

Large-scale Deterministic Inversion and Bayesian Calibration in Land-Ice Modeling

I. Tezaur¹, J. Jakeman¹, M. Eldred¹, M. Perego¹, S. Price², A. Salinger¹

¹ Sandia National Laboratories, Albuquerque, NM and Livermore, CA, USA.

² Los Alamos National Laboratory, Los Alamos, NM, USA.

USNCCM 2017 Montreal, Quebec July 17-20, 2017

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

1. Background.
 - PISCEES project for land-ice modeling.
 - Land-ice model.
2. UQ problem definition.
3. Inversion/calibration.
 - Deterministic inversion.
 - Bayesian inference.
4. Summary & future work.

Outline

1. Background.

- **PISCEES project for land-ice modeling.**
- Land-ice model.

2. UQ problem definition.

3. Inversion/calibration.

- Deterministic inversion.
- Bayesian inference.

4. Summary & future work.

PISCEES Project for Land-Ice Modeling

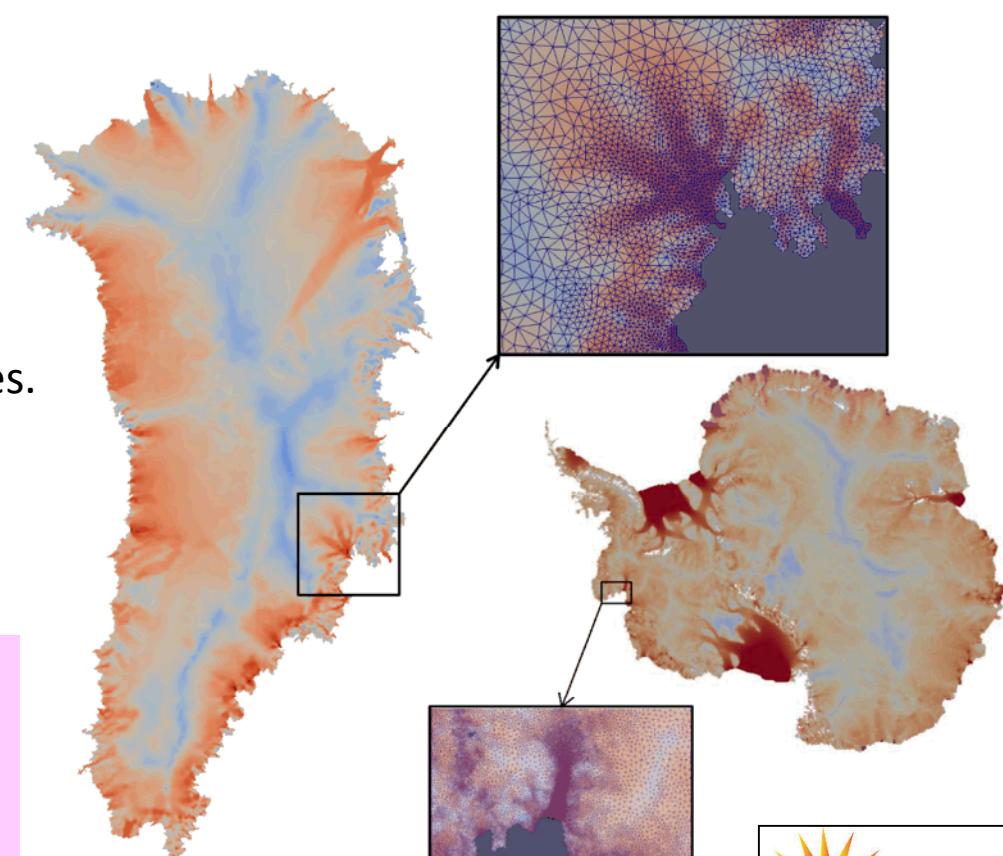
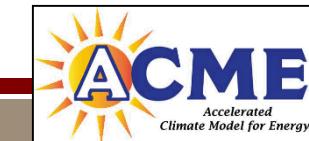
“PISCEES” = Predicting Ice Sheet Climate Evolution at Extreme Scales
5 year *SciDAC3* project began in June 2012; proposal for 5 year continuation project submitted to *SciDAC4* call.

Sandia’s Role in the PISCEES Project: to **develop** and **support** a robust and scalable land ice solver based on the “First-Order” (FO) Stokes equations → *Albany/FELIX**

Requirements for Albany/FELIX:

- **Unstructured grid** finite elements.
- **Scalable, fast** and **robust**.
- **Verified** and **validated**.
- **Portable** to new architecture machines.
- **Advanced analysis** capabilities:
deterministic inversion, calibration,
uncertainty quantification.

As part of **ACME DOE Earth System Model**, solver will provide actionable predictions of 21st century sea-level change (including uncertainty bounds).



PISCEES Project for Land-Ice Modeling

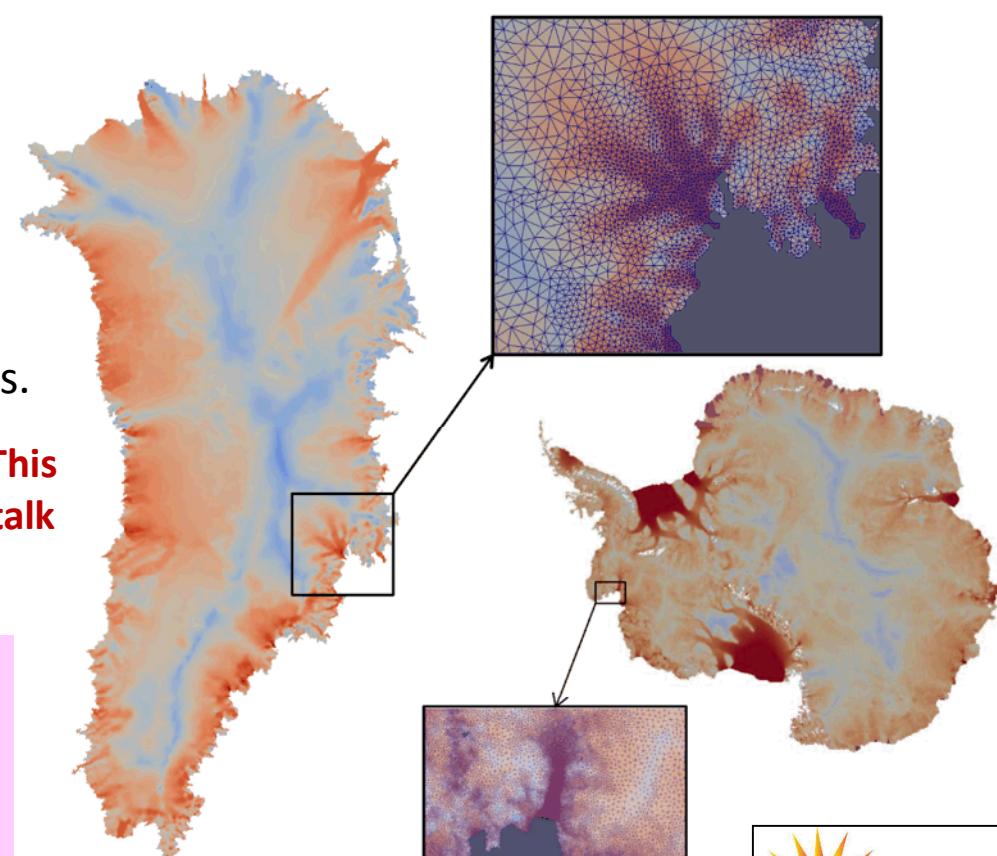
“PISCEES” = Predicting Ice Sheet Climate Evolution at Extreme Scales
5 year *SciDAC3* project began in June 2012; proposal for 5 year continuation project submitted to *SciDAC4* call.

Sandia’s Role in the PISCEES Project: to **develop** and **support** a robust and scalable land ice solver based on the “First-Order” (FO) Stokes equations → *Albany/FELIX**

Requirements for Albany/FELIX:

- ***Unstructured grid*** finite elements.
- ***Scalable, fast*** and ***robust***.
- ***Verified*** and ***validated***.
- ***Portable*** to new architecture machines.
- ***Advanced analysis*** capabilities:
deterministic inversion, calibration,
uncertainty quantification.

This talk



As part of **ACME DOE Earth System Model**, solver will provide actionable predictions of 21st century sea-level change (including uncertainty bounds).

Outline

1. Background.

- PISCEES project for land-ice modeling.
- **Land-ice model.**

2. UQ problem definition.

3. Inversion/calibration.

- Deterministic inversion.
- Bayesian inference.

4. Summary & future work.

The First-Order Stokes Model

- Ice behaves like a very **viscous shear-thinning fluid** (similar to lava flow).
- Quasi-static** model with **momentum balance** given by “**First-Order Stokes PDEs**”: “nice” elliptic approximation* to Stokes’ flow equations.

$$\begin{cases} -\nabla \cdot (2\mu \dot{\epsilon}_1) = -\rho g \frac{\partial s}{\partial x} \\ -\nabla \cdot (2\mu \dot{\epsilon}_2) = -\rho g \frac{\partial s}{\partial y} \end{cases}, \quad \text{in } \Omega$$

$$\begin{aligned} \dot{\epsilon}_1^T &= (2\dot{\epsilon}_{11} + \dot{\epsilon}_{22}, \dot{\epsilon}_{12}, \dot{\epsilon}_{13}) \\ \dot{\epsilon}_2^T &= (2\dot{\epsilon}_{12}, \dot{\epsilon}_{11} + 2\dot{\epsilon}_{22}, \dot{\epsilon}_{23}) \\ \dot{\epsilon}_{ij} &= \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \end{aligned}$$

- Viscosity μ is nonlinear function given by “**Glen’s law**”:

$$\mu = \frac{1}{2} A(T)^{-\frac{1}{n}} \left(\frac{1}{2} \sum_{ij} \dot{\epsilon}_{ij}^2 \right)^{\left(\frac{1}{2n} - \frac{1}{2} \right)} \quad (n = 3)$$

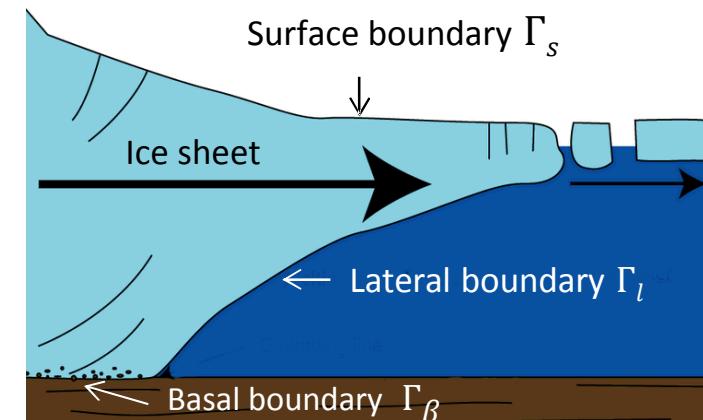
- Relevant boundary conditions:

- Stress-free BC:** $2\mu \dot{\epsilon}_i \cdot \mathbf{n} = 0$, on Γ_s

- Floating ice BC:** $2\mu \dot{\epsilon}_i \cdot \mathbf{n} = \begin{cases} \rho g z \mathbf{n}, & \text{if } z > 0 \\ 0, & \text{if } z \leq 0 \end{cases}$, on Γ_l

- Basal sliding BC:**

$$2\mu \dot{\epsilon}_i \cdot \mathbf{n} + \beta(x, y) u_i = 0, \quad \text{on } \Gamma_\beta$$



*Assumption: aspect ratio δ is small and normals to upper/lower surfaces are almost vertical.

The First-Order Stokes Model

- Ice behaves like a very **viscous shear-thinning fluid** (similar to lava flow).
- Quasi-static** model with **momentum balance** given by "**First-Order Stokes PDEs**: "nice" elliptic approximation* to Stokes' flow equations.

$$\begin{cases} -\nabla \cdot (2\mu \dot{\epsilon}_1) = -\rho g \frac{\partial s}{\partial x} \\ -\nabla \cdot (2\mu \dot{\epsilon}_2) = -\rho g \frac{\partial s}{\partial y} \end{cases}, \quad \text{in } \Omega$$

$$\begin{aligned} \dot{\epsilon}_1^T &= (2\dot{\epsilon}_{11} + \dot{\epsilon}_{22}, \dot{\epsilon}_{12}, \dot{\epsilon}_{13}) \\ \dot{\epsilon}_2^T &= (2\dot{\epsilon}_{12}, \dot{\epsilon}_{11} + 2\dot{\epsilon}_{22}, \dot{\epsilon}_{23}) \\ \dot{\epsilon}_{ij} &= \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \end{aligned}$$

- Viscosity μ is nonlinear function given by "**Glen's law**":

$$\mu = \frac{1}{2} A(T)^{-\frac{1}{n}} \left(\frac{1}{2} \sum_{ij} \dot{\epsilon}_{ij}^2 \right)^{\left(\frac{1}{2n} - \frac{1}{2} \right)} \quad (n = 3)$$

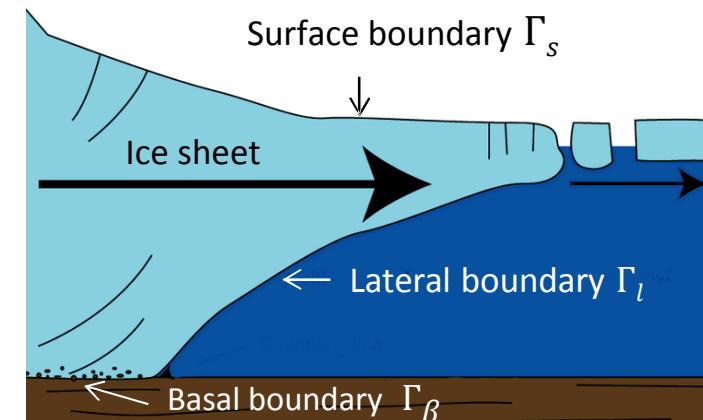
- Relevant boundary conditions:

- Stress-free BC:** $2\mu \dot{\epsilon}_i \cdot \mathbf{n} = 0$, on Γ_s

- Floating ice BC:** $2\mu \dot{\epsilon}_i \cdot \mathbf{n} = \begin{cases} \rho g z \mathbf{n}, & \text{if } z > 0 \\ 0, & \text{if } z \leq 0 \end{cases}$, on Γ_l

- Basal sliding BC:**

$$2\mu \dot{\epsilon}_i \cdot \mathbf{n} + \beta(x, y) u_i = 0, \quad \text{on } \Gamma_\beta$$



The First-Order Stokes Model

- Ice behaves like a very **viscous shear-thinning fluid** (similar to lava flow).
- Quasi-static** model with **momentum balance** given by “**First-Order Stokes PDEs**”: “nice” elliptic approximation* to Stokes’ flow equations.

