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Ionomer Melts: Polymers + Ions
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Coulombic forces favor aggregates
polymer entropy limits size

(no solvent)

+

- +

++

+

+

-

-

--
-

-

-

+

++ +

+ nm-scale ionic aggregates



Effects of Ionic Aggregates
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• improved toughness
• interesting rheology
• reduced crystallinity

• typically low ionic conductivity DuPont™ Surlyn®

To control and improve ion conductivity

• Where are the ions?

• How do the ions move? 

• What can we do to make ions move faster?



How do we improve conductivity?
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design percolated morphologies?

ceramics can be superionic conductors

Richards, W. D. et al. Nature Communications 7, 1–8 (2016).

Li+ in Na10SnP2S12

0.4 mS/cm at room temperature

melt:  ionic aggregates can help ions move collectively

Lin, K.-J. & Maranas, J. K. Phys Rev E 88, 052602 (2013).



Precise poly(ethylene-co-acrylic) acid
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PE backbone with precisely spaced carboxylic acid functional groups

p9AA –43%Li

Precise spacer 
length (p9, p15, 
p21)

Counterion 
type (Li+, Na+, 
Cs+, Zn2+)

Neutralization 
level

Wagener group, University of Florida

Total scattering;
predominantly 
counterions in 
ionomer peak

M. E. Seitz et al., J. Am. Chem. Soc. 2010, 132, 8165-8174. 

O OH p15AAO OH

n
13 (13 mol% AA)

p21AA 

(22 mol% AA)

p9AA

n
14 (9.5 mol% AA)

O OH



Why Precise Polymers?
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• easier to understand mechanisms
• comparison between experiment and simulation
• might give a handle to building hierarchical order

p21AA forms acid layers in crystals

Trigg, E. B., Stevens, M. J., & Winey, K. I. 
(2017),  JACS, 139, 3747–3755

Trigg et al, in preparation

p21SA: Highly ordered, tunable

H+



Coarse-grained model
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• conductivity decreases with decreasing ion concentration
• lowest for non-percolated aggregate morphology

Hall et al, Macromolecules, 2012; Ting et al., Macromolecules, 2015
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Rest of the talk
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• dynamics in acid-containing precise polymers

• QENS vs MD

• analysis of MD

• dynamics in ion-containing precise polymers

• preliminary results



Precise Acid Copolymers
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acid groups hydrogen bond to form aggregates

O OH



Precise Acid Copolymers Morphology
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p9AA and p21AA



Quasi-Elastic Neutron Scattering
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incoherent, inelastic:  sensitive to self-motion of hydrogens

Gs(r,t): given an atom was at r=0 at time 
t=0, the probability that the atom is at r 
at time t H

r = 2π/Q

from MD:

from QENS:



Force Field
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OPLS-AA: PE crystallizes at 150° C!  (Tm ≈ 130 °C)

L-OPLS: newly parameterized for long hydrocarbons

Siu, S. W. I., Pluhackova, K. & Böckmann, R. A. J 
Chem Theory Comput 8, 1459–1470 (2012)

• correct gel-to-liquid transition temp in pentadecane
• improved viscosity, diffusion coefficients

time (ns)

QENS vs MD for PE



QENS vs MD
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excellent agreement between QENS and MD

amorphous halo:  Q ≈ 1.35 Å-1

ionomer peak: Q ≈ 0.3 – 0.6 Å-1
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QENS vs MD
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excellent agreement between QENS and MD

amorphous halo:  Q ≈ 1.35 Å-1

ionomer peak: Q ≈ 0.3 – 0.6 Å-1
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Fit S(Q,t) to Two KWW Functions
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 One stretched exponential relaxation cannot fit data, two needed

 Extract time scales and stretching parameters 



Dynamics from KWW
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Dynamics from KWW
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Slower: structural dynamics of 
the chain

Highly composition sensitive

Length scale dependent

∼ Q-2/

Fast: local dynamics that are 
insensitive to composition 
(vibrations, librations, etc.)
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Acid content slows dynamics
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Local Dynamics
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short times:  H1 motion much slower than middle of chain
long times:   aggregates rearrange, all H motions similar

Middleton et al, Macromolecules (2016)



Acid aggregates rearrange
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t = 0



Acid aggregates rearrange

23

p21AA: one chain

t = 0
t = 0.1 ns

t = 1 ns

Middleton et al, Macromolecules 49, 9176 (2016)
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Rest of the talk
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• dynamics in acid-containing precise polymers

• QENS vs MD

• analysis of MD

• dynamics in ion-containing precise polymers

• preliminary results



Li ionomer morphology
p21-37%Li p15-38%Li p9-20%Li

p21-100%Li p15-100%Li p9-100%Li



Closer look at aggregates
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Two mechanisms of aggregate formation:
1. Counterion-oxygen association  dominant at moderate to high neutralization
2. Hydrogen-bonded networks  dominant at low neutralization

p9AA-10%Li p9AA-43%Li p9AA-100%Li



Comparison to X-ray Scattering
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Buitrago, C. F. et al. Macromolecules 48, 1210–1220 (2015).



