, o)

= Mismatch functional to be minimized:
1
- _ obs obs
m(2) = (v f(Z)) Fois (¥°% - £(2))

* Gaussian prior with exponential covariance.

Notation*:

obs_ :
. . = rvation
+ linearization of y observations

f(z) around z,4p Z = random params
f(z) = deterministic
map from params to
observables.

ayes’ rule

<

* Likelihood is: ﬁ-lhood(z) = e_mlin(z)

* Normal Laplace posterior given by: | Tpos(2) = Cgvlidﬁlhood(z)npr(z)

where Ceyig = fﬁlhood(z)npr(z)dz-

* Constantine, Kent, Bui-Thanh, SISC, 2016.



Bayesian Inference Assumptions

* Additive Gaussian noise model: y°°$ = f(z) + €, € ~ N(0, o)

= Mismatch functional to be minimized:

@ = 2(5 - £2)) Tt (7" - @)

Gaussian prior with exponential covariance.

Sandia
National
Laboratories

+ linearization of
f(z) around zy;4p

ayes’ rule

<

Covariance of Gaussian
posterior related to
inverse of misfit Hessian
at MAP point™*,

* Likelihood is: ﬁlhood(z) = e_mlin(z)

Normal Laplace posterior given by: | Tpos(2) = Cgvlidﬁlhood(z)npr(z)

Notation™:

y°PS= observations

Z = random params

f(z) = deterministic
map from params to

observables.

where Ceyig = fﬁlhood(z)npr(z)dz-




Bayesian Inference Assumptions ) i,

* Additive Gaussian noise model: y°°$ = f(z) + €, € ~ N(0, o)

= Mismatch functional to be minimized: Evaluation of misfit
1 Hessian is expensive!
m(z) = E( obs f(z)) Obs( obs f(z)) = further approximation
required.

* Gaussian prior with exponential covariance.

Notation*:
= _ o Covariance of Gaussian y°bs= observations
- | *linearization of posterior related to - rand
> f(2) around zp4p inverse of misfit Hessian £ = rahdom params
v map from params to
«  Likelihood is: fjpg0q(2) = ~™in(® observables.

* Normal Laplace posterior given by: | Tpos (z) = Ce_vlidﬁ'lhood(z)npr(z)

where Cepig = fﬁlhood(z)npr(z)dz-




BayeS|a N I nfe rence WO rkfl ow KLE = Karhunen-Loeve Expansion

AS = Active Subspace
PCE = Polynomial Chaos Expansion
MAP = Maximum a Posteriori

—_—

Dimension reduction via KLE

Two-part dimension
____ reduction procedure to
obtain modes ¢;(x)

Procedure for computing
covariance of normal
posterior, I' ;s

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.



Karhunen-Loeve Expansion (KLE) ) S,

0(100K) dimensional inversion problem can be reduced to smaller
dimensional problem using Karhunen-Loeve Expansion (KLE)

KLE modes ¢;

Y d
‘ log(5(x)) = log(8) + > 7 ¢ (x)7 .
Best fit i=1 L :
* KLE modes ¢;(x) are eigenvectors of assumed exponential
covariance kernel:
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0(100K) dimensional inversion problem can be reduced to smaller
dimensional problem using Karhunen-Loeve Expansion (KLE)

KLE modes ¢;

Y d
‘ log(8()) = log(F) + Y 7 di(x)z .
Best fit i=1 L :
* KLE modes ¢;(x) are eigenvectors of assumed exponential
covariance kernel:

* Parameters to be selected: correlation length L, basis size d.




Karhunen-Loeve Expansion (KLE)

d
log(5(x)) = log(8) + > 7 ¢ (x)7
i=1

Best fit

* KLE modes ¢;(x) are eigenvectors of assumed exponential
covariance kernel:

* Parameters to be selected: correlation length L, basis size d.

* L and d can be estimated “rigorously” by solving LLS problem:

relative error

ming 4

da
exp (ﬁop%min m(B)) - For(minm(B, b)) - ) vﬂ_kqbkzk)
k=1

m I I ‘
y )

1.5

0(100K) dimensional inversion problem can be reduced to smaller
dimensional problem using Karhunen-Loeve Expansion (KLE)

KLE modes ¢;

LLS representation error
decay is independent of L

500 1,000 1,500 2,000

d




Karhunen-Loeve Expansion (KLE)

d
log(5(x)) = log(8) + > 7 ¢ (x)7
i=1

Best fit

* KLE modes ¢;(x) are eigenvectors of assumed exponential
covariance kernel:

* Parameters to be selected: correlation length L, basis size d.