$$\begin{cases} -\nabla \cdot (2\mu \dot{\epsilon}_1) = -\rho g \frac{\partial s}{\partial x} \\ -\nabla \cdot (2\mu \dot{\epsilon}_2) = -\rho g \frac{\partial s}{\partial y} \end{cases}, \quad \text{in } \Omega$$

$$\begin{aligned} \dot{\epsilon}_1^T &= (2\dot{\epsilon}_{11} + \dot{\epsilon}_{22}, \dot{\epsilon}_{12}, \dot{\epsilon}_{13}) \\ \dot{\epsilon}_2^T &= (2\dot{\epsilon}_{12}, \dot{\epsilon}_{11} + 2\dot{\epsilon}_{22}, \dot{\epsilon}_{23}) \\ \dot{\epsilon}_{ij} &= \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \end{aligned}$$

- Viscosity μ is nonlinear function given by “**Glen’s law**”:

$$\mu = \frac{1}{2} A(T)^{-\frac{1}{n}} \left(\frac{1}{2} \sum_{ij} \dot{\epsilon}_{ij}^2 \right)^{\left(\frac{1}{2n} - \frac{1}{2} \right)} \quad (n = 3)$$

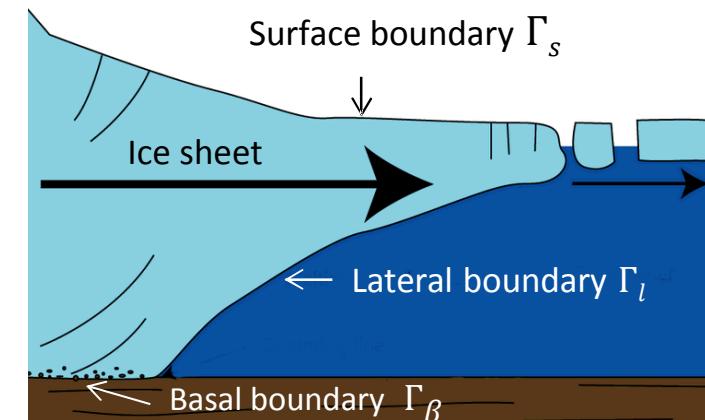
- Relevant boundary conditions:

- Stress-free BC:** $2\mu \dot{\epsilon}_i \cdot \mathbf{n} = 0$, on Γ_s

- Floating ice BC:** $2\mu \dot{\epsilon}_i \cdot \mathbf{n} = \begin{cases} \rho g z \mathbf{n}, & \text{if } z > 0 \\ 0, & \text{if } z \leq 0 \end{cases}$, on Γ_l

- Basal sliding BC:**

$$2\mu \dot{\epsilon}_i \cdot \mathbf{n} + \beta(x, y) u_i = 0, \quad \text{on } \Gamma_\beta$$



$\beta(x, y) = \text{basal sliding coefficient}$

*Assumption: aspect ratio δ is small and normals to upper/lower surfaces are almost vertical.

Thickness & Temperature Equations

- Model for ***evolution of the boundaries*** (thickness evolution equation):

$$\frac{\partial H}{\partial t} = -\nabla \cdot (\bar{\mathbf{u}}H) + \dot{b}$$

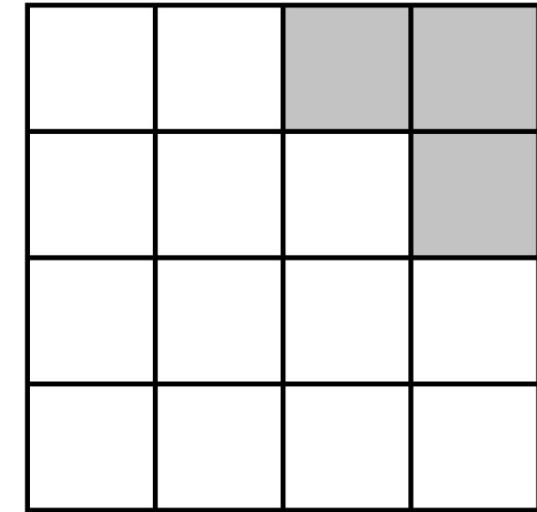
where $\bar{\mathbf{u}}$ = vertically averaged velocity, \dot{b} = surface mass balance (conservation of mass).

- ***Temperature equation*** (advection-diffusion):

$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) - \rho c \mathbf{u} \cdot \nabla T + 2\dot{\epsilon}\sigma$$

(energy balance).

- ***Flow factor*** A in Glen's law depends on temperature T :
 $A = A(T)$.
- Ice sheet ***grows/retreats*** depending on thickness H .



Ice-covered (“active”)
cells shaded in white
($H > H_{min}$)

Outline

1. Background.
 - PISCEES project for land-ice modeling.
 - Land-ice model.
2. UQ problem definition.
3. Inversion/calibration.
 - Deterministic inversion.
 - Bayesian inference.
4. Summary & future work.

Uncertainty Quantification Problem Definition

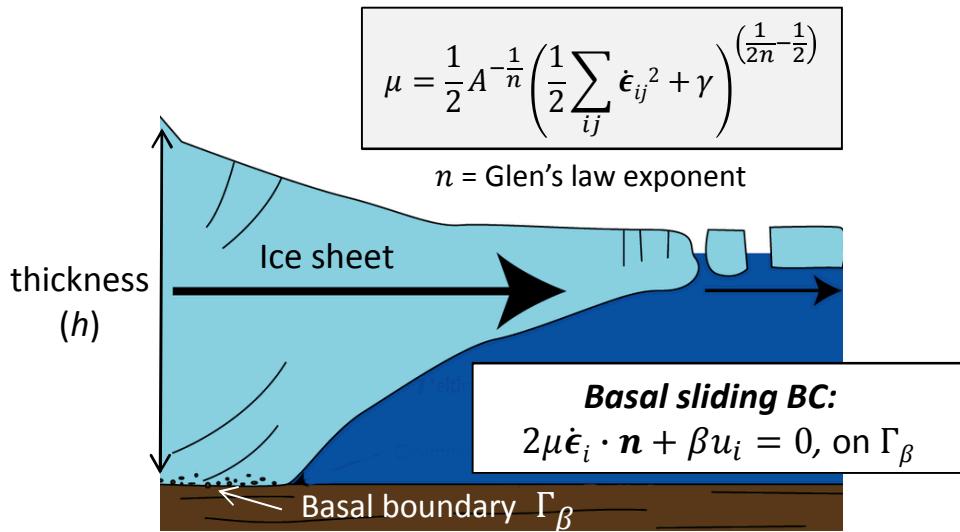
QoI in Ice Sheet Modeling: total ice mass loss/gain
during 21st century → *sea level change prediction.*

Uncertainty Quantification Problem Definition

QoI in Ice Sheet Modeling: total ice mass loss/gain during 21st century → *sea level change prediction.*

Sources of uncertainty affecting this QoI include:

- Climate forcings (e.g., surface mass balance).
- Basal friction (β).
- Ice sheet thickness (h).
- Geothermal heat flux.
- Model parameters (e.g., Glen's flow law exponent).



Uncertainty Quantification Problem Definition

QoI in Ice Sheet Modeling: total ice mass loss/gain during 21st century → *sea level change prediction.*

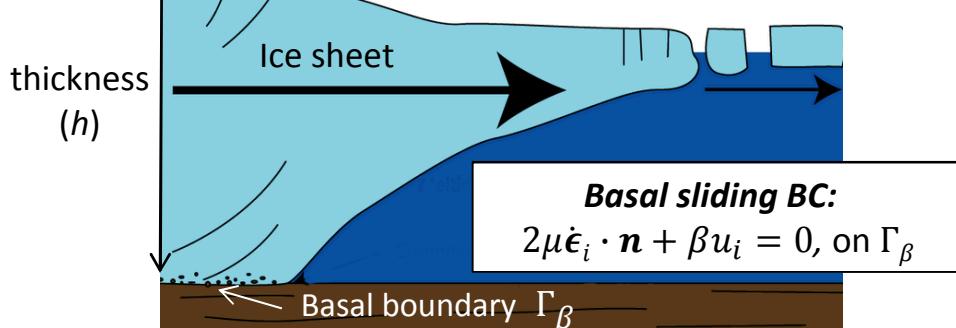
As a first step, we focus on effect of uncertainty in β only.

Sources of uncertainty affecting this QoI include:

- Climate forcings (e.g., surface mass balance).
- **Basal friction (β).**
- Ice sheet thickness (h).
- Geothermal heat flux.
- Model parameters (e.g., Glen's flow law exponent).

$$\mu = \frac{1}{2} A^{-\frac{1}{n}} \left(\frac{1}{2} \sum_{ij} \epsilon_{ij}^2 + \gamma \right)^{\left(\frac{1}{2n} - \frac{1}{2} \right)}$$

n = Glen's law exponent



Uncertainty Quantification Problem Definition

QoI in Ice Sheet Modeling: total ice mass loss/gain during 21st century → *sea level change prediction.*

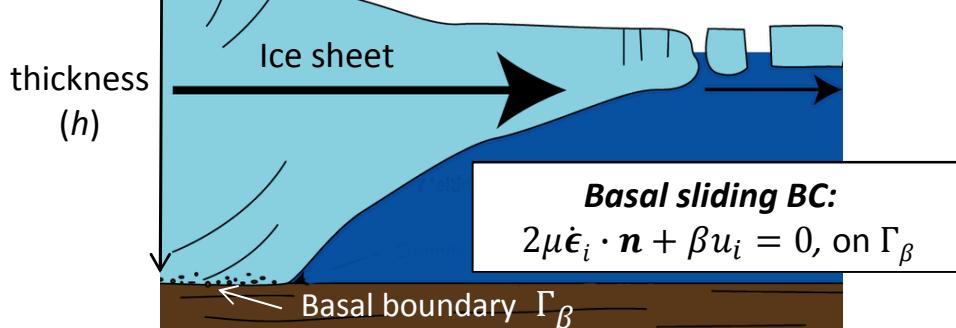
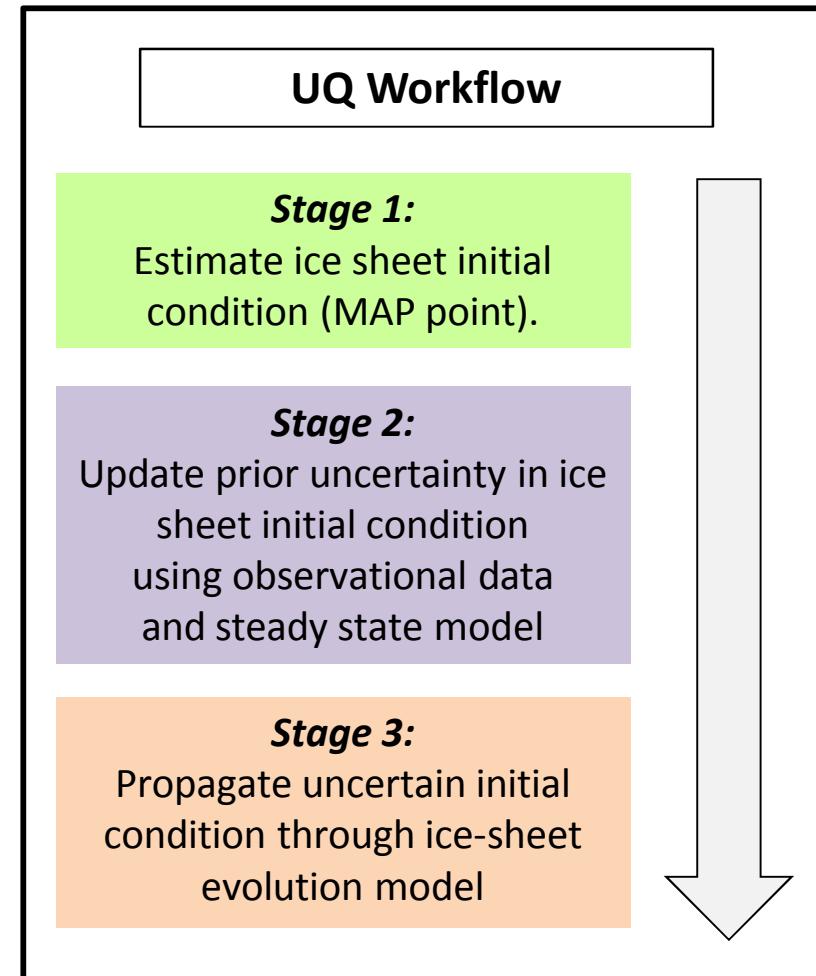
As a first step, we focus on effect of uncertainty in β only.

Sources of uncertainty affecting this QoI include:

- Climate forcings (e.g., surface mass balance).
- **Basal friction (β).**
- Ice sheet thickness (h).
- Geothermal heat flux.
- Model parameters (e.g., Glen's flow law exponent).

$$\mu = \frac{1}{2} A^{-\frac{1}{n}} \left(\frac{1}{2} \sum_{ij} \epsilon_{ij}^2 + \gamma \right)^{\left(\frac{1}{2n} - \frac{1}{2} \right)}$$