QENS vs MD
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reasonable agreement



S(q,t) shows 3 relaxation processes
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fit to 3 KWW functions



KWW relaxation times
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• fast motion: mostly independent of %Li and q, local motion
• medium motion: small q dependence, does depend on system

• H relaxation while clusters still pinned
• slow motion: structural relaxation of chains

• beginning of cluster rearrangement?



Mean-square displacements

31

Li+ motion very slow!

Li+ needs to go 4 Å to trade
with neighbor

T = 150 ℃



Higher temperature: T = 600K
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for t < 100 ns, Li+ moves faster at lower concentration

Li+ MSD

p9-100%Li

p21-38%Li



Chain dynamics
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p9-100%Li p9-20%Li

frames are every 0.5 ns, about 50 ns total



Cluster dynamics
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p9-100%Li p9-20%Li

frames are every 0.5 ns, about 50 ns total



Li vs H motion
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Li+ moving 
faster than 
chains at 
longer times



Dynamics look similar to CG model
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Li+ MSD crosses H MSD first in most percolated system
p9-100%Li:   at about 47 ns
p15-100%Li: at about 70 ns
p21-100%Li: > 100 ns



Conclusions
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• atomistic MD agrees with QENS at short times

• acid copolymer dynamics slowed by aggregates

• heterogeneous chain dynamics at short times

• aggregates rearrange around 1-2 ns

• Li ionomer dynamics further slowed

• H dynamics show 3 relaxations

• percolated morphology may eventually have 

fastest ion motion

Middleton et al, Macromolecules (2016)
Paren et al, in preparation (2017)



• Ionenes, pendants similar at short times

• Pendants slower but qualitatively similar at long times

Mean Squared Displacements
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Stretching parameters

39



Morphology at higher temperature
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• Ionenes have faster diffusion than pendants

• Percolated systems have faster diffusion

Counterion Diffusion Constants

41
Hall et al., Macromolecules (2012)
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Ion motion is correlated
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from non-equilibrium simulation in field:

from equilibrium Einstein relation
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Ting et al., Macromolecules, 2015

f factor < 1
Haven ratio HR > 1

ionic aggregates slow conduction



Test of L-OPLS Force Field
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Morhenn, H., Busch, S. & Unruh, T. J Phys-
Condens Mat 24, 375108 (2012).

hexadecane, 90 °C PE, 204 °C 

Arbe, A. & Colmenero, J. Phys Rev E 80,
(2009).
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ionenes N = 3 pendants N = 9

decay of counterion-counterion
scattering peak

0.66 <  < 0.96



Ion Trajectories: CG MD
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periodic pendants Nbb=9

ions move by cluster 
rearrangment/collision

2 separate clusters
Follow one counterion

Clusters have collided

Ion has moved to other cluster.
NEVER separated from a cluster.

Clusters reform with ion moved

Hall et al., Macromolecules (2012)



Atomistic MD Simulations
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• Variations in:

• cation type: M+ = Li+, Na+, Cs+, Zn2+

• neutralization level = % COO-M+ vs COOH

• spacing length: p9, p15, p21

• All atom OPLS-AA force-field

• 80-200 polymers, n = 4 repeat units (4 acid groups)

• ~ 64 Å box, total of ~25,000 atoms

• NVT ensemble, 150°C  well above Tg

• 30 ns (400 ns in one case)

• LAMMPS



Quasi-Elastic Neutron Scattering
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incoherent, inelastic:  sensitive to self-motion of hydrogens
scattering intensity proportional to I(Q,)

NIST
disk chopper spectrometer
T = 150 °C



Hydrogen MSDs
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Ionomer Melts as Single-Ion Conductors
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why single-ion?
• high transference number
• no concentration gradients

Wang, J.-H. H. et al. Macromolecules 48, 7273–7285 (2015).
Liang, S. et al. Macromolecules 47, 4428–4437 (2014).
Rojas, A. A. et al. Macromolecules 48, 6589–6595 (2015).
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Early-time dynamics in p21-x%Li
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Moving ions in polymers
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most studied polymer electrolyte: PEO + Li salts

Li solvation sites in various polyesters:

Webb, M. A., et al. (2015). ACS Central Science, 1(4), 198–205. 

Maitra, A., & Heuer, A. (2007) Physical Review Letters, 98, 227802. 

inter- and intra-chain motion