* L and d can be estimated “rigorously” by solving LLS problem:

relative error

ming 4

da
exp (ﬁop%min m(B)) - For(minm(B, b)) - ) vﬂ_kqbkzk)
k=1

= d should be 0(1000)

m I I ‘
) )

1.5

0(100K) dimensional inversion problem can be reduced to smaller
dimensional problem using Karhunen-Loeve Expansion (KLE)

KLE modes ¢;

LLS representation error
decay is independent of L

500 1,000 1,500 2,000

d




Active Subspaces (AS) )

* KLE eigenvalue analysis suggests d = 0(1000) — still large for MCMC!
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* KLE eigenvalue analysis suggests d = 0(1000) — still large for MCMC!

Idea: combine KLE with Active Subspace (AS) information for
further (and better) data-informed dimension reduction.
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* KLE eigenvalue analysis suggests d = 0(1000) — still large for MCMC!

Idea: combine KLE with Active Subspace (AS) information for
further (and better) data-informed dimension reduction.

* Active Subspace (AS) = directions along which objective function has strongest variability.
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Sandia
Active Subspaces (AS) k-

* KLE eigenvalue analysis suggests d = 0(1000) — still large for MCMC!

Idea: combine KLE with Active Subspace (AS) information for
further (and better) data-informed dimension reduction.

* Active Subspace (AS) = directions along which objective function has strongest variability.

* Active subspace approach: mismatch approximated by related function of fewer variables g:

W1 z = “active variables”
WT = rotation of coords

1
m(z) = 5(d~ f(2) Tops(d ~ f(2) = g(W12)

Example*: m(z) = exp(0.7z; + 0.3z)

A N

Dimension reduction via AS:

(i) Rotate coords s.t. directions of strongest
variation are aligned with the rotated coords.

(i) Construct response surface using only most
important rotated coords.

— Bivariate function m(z) is effectively
univariate in rotated coordinate system

* Constantine, Dow, Wang, SISC, 2014.
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Sandia
Active Subspaces (AS) k-

* KLE eigenvalue analysis suggests d = 0(1000) — still large for MCMC!

Idea: combine KLE with Active Subspace (AS) information for
further (and better) data-informed dimension reduction.

* Active Subspace (AS) = directions along which objective function has strongest variability.

* Active subspace approach: mismatch approximated by related function of fewer variables g:

1 W' z = “active variables”
e Tpr—1 (g _ ~ T 1
m(z) = 2 (d = f(2)) Tops(d = f(2)) = g(W32) WT = rotation of coords

* ASidentified using gradients of mismatch function Vm: [, Vm(z)Vm(z)"dp(z) = WAW"

Example*: m(z) = exp(0.7z; + 0.3z)

-

Dimension reduction via AS:

(i) Rotate coords s.t. directions of strongest

variation are aligned with the rotated coords.
’ (i) Construct response surface using only most

important rotated coords.

— Bivariate function m(z) is effectively
univariate in rotated coordinate system

* Constantine, Dow, Wang, SISC, 2014.



Slide 45

TI1 Tezaur, Irina, 6/1/2017



Greenland Bayesian Inference via KLE + AS B,

KLE modes

ﬂ I 1

KLE and AS amplitudes
g —

g2

1o

1 10! 1w

Data-informed (AS) directions (d=73%*)

JililL

AS principal component

02 i:' *s Gradients of mismatch
X2 a® e function obtained via
®, = .. .

U, e adjoint solve in
oSt Albany/FELIX.
| ¥
La
li “ wlk FLILH] 1350 2{H1
index

* Above, left: fewer modes are needed to build the basal friction parameter map when using KLE +

AS methods than when using straight KLE.

* Above, right: relative clustering of large values towards smaller indices implies KLE coefficients
corresponding to larger singular values contribute most to variability in m(z).

* Value of d was obtained via cross-validation.