n = Glen's law exponent



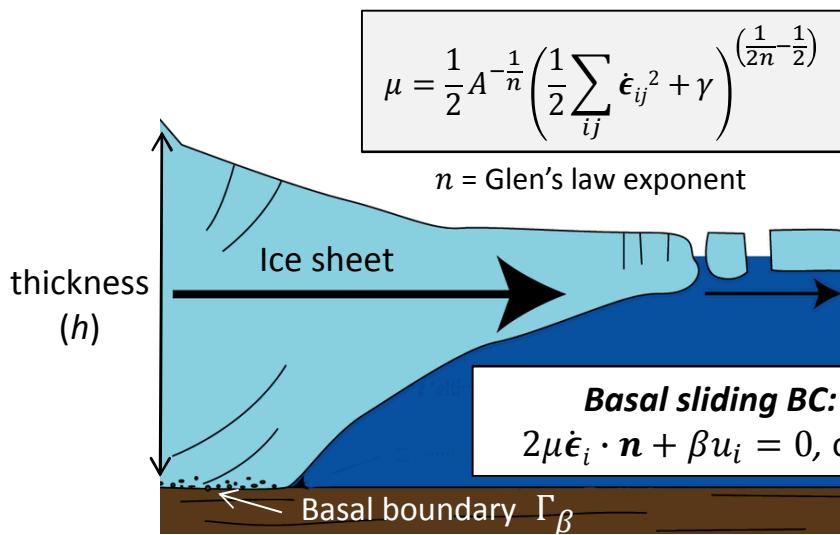
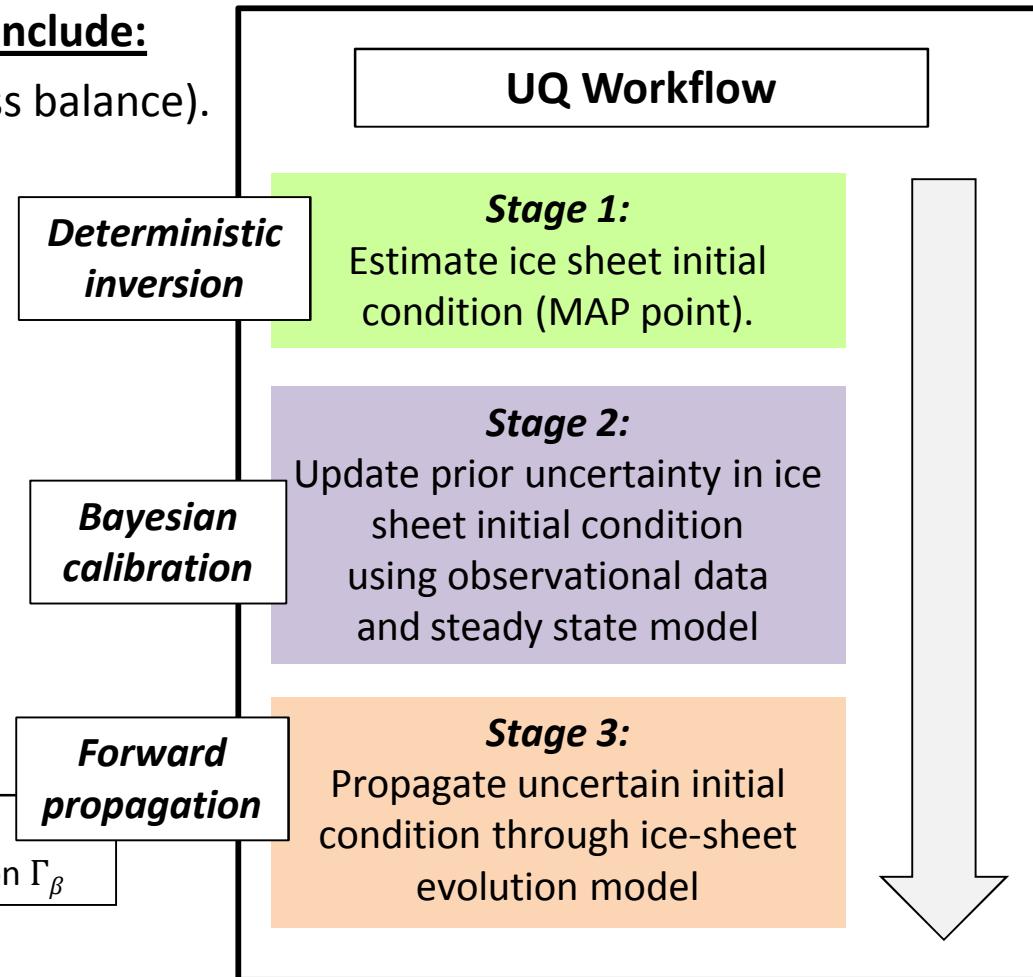
Uncertainty Quantification Problem Definition

QoI in Ice Sheet Modeling: total ice mass loss/gain during 21st century → *sea level change prediction.*

As a first step, we focus on effect of uncertainty in β only.

Sources of uncertainty affecting this QoI include:

- Climate forcings (e.g., surface mass balance).
- **Basal friction (β).**
- Ice sheet thickness (h).
- Geothermal heat flux.
- Model parameters (e.g., Glen's flow law exponent).



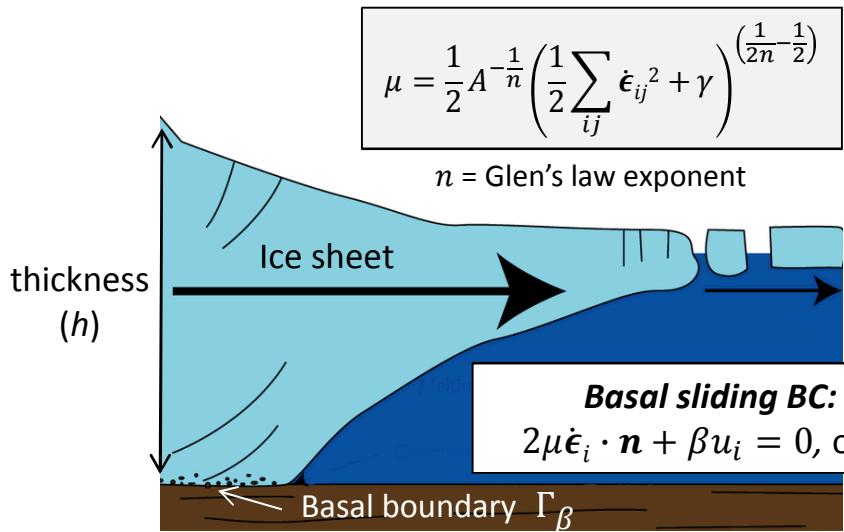
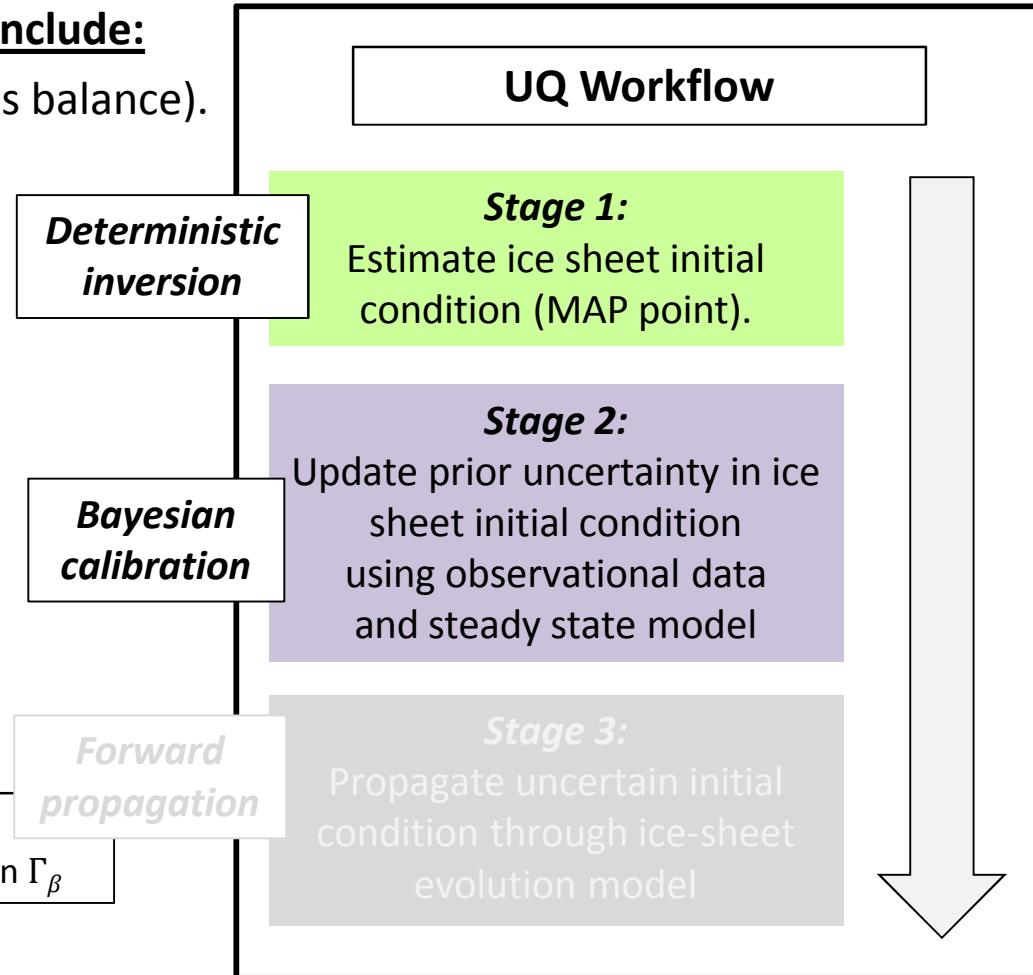
Uncertainty Quantification Problem Definition

QoI in Ice Sheet Modeling: total ice mass loss/gain during 21st century → *sea level change prediction.*

As a first step, we focus on effect of uncertainty in β only.

Sources of uncertainty affecting this QoI include:

- Climate forcings (e.g., surface mass balance).
- **Basal friction (β).**
- Ice sheet thickness (h).
- Geothermal heat flux.
- Model parameters (e.g., Glen's flow law exponent).



Outline

1. Background.
 - PISCEES project for land-ice modeling.
 - Land-ice model.
2. UQ problem definition.
3. Inversion/calibration.
 - **Deterministic inversion.**
 - Bayesian inference.
4. Summary & future work.

Estimation of Ice Sheet Initial Condition

UQ Workflow

Stage 1:

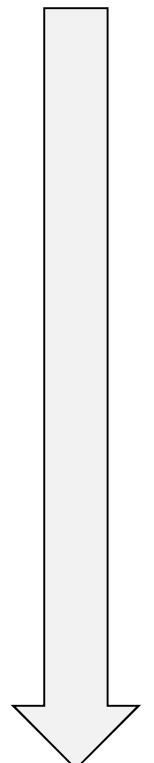
Estimate ice sheet initial condition (MAP point).

Stage 2:

Update prior uncertainty in ice sheet initial condition using observational data and steady state model

Stage 3:

Propagate uncertain initial condition through ice-sheet evolution model



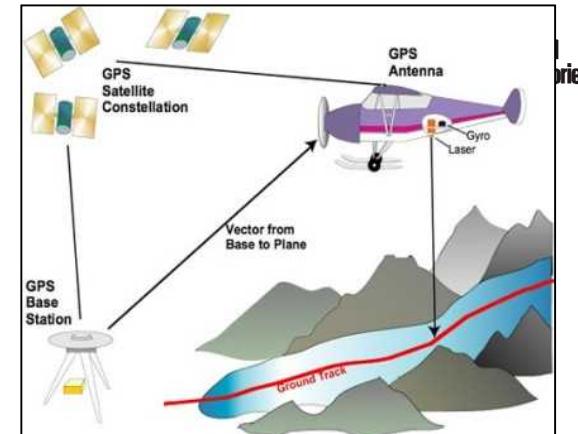
Goal: find ice sheet initial state that:

- matches observations (e.g. surface velocity, temperature, etc.).
- matches present-day geometry (elevation, thickness).
- is in “equilibrium” with climate forcings (SMB).

Available Data & Assumptions

Available data/measurements:

- ice extent and surface topography.
- surface velocity.
- surface mass balance (SMB).
- ice thickness h (sparse measurements).



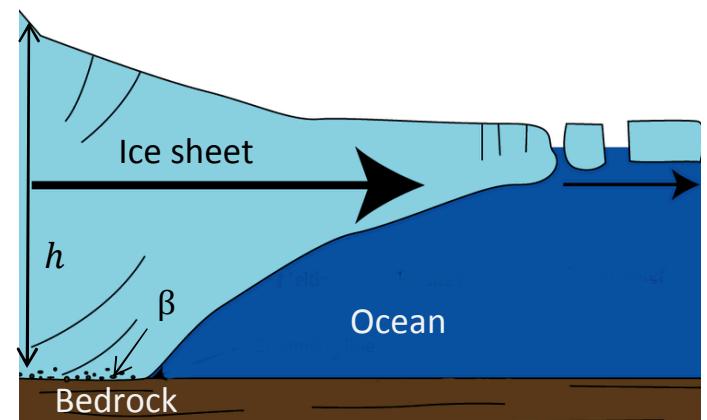
Fields to be estimated:

- ice thickness h (allowed to vary but weighted by observational uncertainties).
- basal friction β (spatially variable proxy for all basal processes).

Sources of data: satellite
infrarometry, radar,
altimetry, etc.

Modeling Assumptions:

- ice flow described by nonlinear first-order Stokes equations.
- ice close to mechanical equilibrium.



Deterministic Inversion

First-Order Stokes PDE-Constrained optimization problem for initial condition*:

$$\begin{aligned} & \text{minimize}_{\beta, h} \quad m(\beta, h) \\ & \text{s.t. FO Stokes PDEs} \end{aligned}$$

\mathbf{U} : computed depth averaged velocity
 h : ice thickness
 β : basal sliding friction coefficient
 τ_s : surface mass balance (SMB)
 $\mathcal{R}(\beta, h)$: regularization term

$$m(\beta, h) = \int_{\Gamma} \frac{1}{\sigma_u^2} |\mathbf{u} - \mathbf{u}^{obs}|^2 ds$$

surface velocity mismatch

$$+ \int_{\Gamma} \frac{1}{\sigma_{\tau}^2} |div(\mathbf{U}h) - \tau_s|^2 ds$$

SMB mismatch

$$+ \int_{\Gamma} \frac{1}{\sigma_h^2} |h - h^{obs}|^2 ds$$

thickness mismatch

$$+ \mathcal{R}(\beta, h)$$

regularization terms

Deterministic Inversion

First-Order Stokes PDE-Constrained optimization problem for initial condition*:

$$\begin{aligned} & \text{minimize}_{\beta, h} \quad m(\beta, h) \\ & \text{s.t. FO Stokes PDEs} \end{aligned}$$

\mathbf{U} : computed depth averaged velocity
 h : ice thickness
 β : basal sliding friction coefficient
 τ_s : surface mass balance (SMB)
 $\mathcal{R}(\beta, h)$: regularization term

$$m(\beta, h) = \int_{\Gamma} \frac{1}{\sigma_u^2} |\mathbf{u} - \mathbf{u}^{obs}|^2 ds$$

surface velocity mismatch

$$+ \int_{\Gamma} \frac{1}{\sigma_{\tau}^2} |div(\mathbf{U}h) - \tau_s|^2 ds$$

SMB mismatch

$$+ \int_{\Gamma} \frac{1}{\sigma_h^2} |h - h^{obs}|^2 ds$$

thickness mismatch

$$+ \mathcal{R}(\beta, h)$$

regularization terms

Solving FO Stokes PDE-constrained optimization problem for initial condition significantly reduces non-physical model transients!

Deterministic Inversion Algorithm & Software

First-Order Stokes PDE-Constrained optimization problem for initial condition*:

$$\begin{aligned} & \text{minimize}_{\beta, h} \quad m(\beta, h) \\ & \text{s.t. FO Stokes PDEs} \end{aligned}$$

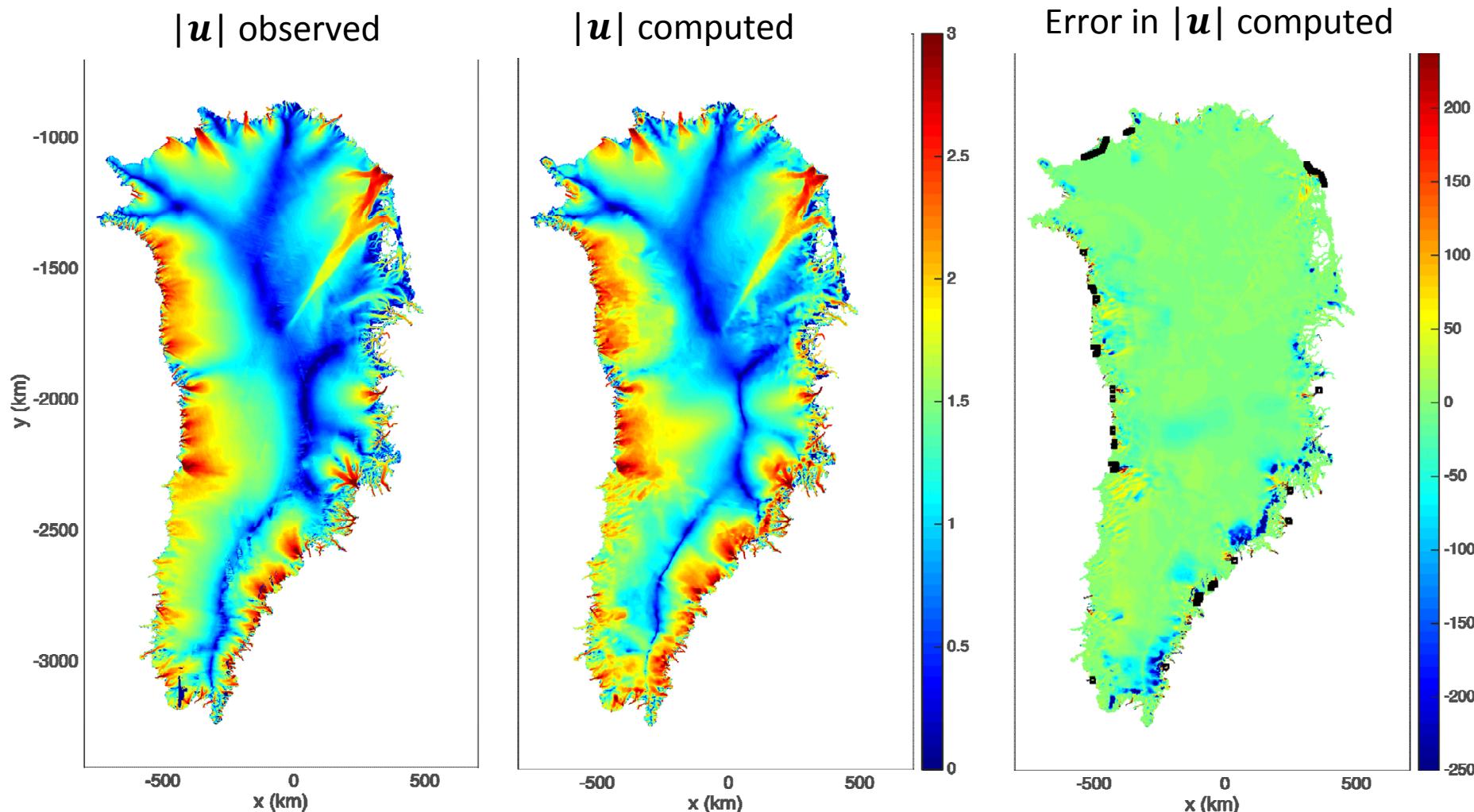
Solved via embedded *adjoint-based PDE-constrained optimization* algorithm in Albany/FELIX.

Algorithm	Software
Finite Element Method discretization	Albany
Quasi-Newton optimization (L-BFGS)	ROL
Nonlinear solver (Newton)	NOX
Krylov linear solvers	AztecOO+Ifpack/ML

- Some details:

- **Regularization:** Tikhonov.
- Total derivatives of objective functional $m(\beta, h)$ computed using **adjoints** and **automatic differentiation** (Sacado package of Trilinos).
- **Gradient-based optimization:** limited memory BFGS initialized with Hessian of regularization terms (ROL) with backtrack linesearch.

Deterministic Inversion: 1km Greenland Initial Condition



Outline

1. Background.
 - PISCEES project for land-ice modeling.
 - Land-ice model.
2. UQ problem definition.
3. **Inversion/calibration.**
 - Deterministic inversion.
 - **Bayesian inference.**
4. Summary & future work.

Bayesian Inference

UQ Workflow

Stage 1:

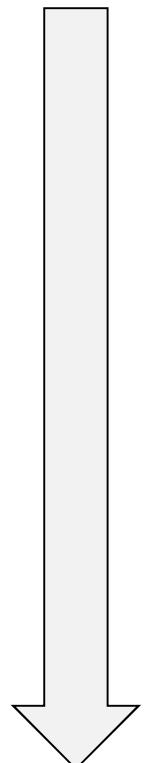
Estimate ice sheet initial condition (MAP point).

Stage 2:

Update prior uncertainty in ice sheet initial condition using observational data and steady state model

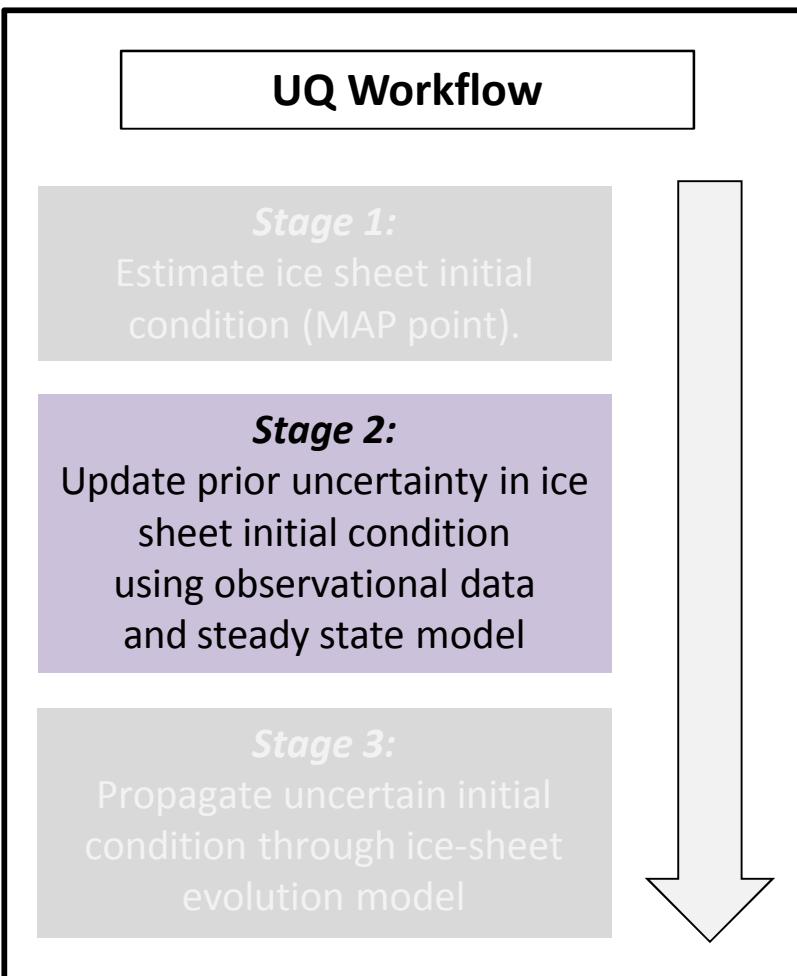
Stage 3:

Propagate uncertain initial condition through ice-sheet evolution model



Goal: solve inverse problem for ice sheet initial state but in ***Bayesian framework***

Bayesian Inference

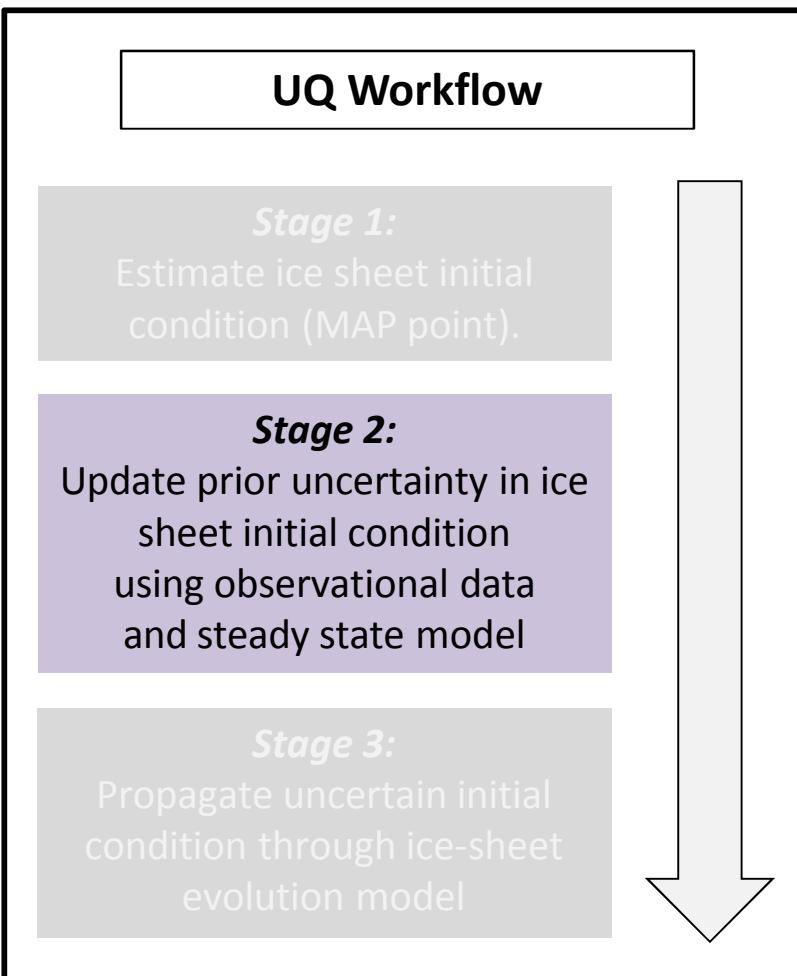


Goal: solve inverse problem for ice sheet initial state but in ***Bayesian framework***

- ***Naïve parameterization:*** represent each degree of freedom on mesh be an uncertain variable

$$\beta(x) = (z_1, z_2, \dots, z_{n_{\text{dof}}})$$

Bayesian Inference



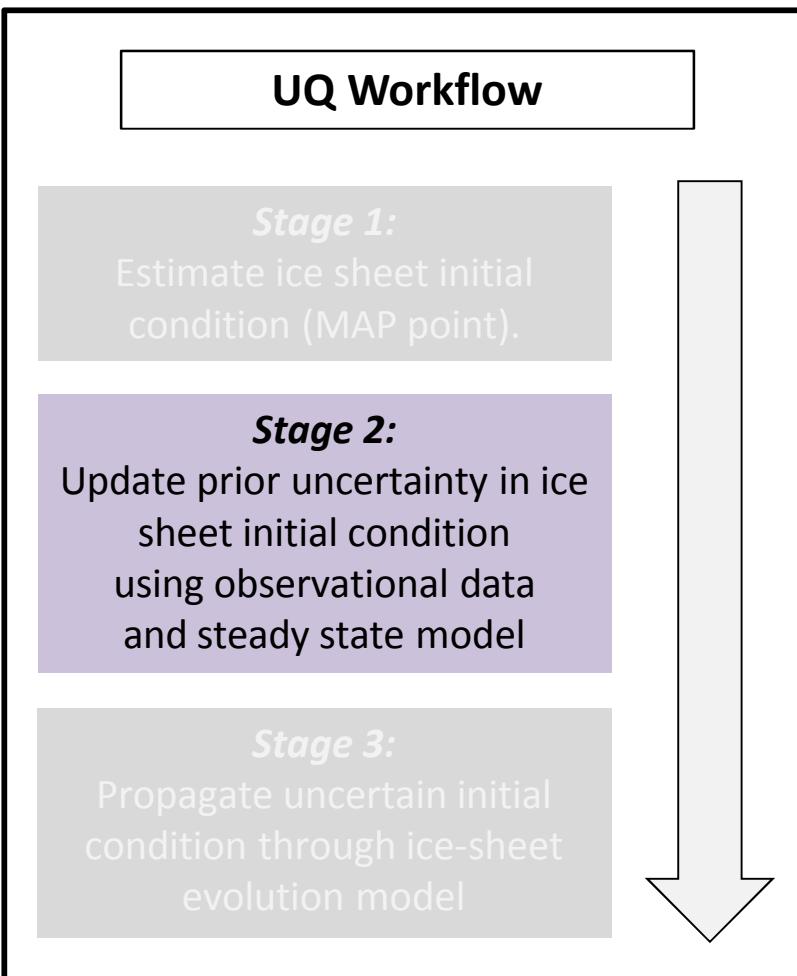
Goal: solve inverse problem for ice sheet initial state but in ***Bayesian framework***

- ***Naïve parameterization:*** represent each degree of freedom on mesh be an uncertain variable

$$\beta(x) = (z_1, z_2, \dots, z_{n_{\text{dof}}})$$

Intractable due to **curse of dimensionality**: $n_{\text{dof}} = O(100K)!$

Bayesian Inference



Goal: solve inverse problem for ice sheet initial state but in ***Bayesian framework***

- ***Naïve parameterization:*** represent each degree of freedom on mesh be an uncertain variable

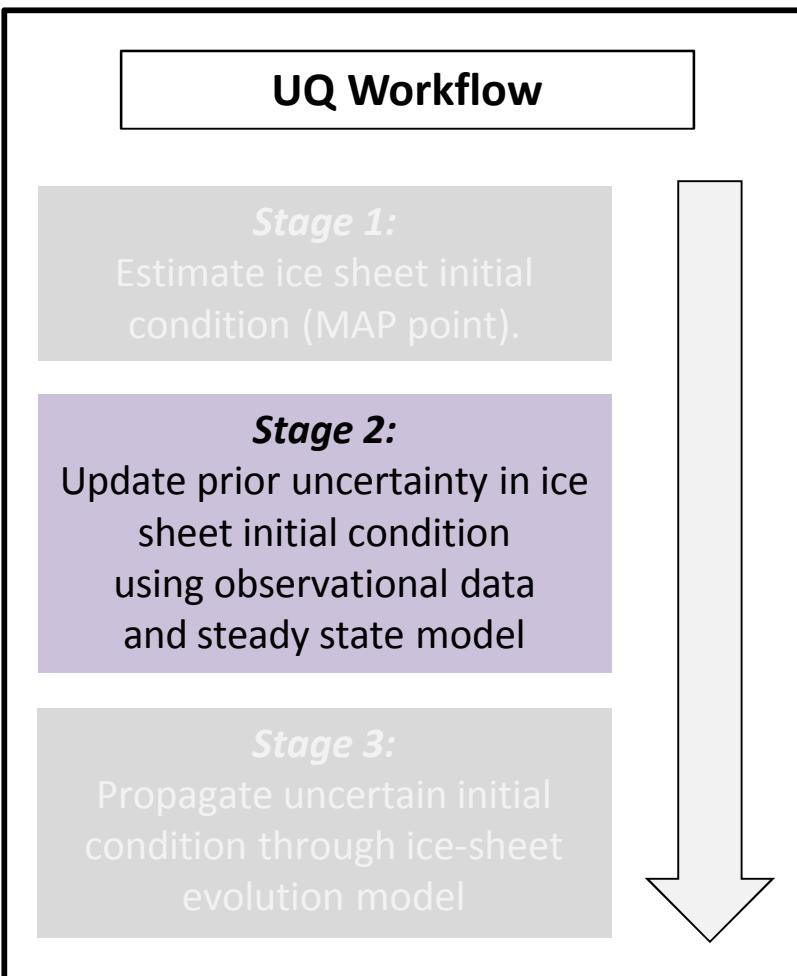
$$\beta(x) = (z_1, z_2, \dots, z_{n_{\text{dof}}})$$

Intractable due to **curse of dimensionality**: $n_{\text{dof}} = O(100K)!$

- ***To circumvent this difficulty:*** assume $\beta(x)$ can be represented in ***reduced basis*** (e.g., KLE modes, Hessian eigenvectors*) centered around mean $\bar{\beta}(x)$:

$$\log(\beta(x)) = \log(\bar{\beta}) + \sum_{i=1}^d \sqrt{\lambda_i} \phi_i(x) z_i$$

Bayesian Inference



Goal: solve inverse problem for ice sheet initial state but in ***Bayesian framework***

- ***Naïve parameterization:*** represent each degree of freedom on mesh be an uncertain variable

$$\beta(x) = (z_1, z_2, \dots, z_{n_{\text{dof}}})$$

Intractable due to **curse of dimensionality**: $n_{\text{dof}} = O(100K)!$

- ***To circumvent this difficulty:*** assume $\beta(x)$ can be represented in ***reduced basis*** (e.g., KLE modes, Hessian eigenvectors*) centered around mean $\bar{\beta}(x)$:

$$\log(\beta(x)) = \log(\bar{\beta}) + \sum_{i=1}^d \sqrt{\lambda_i} \phi_i(x) z_i$$

- Mean field $\bar{\beta}(x)$ = initial condition.