Active Subspaces for Inference )

Revert to prior in un-

informed directions 1

1 T T F_A-T_\
Tpos(Z) = Ce_idLEXP(_ms(Wl z))mp (W Zlﬂpr(wz z)

Approximate posterior only
= in directions informed by
data

Various levels of approximation can be employed:
* Reduce dimension but no surrogate of misfit
e Perform MCMC in active subspace to improve mixing

e Surrogate of misfit with rotation but no dimension reduction
* Leverage increased sparsity induced by rotation

* Surrogate of misfit and dimension reduction
e Combine MCMC in active subspaces with surrogates that
adaptively target regions of high probability




Quadratic PCE over Active Variables o

Idea: approximate misfit m(z) using quadratic PCE for
efficient computation of misfit Hessian.

m(z) = m(z) = quadratic PCE function

* Approximate misfit over active variables using a quadratic function obtained via compressed
sensing (using M= 733 samples and a PCE with 20,301 terms)*:

|Im(z) - m(z)|liz
D~ S, @) I

* Approximate misfit with quadratic PCE in rotated d =
200 space:
Im(z) — mW'2)||,z

M@ — 2, mE) ||,

e Approximate misfit with quadratic PCE in rotated
and truncated d = 73 space:

1m(2) — gers (W]2)]|12

@) — S, mE) Il

~ 0.981

~ 0.190

0.136

i L
el k15

rank(A) = 5,d =15, z; ~ N(1/2,1/5)

* Ratios are improvements relative to using mean of data; want ratio close to 0.



Low Rank Laplace-Based Covariance* ) B

Tpos (Z | yObS) = N(zZmap, rpost)

* Linearize parameter-to-observable map around MAP point:
y°’S = f(2) + € ~ f(zmap) + F(z — zyap) + €

where F = Frechet derivative of f.

* Covariance of Gaussian posterior given by:

_ -1
rpost = (HPCE + rprlior)

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.



Low Rank Laplace-Based Covariance* ) B

I o5t is dense!
= prohibitively expensive
to store & construct.

T[pos(z | yObS) = N(zZmap, rpost)

* Linearize parameter-to-observable map around MAP point:
y°’S = f(2) + € ~ f(zmap) + F(z — zyap) + €

where F = Frechet derivative of f.

e Covariance of Gaussian posterior given by:

_ -1
rpost = (HPCE + rprlior)

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.



Low Rank Laplace-Based Covariance* )

T[pos(z | yobs) = N(zZmap, rpost)

I o5t is dense!
= prohibitively expensive
to store & construct.

* Linearize parameter-to-observable map around MAP point:
Yo = f(2) + € = f(zmap) + F(z — zyap) + €

where F = Frechet derivative of f.

* Covariance of Gaussian posterior given by:

Ipost = (Hpce + rprlor)_l

* Low-rank approximation of I';,s; obtained

using Sherman-Morrison-Woodbury formula:

rpost ~ rprior B VTDTVTO

Symbols*:
V., D,: eigenvecs, eigenvals of H it

~

H ,isfit = prior-preconditioned Hessian
of data misfit = I'*/? Hmisﬁtl"l/ 2

prior prior
H isfit = Gauss-Newton portion of
Hessian misfit = FnrobsF

V,=r*? v, 7= adjoint of V,

prior

r;k =M~1K, K= Laplace stiffness.

prior

e H, s and its EV decomposition can be computed efficiently using a parallel matrix-

free Lanczos method.

* Rank of I',,s = # of directions that informed directions of posterior.

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.




Greenland Bayesian Inference via KLE + AS b &,

KLE modes Data-informed (AS) directions (d=73)

HEE0 N

Gradients of mismatch
function obtained via
adjoint solve in
Albany/FELIX.

KLE and AS amplitudes

L e

1o
ot

o ®

, “®-KLE
' e oas

1 10 1w 10f

, AS principal component
[LE
L

 Above: marginal distributions of Gaussian posterior computed using 02 g '8
KLE vs. KLE+AS. w‘sii ey
* Data-informed eigenvectors have smaller variance and are most ”'-.:?!" o
L
shifted w.r.t. prior distribution. I
o

1 kb FLILE] 1340 2{HI
- index I




Outline ) =,

1. Background.
* PISCEES project for land-ice
modeling.
* Land-ice model.

2. UQ problem definition.

3. Inversion/calibration.
* Deterministic inversion.
* Bayesian inference.

4. Summary & future work.




Summary & future work ) &=

This talk described our workflow for quantifying uncertainties in
expected aggregate ice sheet mass change and its demonstration
on some Greenland ice sheet problems, focusing on inversion.