* Isaac, Petra, Stadler, Ghattas, *JCP*, 2015.

Bayesian Inference

UQ Workflow

Stage 1:

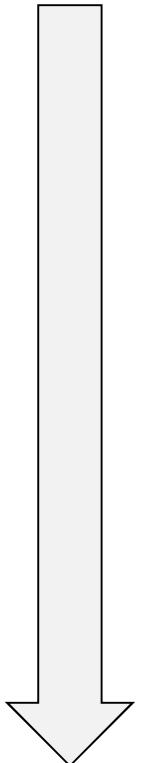
Estimate ice sheet initial condition (MAP point).

Stage 2:

Update prior uncertainty in ice sheet initial condition using observational data and steady state model

Stage 3:

Propagate uncertain initial condition through ice-sheet evolution model



Deterministic inversion is consistent with Bayesian analog: it is used to find the MAP point of posterior.

Goal: solve inverse problem for ice sheet initial state but in *Bayesian framework*

- **Naïve parameterization:** represent each degree of freedom on mesh be an uncertain variable

$$\beta(x) = (z_1, z_2, \dots, z_{n_{\text{dof}}})$$

Intractable due to **curse of dimensionality**: $n_{\text{dof}} = O(100K)!$

- **To circumvent this difficulty:** assume $\beta(x)$ can be represented in **reduced basis** (e.g., KLE modes, Hessian eigenvectors*) centered around mean $\bar{\beta}(x)$:

$$\log(\beta(x)) = \log(\bar{\beta}) + \sum_{i=1}^d \sqrt{\lambda_i} \phi_i(x) z_i$$

- Mean field $\bar{\beta}(x)$ = initial condition.

* Isaac, Petra, Stadler, Ghattas, *JCP*, 2015.

Bayesian Inference Assumptions

- Additive ***Gaussian noise*** model: $\mathbf{y}^{\text{obs}} = \mathbf{f}(\mathbf{z}) + \boldsymbol{\epsilon}$, $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \boldsymbol{\Gamma}_{\text{obs}})$

⇒ **Mismatch functional to be minimized:**

$$m(\mathbf{z}) = \frac{1}{2} \left(\mathbf{y}^{\text{obs}} - \mathbf{f}(\mathbf{z}) \right)^T \boldsymbol{\Gamma}_{\text{obs}}^{-1} \left(\mathbf{y}^{\text{obs}} - \mathbf{f}(\mathbf{z}) \right)$$

- ***Gaussian prior*** with exponential covariance.

Notation*:

\mathbf{y}^{obs} = observations

\mathbf{z} = random params

$\mathbf{f}(\mathbf{z})$ = deterministic map from params to observables.

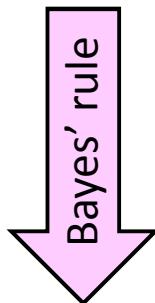
Bayesian Inference Assumptions

- Additive **Gaussian noise** model: $\mathbf{y}^{\text{obs}} = \mathbf{f}(\mathbf{z}) + \boldsymbol{\epsilon}$, $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \boldsymbol{\Gamma}_{\text{obs}})$

⇒ Mismatch functional to be minimized:

$$m(\mathbf{z}) = \frac{1}{2} \left(\mathbf{y}^{\text{obs}} - \mathbf{f}(\mathbf{z}) \right)^T \boldsymbol{\Gamma}_{\text{obs}}^{-1} \left(\mathbf{y}^{\text{obs}} - \mathbf{f}(\mathbf{z}) \right)$$

- **Gaussian prior** with exponential covariance.



+ linearization of
 $\mathbf{f}(\mathbf{z})$ around \mathbf{z}_{MAP}

- **Likelihood** is: $\hat{\pi}_{\text{lhood}}(\mathbf{z}) = e^{-m_{\text{lin}}(\mathbf{z})}$

- **Normal Laplace posterior** given by: $\pi_{\text{pos}}(\mathbf{z}) = C_{\text{evid}}^{-1} \hat{\pi}_{\text{lhood}}(\mathbf{z}) \pi_{\text{pr}}(\mathbf{z})$

where $C_{\text{evid}} = \int \hat{\pi}_{\text{lhood}}(\mathbf{z}) \pi_{\text{pr}}(\mathbf{z}) d\mathbf{z}$.

Notation*:

\mathbf{y}^{obs} = observations
 \mathbf{z} = random params
 $\mathbf{f}(\mathbf{z})$ = deterministic map from params to observables.

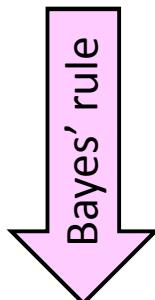
Bayesian Inference Assumptions

- Additive **Gaussian noise** model: $\mathbf{y}^{\text{obs}} = \mathbf{f}(\mathbf{z}) + \boldsymbol{\epsilon}$, $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \boldsymbol{\Gamma}_{\text{obs}})$

⇒ Mismatch functional to be minimized:

$$m(\mathbf{z}) = \frac{1}{2} \left(\mathbf{y}^{\text{obs}} - \mathbf{f}(\mathbf{z}) \right)^T \boldsymbol{\Gamma}_{\text{obs}}^{-1} \left(\mathbf{y}^{\text{obs}} - \mathbf{f}(\mathbf{z}) \right)$$

- **Gaussian prior** with exponential covariance.



+ linearization of
 $\mathbf{f}(\mathbf{z})$ around \mathbf{z}_{MAP}

Covariance of Gaussian
 posterior related to
inverse of misfit Hessian
 at MAP point**.

- **Likelihood** is: $\hat{\pi}_{\text{lhood}}(\mathbf{z}) = e^{-m_{\text{lin}}(\mathbf{z})}$

- **Normal Laplace posterior** given by: $\pi_{\text{pos}}(\mathbf{z}) = C_{\text{evid}}^{-1} \hat{\pi}_{\text{lhood}}(\mathbf{z}) \pi_{\text{pr}}(\mathbf{z})$

where $C_{\text{evid}} = \int \hat{\pi}_{\text{lhood}}(\mathbf{z}) \pi_{\text{pr}}(\mathbf{z}) d\mathbf{z}$.

Notation*:

\mathbf{y}^{obs} = observations
 \mathbf{z} = random params
 $\mathbf{f}(\mathbf{z})$ = deterministic
 map from params to
 observables.

Bayesian Inference Assumptions

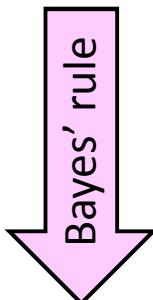
- Additive **Gaussian noise** model: $\mathbf{y}^{\text{obs}} = \mathbf{f}(\mathbf{z}) + \boldsymbol{\epsilon}$, $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \boldsymbol{\Gamma}_{\text{obs}})$

⇒ Mismatch functional to be minimized:

$$m(\mathbf{z}) = \frac{1}{2} \left(\mathbf{y}^{\text{obs}} - \mathbf{f}(\mathbf{z}) \right)^T \boldsymbol{\Gamma}_{\text{obs}}^{-1} \left(\mathbf{y}^{\text{obs}} - \mathbf{f}(\mathbf{z}) \right)$$

Evaluation of misfit Hessian is **expensive!**
 ⇒ further approximation required.

- **Gaussian prior** with exponential covariance.



+ linearization of $\mathbf{f}(\mathbf{z})$ around \mathbf{z}_{MAP}

Covariance of Gaussian posterior related to **inverse of misfit Hessian** at MAP point**.

- **Likelihood** is: $\hat{\pi}_{\text{lhood}}(\mathbf{z}) = e^{-m_{\text{lin}}(\mathbf{z})}$

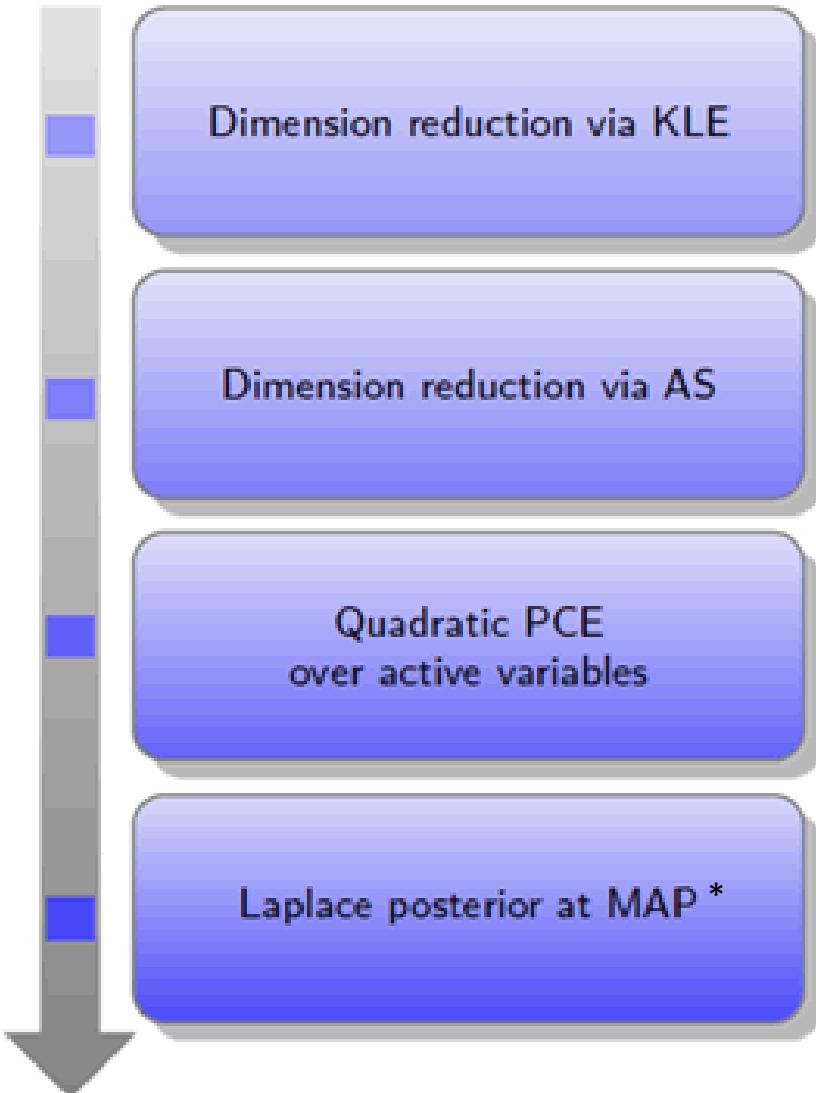
- **Normal Laplace posterior** given by: $\pi_{\text{pos}}(\mathbf{z}) = C_{\text{evid}}^{-1} \hat{\pi}_{\text{lhood}}(\mathbf{z}) \pi_{\text{pr}}(\mathbf{z})$

where $C_{\text{evid}} = \int \hat{\pi}_{\text{lhood}}(\mathbf{z}) \pi_{\text{pr}}(\mathbf{z}) d\mathbf{z}$.

Notation*:

\mathbf{y}^{obs} = observations
 \mathbf{z} = random params
 $\mathbf{f}(\mathbf{z})$ = deterministic map from params to observables.

Bayesian Inference Workflow

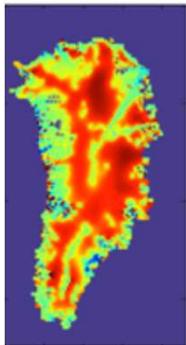


KLE = Karhunen-Loeve Expansion
AS = Active Subspace
PCE = Polynomial Chaos Expansion
MAP = Maximum a Posteriori

Two-part ***dimension reduction*** procedure to obtain modes $\phi_i(x)$

Procedure for computing ***covariance of normal posterior***, Γ_{post}

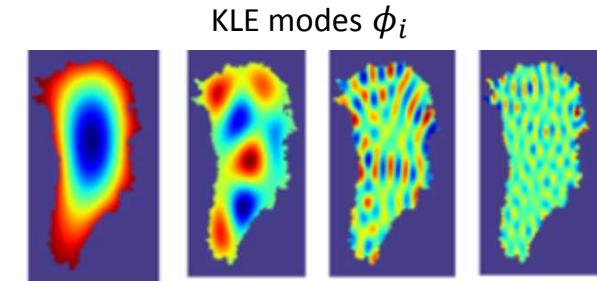
Karhunen-Loeve Expansion (KLE)



$O(100K)$ dimensional inversion problem can be reduced to smaller dimensional problem using ***Karhunen-Loeve Expansion (KLE)***

Best fit $\bar{\beta}$

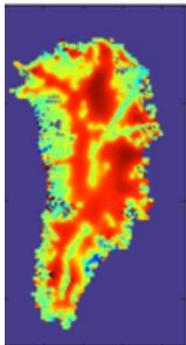
$$\log(\beta(x)) = \log(\bar{\beta}) + \sum_{i=1}^d \sqrt{\lambda_i} \phi_i(x) z_i$$



- KLE modes $\phi_i(x)$ are eigenvectors of assumed ***exponential covariance kernel***:

$$C(r_1, r_2) = \exp\left(-\frac{(r_1 - r_2)^2}{L^2}\right)$$

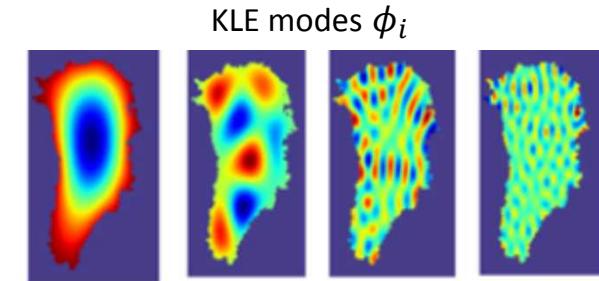
Karhunen-Loeve Expansion (KLE)



$O(100K)$ dimensional inversion problem can be reduced to smaller dimensional problem using ***Karhunen-Loeve Expansion (KLE)***

Best fit $\bar{\beta}$

$$\log(\beta(x)) = \log(\bar{\beta}) + \sum_{i=1}^d \sqrt{\lambda_i} \phi_i(x) z_i$$

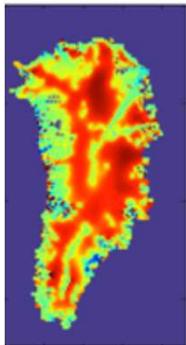


- KLE modes $\phi_i(x)$ are eigenvectors of assumed ***exponential covariance kernel***:

$$C(r_1, r_2) = \exp\left(-\frac{(r_1 - r_2)^2}{L^2}\right)$$

- ***Parameters to be selected***: correlation length L , basis size d .

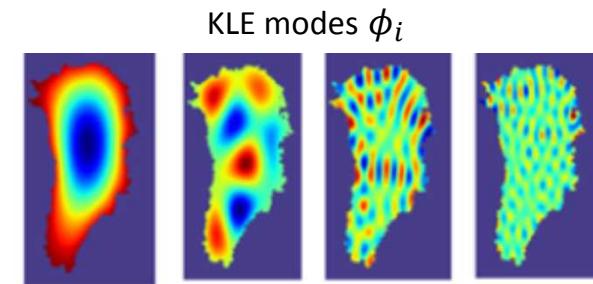
Karhunen-Loeve Expansion (KLE)



$O(100K)$ dimensional inversion problem can be reduced to smaller dimensional problem using ***Karhunen-Loeve Expansion (KLE)***

Best fit $\bar{\beta}$

$$\log(\beta(x)) = \log(\bar{\beta}) + \sum_{i=1}^d \sqrt{\lambda_i} \phi_i(x) z_i$$

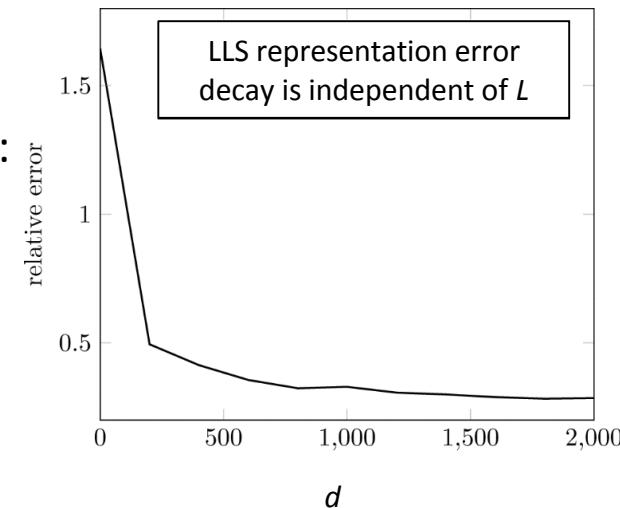


- KLE modes $\phi_i(x)$ are eigenvectors of assumed ***exponential covariance kernel***:

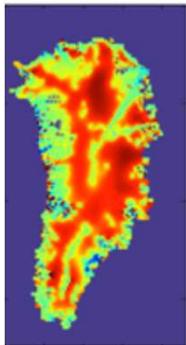
$$C(r_1, r_2) = \exp\left(-\frac{(r_1 - r_2)^2}{L^2}\right)$$

- ***Parameters to be selected***: correlation length L , basis size d .
- L and d can be estimated “rigorously” by solving ***LLS problem***:

$$\min_{L,d} \left\| \exp\left(\bar{\beta}^{opt}(\min m(\beta)) - \bar{\beta}^{opt}(\min m(\beta, h)) - \sum_{k=1}^d \sqrt{\lambda_k} \phi_k z_k \right) \right\|$$



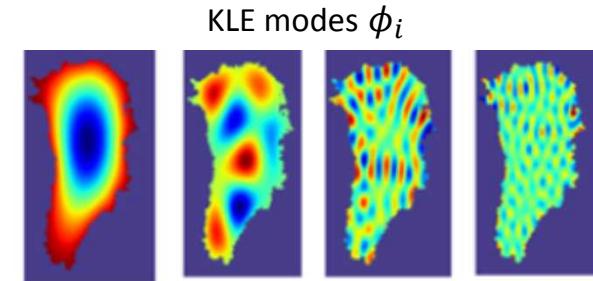
Karhunen-Loeve Expansion (KLE)



$O(100K)$ dimensional inversion problem can be reduced to smaller dimensional problem using ***Karhunen-Loeve Expansion (KLE)***

Best fit $\bar{\beta}$

$$\log(\beta(x)) = \log(\bar{\beta}) + \sum_{i=1}^d \sqrt{\lambda_i} \phi_i(x) z_i$$



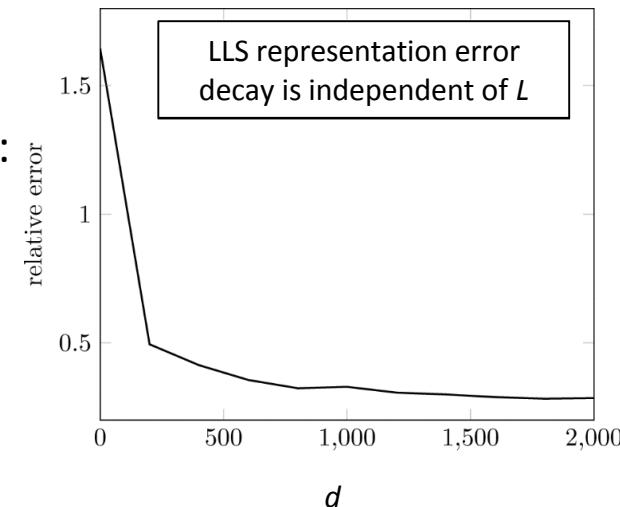
- KLE modes $\phi_i(x)$ are eigenvectors of assumed ***exponential covariance kernel***:

$$C(r_1, r_2) = \exp\left(-\frac{(r_1 - r_2)^2}{L^2}\right)$$

- ***Parameters to be selected***: correlation length L , basis size d .
- L and d can be estimated “rigorously” by solving ***LLS problem***:

$$\min_{L,d} \left\| \exp\left(\bar{\beta}^{opt}(\min m(\beta)) - \bar{\beta}^{opt}(\min m(\beta, h)) - \sum_{k=1}^d \sqrt{\lambda_k} \phi_k z_k\right) \right\|$$

$\Rightarrow d$ should be $O(1000)$



Active Subspaces (AS)

- KLE eigenvalue analysis suggests $d = O(1000)$ – **still large for MCMC!**

TI1

Tezaur, Irina, 6/1/2017

Active Subspaces (AS)

- KLE eigenvalue analysis suggests $d = O(1000)$ – **still large for MCMC!**

Idea: combine KLE with Active Subspace (AS) information for further (and better) *data-informed* dimension reduction.

TI1

Tezaur, Irina, 6/1/2017

Active Subspaces (AS)

- KLE eigenvalue analysis suggests $d = O(1000)$ – **still large for MCMC!**

Idea: combine KLE with Active Subspace (AS) information for further (and better) ***data-informed*** dimension reduction.

- ***Active Subspace (AS)*** = directions along which objective function has strongest variability.

TI1

Tezaur, Irina, 6/1/2017

Active Subspaces (AS)

- KLE eigenvalue analysis suggests $d = O(1000)$ – **still large for MCMC!**

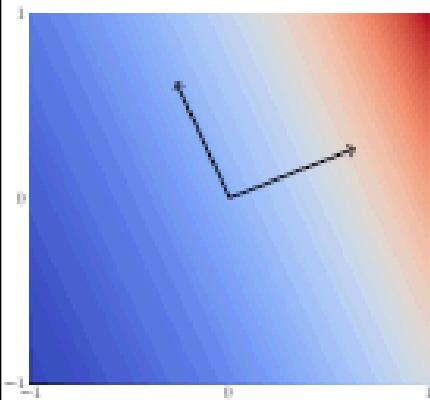
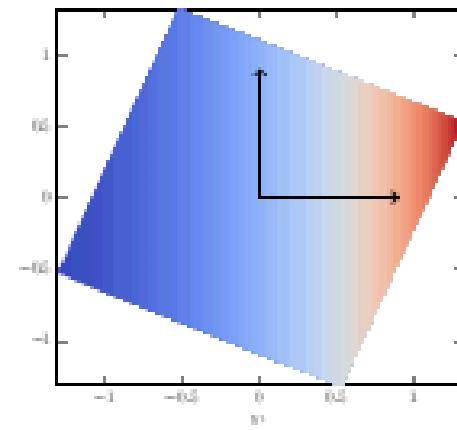
Idea: combine KLE with Active Subspace (AS) information for further (and better) ***data-informed*** dimension reduction.

- **Active Subspace (AS)** = directions along which objective function has strongest variability.
- **Active subspace approach:** mismatch approximated by related function of fewer variables g :

$$m(\mathbf{z}) = \frac{1}{2}(\mathbf{d} - \mathbf{f}(\mathbf{z}))^T \boldsymbol{\Gamma}_{\text{obs}}^{-1} (\mathbf{d} - \mathbf{f}(\mathbf{z})) \approx g(\mathbf{W}_1^T \mathbf{z})$$

$\mathbf{W}_1^T \mathbf{z}$ = “active variables”
 \mathbf{W}_1^T = rotation of coords

Example*: $m(\mathbf{z}) = \exp(0.7z_1 + 0.3z_2)$



Dimension reduction via AS:

- Rotate coords s.t. directions of strongest variation are aligned with the rotated coords.
- Construct response surface using only most important rotated coords.

→ Bivariate function $m(\mathbf{z})$ is effectively ***univariate*** in rotated coordinate system

TI1

Tezaur, Irina, 6/1/2017

Active Subspaces (AS)

- KLE eigenvalue analysis suggests $d = O(1000)$ – **still large for MCMC!**

Idea: combine KLE with Active Subspace (AS) information for further (and better) ***data-informed*** dimension reduction.

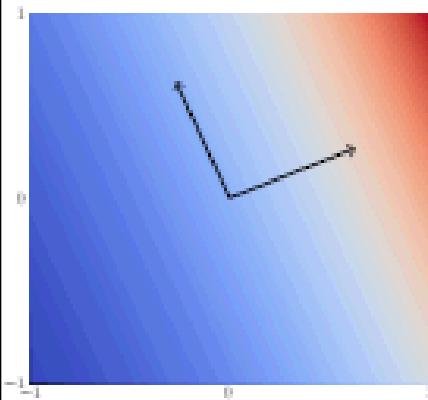
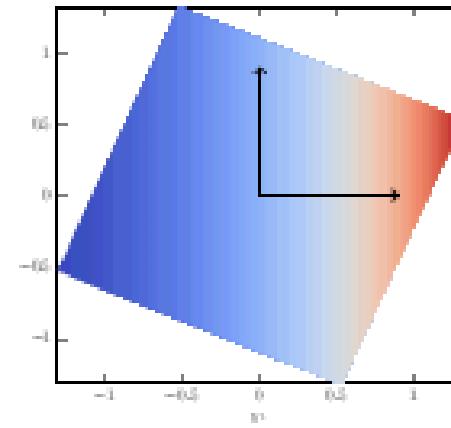
- **Active Subspace (AS)** = directions along which objective function has strongest variability.
- **Active subspace approach:** mismatch approximated by related function of fewer variables g :

$$m(\mathbf{z}) = \frac{1}{2}(\mathbf{d} - \mathbf{f}(\mathbf{z}))^T \boldsymbol{\Gamma}_{\text{obs}}^{-1} (\mathbf{d} - \mathbf{f}(\mathbf{z})) \approx g(\mathbf{W}_1^T \mathbf{z})$$

$\mathbf{W}_1^T \mathbf{z}$ = “active variables”
 \mathbf{W}_1^T = rotation of coords

- AS identified using **gradients of mismatch function** ∇m : $\int_{\mathbb{R}^d} \nabla m(\mathbf{z}) \nabla m(\mathbf{z})^T d\mathbf{z} = \mathbf{W} \Lambda \mathbf{W}^T$

Example*: $m(\mathbf{z}) = \exp(0.7z_1 + 0.3z_2)$



Dimension reduction via AS:

- Rotate coords s.t. directions of strongest variation are aligned with the rotated coords.
- Construct response surface using only most important rotated coords.

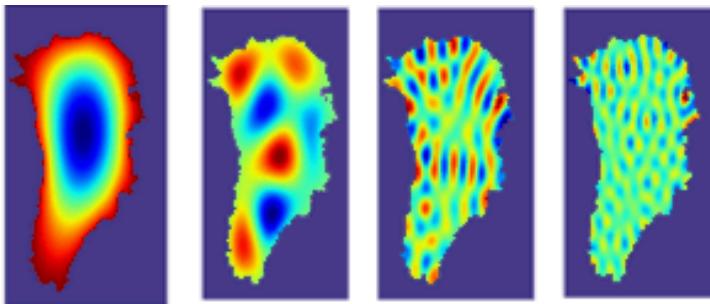
→ Bivariate function $m(\mathbf{z})$ is effectively ***univariate*** in rotated coordinate system

TI1

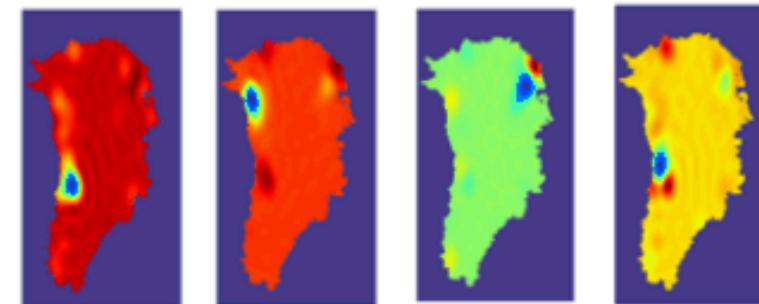
Tezaur, Irina, 6/1/2017

Greenland Bayesian Inference via KLE + AS

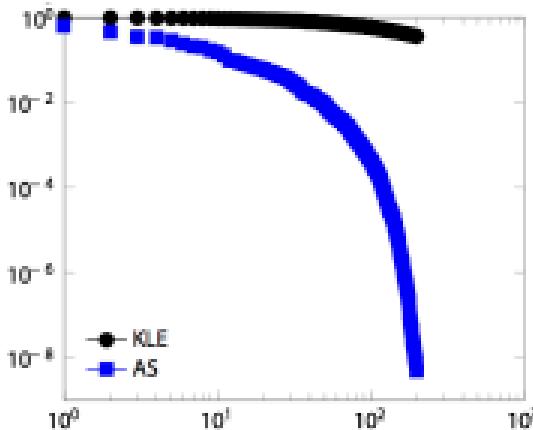
KLE modes



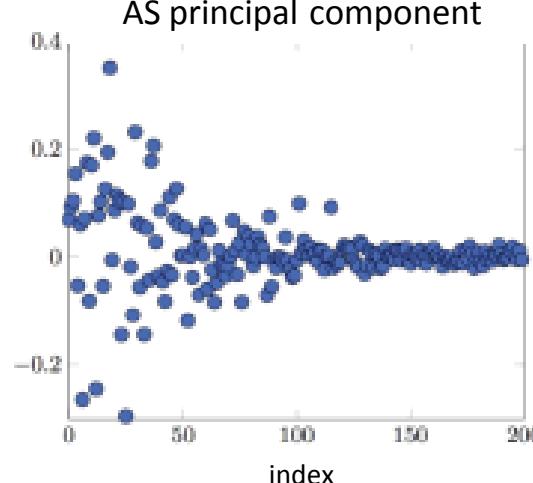
Data-informed (AS) directions ($d=73^*$)



KLE and AS amplitudes



AS principal component



Gradients of mismatch function obtained via ***adjoint solve*** in Albany/FELIX.