Summary & future work ) &=

This talk described our workflow for quantifying uncertainties in
expected aggregate ice sheet mass change and its demonstration
on some Greenland ice sheet problems, focusing on inversion.

 Future work:

* Execute full UQ workflow (inversion + forward propagation) on realistic
Greenland/Antarctic ice sheet problems.

» Squared Laplace covariance operator approach* (no KLE) = less expensive than
building PCE, allows higher dimensional parameter spaces.

e Can use cheaper physical models (e.g., the shallow ice model or SIA) or low
resolution solves to reduce the cost of building the emulator.

* |Incorporate effects of other sources of uncertainty, e.g., surface height, surface
mass balance.

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.



Summary & future work ) &=

This talk described our workflow for quantifying uncertainties in
expected aggregate ice sheet mass change and its demonstration
on some Greenland ice sheet problems, focusing on inversion.

* Future work: We are well-positioned to
do these efforts in parallel!

* Execute full UQ workflow (inversion + forward propagation) on realistic
Greenland/Antarctic ice sheet problems.

» Squared Laplace covariance operator approach* (no KLE) = less expensive than
building PCE, allows higher dimensional parameter spaces.

e Can use cheaper physical models (e.g., the shallow ice model or SIA) or low
resolution solves to reduce the cost of building the emulator.

* |Incorporate effects of other sources of uncertainty, e.g., surface height, surface
mass balance.

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.
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MH Multiphysics Code

Albany = Sandia open-source* parallel,
C++, multi-physics finite element code.

Component-based design for rapid
development of new physics & capabilities.

Extensive use of libraries from the open-
source Trilinos project:

e Automatic differentiation.

e Discretizations/meshes, mesh adaptivity.

e Solvers, time-integration schemes.
e Performance-portable kernels.
Advanced analysis capabilities:

e Parameter estimation.
e Uncertainty quantification (DAKOTA).
e Optimization (DAKOTA, ROL).

e Sensitivity analysis.

* https://github.com/gahansen/Albany.

40+ packages; 120+ libraries

Analysis Tools
(black-box)

Optimization

UQ (sampling)

Parameter Studies

Calibration

Reliability

Composite Physics |

MultiPhysics Coupling

System UQ

Analysis Tools
(embedded)

Nonlinear Solver
Time Integration
Continuation
Sensitivity Analysis

Stability Analysis

Constrained Solves

Optimization

UQ Solver

Linear Algebra

Data Structures

Iterative Solvers

Direct Solvers

Eigen Solver

Preconditioners

Multi-Level Methods

Mesh Tools
Mesh I/0O Input File Parser
Inline Meshing Parameter List
Partitioning Memory Management
Load Balancing /O Management
Adaptivity Communicators

Grid Transfers

Runtime Compiler

Quality Improvement
Search
DOF map

Mesh Database |
Mesh Database
Geometry Database
Solution Database

Architecture-
Dependent Kernels

Multi-Core
Accelerators

Post Processing |
In-situ Visualization
Verification
QQI Computation

Checkpoint/Restart -
Model Reduction
o Local Fill |
i | Discretizations
. |Discretization Library Physics Fill
: Field Manager PDE Terms
. [ Derivative Tools Source Terms
| BCs
Material Models
Responses
Parameters




Computing the Active Subspace ) &=

Gradients of mismatch Vgm can be used to identify subspace that
controls variation in likelihood function (active subspace)

 Mismatch approximated by related function of fewer variables g: ]
PP y g Wz = “active

variables”

1 _
m(z) = 2 (d = f(2)) Tops(d — f(2)) ~ g(W12)
Linear transformation (rotation) of coords

 Active subspace computed using dem(Z)Vm(z)po(z) = WAWT

R
- Sample gradient using MC: [Vm(z(), ..., ym(z®))].

* Form Gauss-Newton approx. of Hessian averaged over prior:

M
1 : .
€= 7m(z®0)m(z0)"
Mo Perturbing m(z) along
« Compute eigenvalue decomposition: C = WAWT columns of W;changes
— eigenvectors W define rotation of RY. m(z) more.

* Partition z into active and inactive variables:

z=Wlz+Wiz, w=[w, w,]




Full UQ Workflow: Varying Levels of Approx.:-"":';m

Dinwnsivy reducuon via KLE

As with Bayesian inference:

* Future work: compare errors as accuracy of approximation is increased to gain insight into
viability of lower-dimensional approximations.

* Lessons can be learned by avoiding use of highest fidelity model.