- **Above, left:** fewer modes are needed to build the basal friction parameter map when using KLE + AS methods than when using straight KLE.
- **Above, right:** relative clustering of large values towards smaller indices implies KLE coefficients corresponding to larger singular values contribute most to variability in $m(\mathbf{z})$.

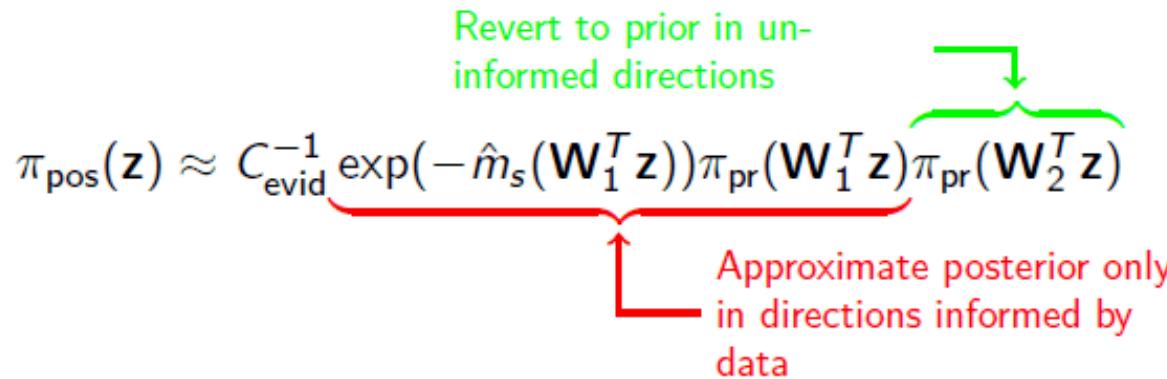
* Value of d was obtained via cross-validation.

Active Subspaces for Inference

$$\pi_{\text{pos}}(\mathbf{z}) \approx C_{\text{evid}}^{-1} \exp(-\hat{m}_s(\mathbf{W}_1^T \mathbf{z})) \pi_{\text{pr}}(\mathbf{W}_1^T \mathbf{z}) \pi_{\text{pr}}(\mathbf{W}_2^T \mathbf{z})$$

Revert to prior in un-informed directions

Approximate posterior only in directions informed by data



Various levels of approximation can be employed:

- Reduce dimension but no surrogate of misfit
 - Perform MCMC in active subspace to improve mixing
- Surrogate of misfit with rotation but no dimension reduction
 - Leverage increased sparsity induced by rotation
- Surrogate of misfit and dimension reduction
 - **Combine MCMC in active subspaces with surrogates that adaptively target regions of high probability**

Quadratic PCE over Active Variables

Idea: approximate misfit $m(\mathbf{z})$ using quadratic PCE for efficient computation of misfit Hessian.

$$m(\mathbf{z}) \approx \hat{m}(\mathbf{z}) = \text{quadratic PCE function}$$

- Approximate misfit over active variables using a quadratic function obtained via compressed sensing (using $M = 733$ samples and a PCE with 20,301 terms)*:

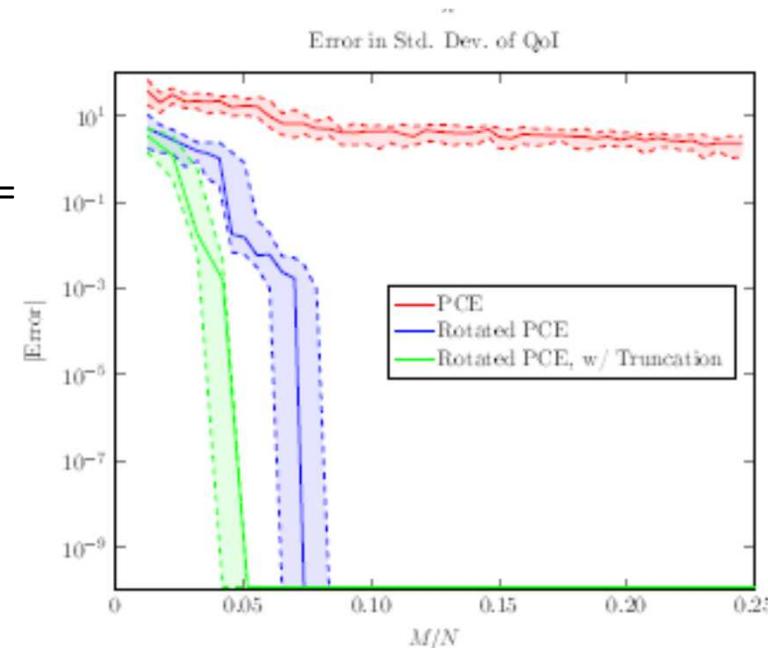
$$\frac{\|m(\mathbf{z}) - \hat{m}(\mathbf{z})\|_{l_p^2}}{\|m(\mathbf{z}) - \sum_{i=1}^M m(\mathbf{z}^{(i)})\|_{l_p^2}} \approx 0.981$$

- Approximate misfit with quadratic PCE in rotated $d = 200$ space:

$$\frac{\|m(\mathbf{z}) - \hat{m}(\mathbf{W}^T \mathbf{z})\|_{l_p^2}}{\|m(\mathbf{z}) - \sum_{i=1}^M m(\mathbf{z}^{(i)})\|_{l_p^2}} \approx 0.190$$

- Approximate misfit with **quadratic PCE** in **rotated and truncated** $d = 73$ space:

$$\frac{\|m(\mathbf{z}) - \hat{m}_{s=73}(\mathbf{W}_1^T \mathbf{z})\|_{l_p^2}}{\|m(\mathbf{z}) - \sum_{i=1}^M m(\mathbf{z}^{(i)})\|_{l_p^2}} \approx 0.136$$



$$\text{rank}(A) = 5, d = 15, z_i \sim N(1/2, 1/5)$$

* Ratios are improvements relative to using mean of data; want ratio close to 0.

Low Rank Laplace-Based Covariance*

$$\pi_{\text{pos}}(\mathbf{z} \mid \mathbf{y}^{\text{obs}}) = N(\mathbf{z}_{\text{MAP}}, \boldsymbol{\Gamma}_{\text{post}})$$

- **Linearize** parameter-to-observable map around MAP point:

$$\mathbf{y}^{\text{obs}} = \mathbf{f}(\mathbf{z}) + \epsilon \approx \mathbf{f}(\mathbf{z}_{\text{MAP}}) + \mathbf{F}(\mathbf{z} - \mathbf{z}_{\text{MAP}}) + \epsilon$$

where \mathbf{F} = Frechet derivative of \mathbf{f} .

- **Covariance** of Gaussian **posterior** given by:

$$\boldsymbol{\Gamma}_{\text{post}} = (\mathbf{H}_{PCE} + \boldsymbol{\Gamma}_{\text{prior}}^{-1})^{-1}$$

Low Rank Laplace-Based Covariance*

$$\pi_{\text{pos}}(\mathbf{z} \mid \mathbf{y}^{\text{obs}}) = N(\mathbf{z}_{\text{MAP}}, \boldsymbol{\Gamma}_{\text{post}})$$

$\boldsymbol{\Gamma}_{\text{post}}$ is dense!
⇒ **prohibitively expensive**
to store & construct.

- **Linearize** parameter-to-observable map around MAP point:

$$\mathbf{y}^{\text{obs}} = \mathbf{f}(\mathbf{z}) + \epsilon \approx \mathbf{f}(\mathbf{z}_{\text{MAP}}) + \mathbf{F}(\mathbf{z} - \mathbf{z}_{\text{MAP}}) + \epsilon$$

where \mathbf{F} = Frechet derivative of \mathbf{f} .

- **Covariance** of Gaussian **posterior** given by:

$$\boldsymbol{\Gamma}_{\text{post}} = (\mathbf{H}_{\text{PCE}} + \boldsymbol{\Gamma}_{\text{prior}}^{-1})^{-1}$$

Low Rank Laplace-Based Covariance*

$$\pi_{\text{pos}}(\mathbf{z} \mid \mathbf{y}^{\text{obs}}) = N(\mathbf{z}_{\text{MAP}}, \boldsymbol{\Gamma}_{\text{post}})$$

$\boldsymbol{\Gamma}_{\text{post}}$ is dense!
 \Rightarrow **prohibitively expensive**
 to store & construct.

- **Linearize** parameter-to-observable map around MAP point:

$$\mathbf{y}^{\text{obs}} = \mathbf{f}(\mathbf{z}) + \epsilon \approx \mathbf{f}(\mathbf{z}_{\text{MAP}}) + \mathbf{F}(\mathbf{z} - \mathbf{z}_{\text{MAP}}) + \epsilon$$

where \mathbf{F} = Frechet derivative of \mathbf{f} .

- **Covariance** of Gaussian **posterior** given by:

$$\boldsymbol{\Gamma}_{\text{post}} = (\mathbf{H}_{\text{PCE}} + \boldsymbol{\Gamma}_{\text{prior}}^{-1})^{-1}$$

- **Low-rank approximation** of $\boldsymbol{\Gamma}_{\text{post}}$ obtained using Sherman-Morrison-Woodbury formula:

$$\boldsymbol{\Gamma}_{\text{post}} \approx \boldsymbol{\Gamma}_{\text{prior}} - \tilde{\mathbf{V}}_r \mathbf{D}_r \tilde{\mathbf{V}}_r^\diamond$$

- $\tilde{\mathbf{H}}_{\text{misfit}}$ and its EV decomposition can be computed efficiently using a parallel **matrix-free Lanczos method**.
- **Rank of $\boldsymbol{\Gamma}_{\text{post}}$** = # of directions that informed directions of posterior.

Symbols*:

$\mathbf{V}_r, \mathbf{D}_r$: eigenvecs, eigenvals of $\tilde{\mathbf{H}}_{\text{misfit}}$

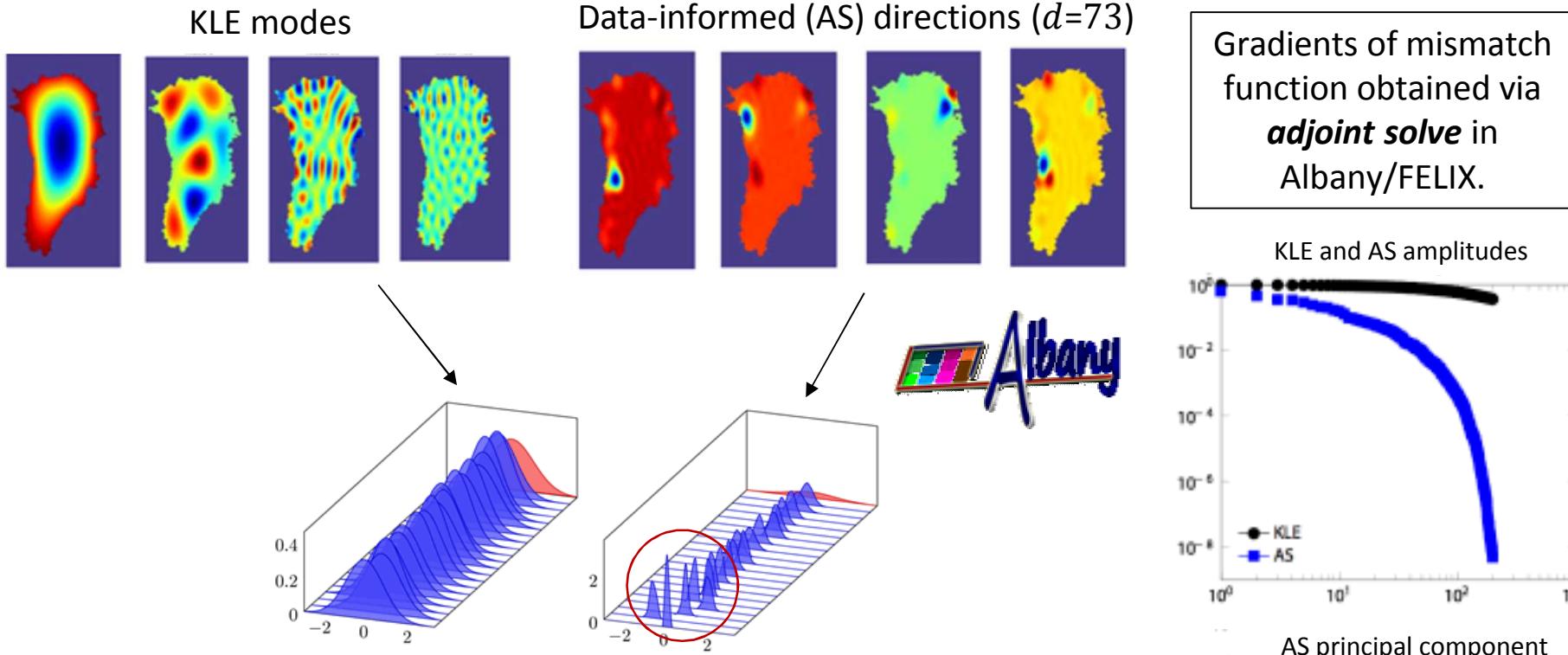
$\tilde{\mathbf{H}}_{\text{misfit}}$ = prior-preconditioned Hessian of data misfit = $\boldsymbol{\Gamma}_{\text{prior}}^{1/2} \mathbf{H}_{\text{misfit}} \boldsymbol{\Gamma}_{\text{prior}}^{1/2}$

$\mathbf{H}_{\text{misfit}}$ = Gauss-Newton portion of Hessian misfit = $\mathbf{F}^\top \boldsymbol{\Gamma}_{\text{obs}}^{-1} \mathbf{F}$

$\tilde{\mathbf{V}}_r = \boldsymbol{\Gamma}_{\text{prior}}^{1/2} \mathbf{V}_r, \tilde{\mathbf{V}}_r^\diamond = \text{adjoint of } \tilde{\mathbf{V}}_r$

$\boldsymbol{\Gamma}_{\text{prior}}^{-1} = \mathbf{M}^{-1} \mathbf{K}, \mathbf{K}$ = Laplace stiffness.

Greenland Bayesian Inference via KLE + AS



- **Above:** marginal distributions of Gaussian posterior computed using KLE vs. KLE+AS.
 - Data-informed eigenvectors have smaller variance and are most shifted w.r.t. prior distribution.

Outline

1. Background.
 - PISCEES project for land-ice modeling.
 - Land-ice model.
2. UQ problem definition.
3. Inversion/calibration.
 - Deterministic inversion.
 - Bayesian inference.
4. **Summary & future work.**

Summary & future work

This talk described our ***workflow*** for quantifying uncertainties in expected aggregate ice sheet mass change and its ***demonstration*** on some Greenland ice sheet problems, focusing on ***inversion***.

Summary & future work

This talk described our ***workflow*** for quantifying uncertainties in expected aggregate ice sheet mass change and its ***demonstration*** on some Greenland ice sheet problems, focusing on ***inversion***.

- **Future work:**
 - Execute ***full UQ workflow*** (inversion + forward propagation) on realistic Greenland/Antarctic ice sheet problems.
 - ***Squared Laplace covariance operator approach**** (no KLE) → less expensive than building PCE, allows higher dimensional parameter spaces.
 - Can use ***cheaper physical models*** (e.g., the shallow ice model or SIA) or ***low resolution solves*** to reduce the cost of building the emulator.
 - Incorporate effects of ***other sources of uncertainty***, e.g., surface height, surface mass balance.

Summary & future work

This talk described our ***workflow*** for quantifying uncertainties in expected aggregate ice sheet mass change and its ***demonstration*** on some Greenland ice sheet problems, focusing on ***inversion***.

- **Future work:**

We are well-positioned to
do these efforts in parallel!

- Execute ***full UQ workflow*** (inversion + forward propagation) on realistic Greenland/Antarctic ice sheet problems.
- ***Squared Laplace covariance operator approach**** (no KLE) → less expensive than building PCE, allows higher dimensional parameter spaces.
- Can use ***cheaper physical models*** (e.g., the shallow ice model or SIA) or ***low resolution solves*** to reduce the cost of building the emulator.
- Incorporate effects of ***other sources of uncertainty***, e.g., surface height, surface mass balance.

Funding/acknowledgements

Support for this work was provided through Scientific Discovery through Advanced Computing (**SciDAC**) projects funded by the U.S. Department of Energy, Office of Science (**OSCR**), Advanced Scientific Computing Research and Biological and Environmental Research (**BER**) → **PISCEES SciDAC Application Partnership**.

PISCEES team members: K. Evans, M. Gunzburger, M. Hoffman, C. Jackson, P. Jones, W. Lipscomb, M. Perego, S. Price, A. Salinger, I. Tezaur, R. Tuminaro, P. Worley.

Trilinos/DAKOTA collaborators: M. Eldred, J. Jakeman, E. Phipps, L. Swiler.

Computing resources: NERSC, OLCF.

References

- [1] M.A. Heroux *et al.* "An overview of the Trilinos project." *ACM Trans. Math. Softw.* **31**(3) (2005).
- [2] A. Salinger, *et al.* "Albany: Using Agile Components to Develop a Flexible, Generic Multiphysics Analysis Code", *Int. J. Multiscale Comput. Engng.* 14(4) (2016) 415-438.
- [3] **I. Tezaur**, M. Perego, A. Salinger, R. Tuminaro, S. Price. "Albany/FELIX: A Parallel, Scalable and Robust Finite Element Higher-Order Stokes Ice Sheet Solver Built for Advanced Analysis", *Geosci. Model Develop.* 8 (2015) 1-24.
- [4] M. Perego, S. Price, G. Stadler. "Optimal initial conditions for coupling ice sheet models to Earth system models". *J. Geophys. Res. Earth Surf.* 119 (2014) 1894-1917.
- [5] P. Constantine, E. Dow, Q. Wang. "Active subspace methods in theory and practice: applications to Kriging surfaces". *SIAM J. Sci. Comput.* 36(4) (2014) A1500-A1524.
- [6] P. Constantine, C. Kent, T. Bui-Thanh. "Accelerating Markov Chain Monte Carlo with Active Subspaces". *SIAM J. Sci. Comput.* 38 (5) (2016) A2779-A2805.
- [7] T. Bui-Thanh, O. Ghattas. J. Martin. G. Stadler. "A computational framework for infinite-dimensional Bayesian inverse problems part I: the linearized case, with application to global seismic inversion". *SIAM J. Sci. Comput.* 35(6) (2013) A2494-2523.
- [8] T. Isaac, N. Petra, G. Stadler, O. Ghattas. "Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet". *J. Comput. Phys.* 296 (2015) 348-368.
- [9] J. Jakeman, M. Eldred, K. Sargsyan. "Enhancing l1-minimization estimates of polynomial chaos expansions using basis selection", *J. Comp. Phys.* 289 (2015) 18-34.
- [10] N. Petra, J. Martin, G. Stadler, O. Ghattas. "A computational framework for infinite dimensional Bayesian inverse problems. Part II: stochastic Newton with application to ice sheet flow inverse problems". *SIAM J. Sci. Comput.* 36 (4) (2014) A1525-1555.
- [11] J. Jakeman, **I. Tezaur**, M. Perego, S. Price. "Probabalistic Projections of Sea-Level Change from the Greenland Ice Sheet", in preparation.

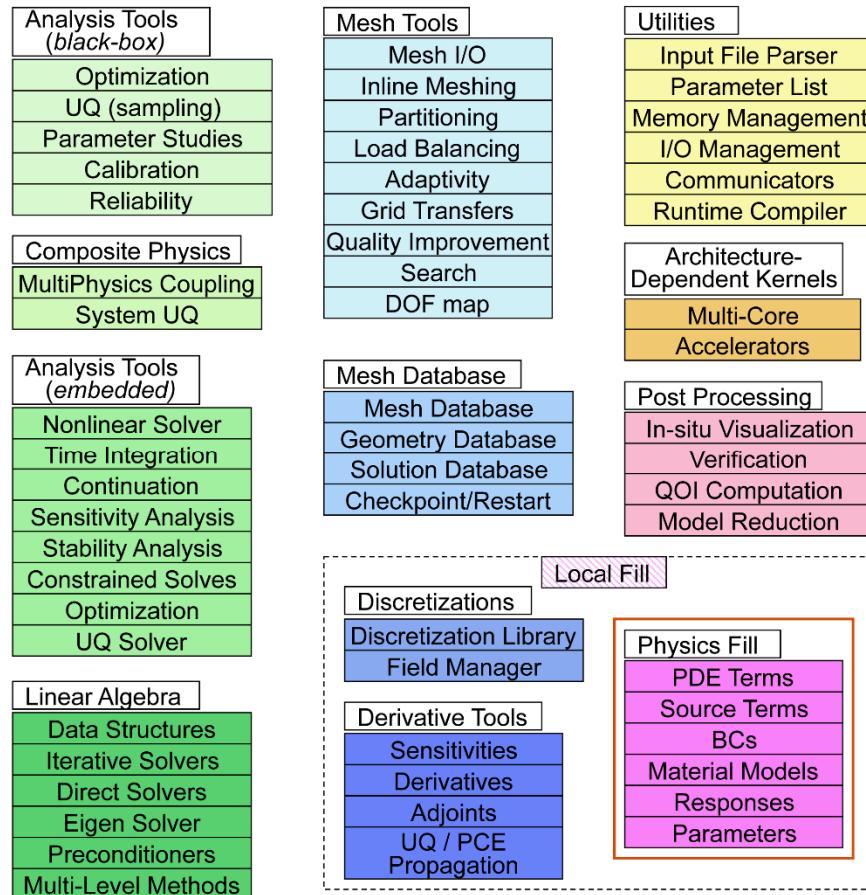
Multiphysics Code

The *Albany/FELIX land-ice solver* is implemented within the *Albany multi-physics code*.

Albany = Sandia open-source* parallel, C++, multi-physics finite element code.

- **Component-based** design for rapid development of new physics & capabilities.
- Extensive use of libraries from the open-source **Trilinos** project:
 - Automatic differentiation.
 - Discretizations/meshes, mesh adaptivity.
 - Solvers, time-integration schemes.
 - Performance-portable kernels.
- **Advanced analysis** capabilities:
 - Parameter estimation.
 - Uncertainty quantification (DAKOTA).
 - Optimization (DAKOTA, ROL).
 - Sensitivity analysis.

40+ packages; 120+ libraries



* <https://github.com/gahansen/Albany>.

Computing the Active Subspace

Gradients of mismatch $\nabla_{\beta} m$ can be used to identify subspace that controls variation in likelihood function (active subspace)

- Mismatch **approximated** by related function of fewer variables g :

$$m(\mathbf{z}) = \frac{1}{2}(\mathbf{d} - \mathbf{f}(\mathbf{z}))^T \boldsymbol{\Gamma}_{\text{obs}}^{-1}(\mathbf{d} - \mathbf{f}(\mathbf{z})) \approx g(\underbrace{\mathbf{W}_1^T \mathbf{z}}_{\text{Linear transformation (rotation) of coords}})$$

$\mathbf{W}_1^T \mathbf{z}$ = “active variables”

- Active subspace computed using $\int_{\mathbb{R}^d} \nabla m(z) \nabla m(z)^T d\rho(z) = \mathbf{W} \Lambda \mathbf{W}^T$
 - Sample gradient using MC: $[\nabla m(z^{(1)}), \dots, \nabla m(z^{(M)})]$.
 - Form Gauss-Newton approx. of Hessian averaged over prior:

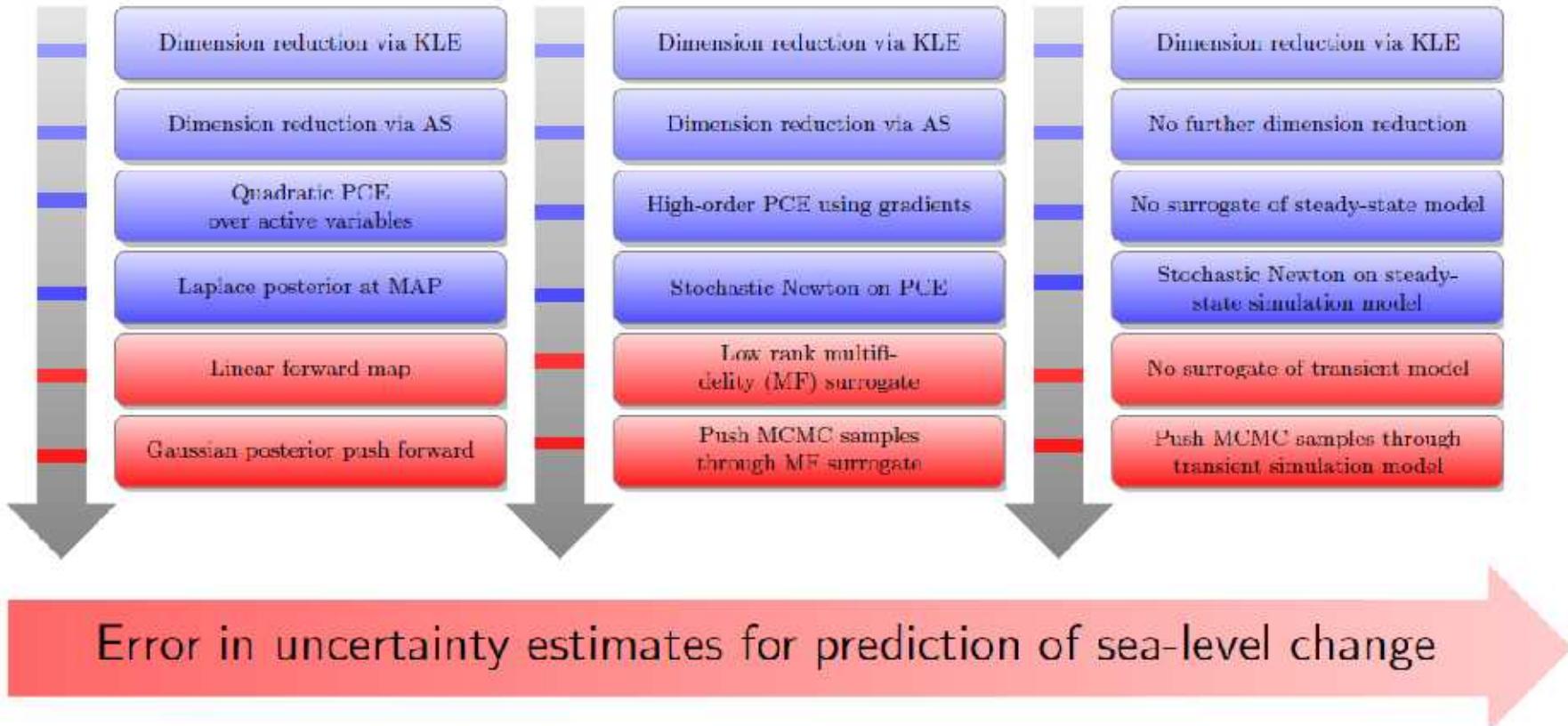
$$\mathbf{C} = \frac{1}{M} \sum_{i=1}^M \nabla m(z^{(i)}) \nabla m(z^{(i)})^T$$

- Compute eigenvalue decomposition: $\mathbf{C} = \mathbf{W} \Lambda \mathbf{W}^T$
 \rightarrow eigenvectors \mathbf{W} define rotation of \mathbb{R}^M .
- Partition \mathbf{z} into **active** and **inactive** variables:

$$\mathbf{z} = \mathbf{W}_1^T \mathbf{z} + \mathbf{W}_2^T \mathbf{z}, \quad \mathbf{W} = [\mathbf{W}_1 \quad \mathbf{W}_2]$$

Perturbing $m(\mathbf{z})$ along columns of \mathbf{W}_1 changes $m(\mathbf{z})$ more.

Full UQ Workflow: Varying Levels of Approx.



As with Bayesian inference:

- **Future work:** compare errors as accuracy of approximation is increased to gain insight into viability of lower-dimensional approximations.
- Lessons can be learned by avoiding use of highest fidelity model.