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Abstract:

Freight transportation represents about 9.5% of GDP in the U.S., it is responsible for about 8% of
greenhouse gas emissions, and supports the import and export of about 3.6 trillion in international trade.
It is therefore important that the national freight transportation system is designed and operated
efficiently. Hence, this paper develops a mathematical model to estimate international and domestic
freight flows across ocean, rail and truck modes, which can be used to study the impacts of changes in
our infrastructure, as well as the imposition of new user fees and changes in operating policies. The
model integrates a user equilibrium-based logit argument for path selection with a system-optimal
argument for rail network operations. This leads to the development of a unique solution procedure
that is demonstrated in a large-scale analysis focused on all intercity freight and U.S export/import
containerized freight. The model results are compared with the reported flow volumes. The model is
applied to two case studies: (1) a disruption of the seaports of Los Angeles and Long Beach (LA and LB)
similar to the impacts that would be felt in an earthquake; and (2) implementation of new user fees at
the California ports.

Keywords: Multi-model Freight Transportation, Bi-level model, Port disruption, Mode selection, Rail
Transportation, Logistics costs

Introduction

In 2010, on average, each person in the U.S. is associated with about 55.2 tons of goods that must be
transported. Once distances are considered, the per-person derived demand for freight transportation is
about 17,957.4 ton-miles (Bureau of Transportation Statistics, 2013). This clearly results in substantial
freight transportation costs, which are in the order of 9.5% of GDP. It is also worth noting that
congestion costs to the trucking industry were about $63 billion in 2015. Beyond the financial costs, the
total transportation system was responsible for 27% of greenhouse gas emissions, among them 28.5%
was from freight transportation in 2015(Bureau of Transportation Statistic, 2015). More importantly, the
growth rate in emissions from freight sources has been more than six times as fast as that for passenger
travel since 1990. Finally, substantial portions of our infrastructure are in earthquake and hurricane-
prone regions. For instance, U.S. Geological Survey (USGS ) reports that there is more than a 50% chance
of a magnitude 7.0 earthquake in the San Francisco bay region within the next 30 years (Aagaard, et al,
2016).

The import and export of containerized and bulk commodity domestic freight is a vital part of the U.S
economy. Across the nearly $4 trillion per year of trade since 2014, waterborne transportation carried
about 44.2%, as measured by value and 71.6% by weight. Further, the ports of LA and LB together
handled about 40-44% of the total TEUs imported and exported and this dominance has persisted for
over 20 years though the expansion of the Panama Canal in 2016 provided an improved alternative for
shipments from Asia destined for the east coast. Since international trade is expected to grow at about
3.4% per year through 2040 (Bureau of Transportation Statistics, 2015), the volumes on already
congested freight corridors inside the U.S. will increase. For example, several of the rail corridors in the



Southern California area are operating at Level of Service E, which is defined as very heavy train flow
with very limited capacity to accommodate maintenance and recovery from incidents (AAR, 2007).

It is also worth noting that a substantial portion of freight transportation is multimodal; that is, for a
single shipment, more than one mode of transport is used. For U.S. imports and exports, this is obvious
because exports are brought to the port via rail or truck and imports must depart the port area via
either rail or truck. Furthermore, domestic containerized rail is generally combined with a drayage
operation on both ends. Some bulk waterway traffic uses rail for some portion of the movement as well.
The Federal Highway Administration (2016) projects that the value of multimodal transportation is
forecasted to grow at about 2.4% per annum until 2045.

This paper develops a multimodal model of freight transportation where the goal of the shippers is to
minimize total logistics costs as given by a logit model. This leads to an equilibrium based
representation of traffic flows across the networks. We explicitly represent containerized ocean traffic
to and from the continental U.S., U.S. rail traffic (containerized and bulk), and commercial truck traffic.
Our research extends the model described in Jones et al (2011). There are two key advancements in this
paper. First, we integrate a system optimal representation for the flow of rail traffic across the rail
network. Since Jones et al (2011) focused on user equilibrium as the basis of all flows in the network,
they developed an algorithm for user equilibrium that allowed capacity constraints on links. In contrast,
our integration of a system optimal routing policy in the rail network creates a bi-level modeling
structure. Second, we explicitly represent all traffic in the rail network. Jones et al (2011) focused on
containerized import and export traffic only, and assumed that the costs associated with rail traffic by
link were static. Thus, a single rail path between each traffic analysis zone and port was sufficient. In
contrast, we represent all rail traffic and therefore the model explicitly considers congestion in the
identification of the system optimal flow pattern in the rail network.

The paper is organized as follows. First, the relevant literature is reviewed. Second, the model
formulation and the solution procedure are given. The calibration of the model is then presented. Model
flows and costs based on system optimal and user equilibrium assumptions for the operating principle in
the rail network are compared. Fourth, two applications of the model are illustrated; the closure of the
ports of LA and LB, and the implementation of port access fees at California ports. Finally, opportunities
for future research are discussed.

Literature Review

We build on a rich literature of international, national and regional multimodal freight flow models.
These models address strategic questions and include either the entire or a significant part of a national
freight transportation system. These models can be largely classified into two groups (Crainic and Gilbert,
1997): spatial price equilibrium models and network models. The core ideas behind these two classes of
models differ substantially. Spatial price equilibrium models endogenously match production locations
and consumption locations and explicitly include product pricing-based supply and demand relationships
(Labys et al.(1997); Nagurney et al. (2002)). Given their focus on prices, they use a more “high level”
representations of the physical networks.



The emphasis of network models is generally opposite to those of spatial price equilibrium models.
Rather than focus on pricing, they focus on a more complete representation of the network facilities and
the assignment of goods to those facilities. Unlike spatial price equilibrium models, the origin and
destination (O-D) table is usually exogenous in network models. There isn’t a separate identifiable
representation for shippers or individual carriers (Guelat et al. (1990); Jourquin and Limbourg (2006);
Fan et al. (2010); Jones et al. (2011)). In some network models, there are distinct shippers and carriers
but in those models each carrier has their own network and that carrier may or may not share the same
facilities with others (Harker and Friesz (1985); Friesz et al. (1986); Joaquin et al. (2003); Agrawal and
Ziliaskopoulos (2006)). Also, where individual shippers are explicitly represented, they make decisions
based on the schedule, price, and service quality (percentage of product loses, variance of travel time,
etc.) provided by carriers (Joaquin et al. (2003)). Where carriers are explicitly represented, they
transport goods so as to maximize their own benefit (Agrawal and Ziliaskopoulos (2006)).

The representation of the mechanisms by which freight moves from one mode to another varies
substantially across network models. Sometimes (Guelat et al. (1990); Crainic et al. (1990)), transfers are
represented implicitly by a pair of arcs, entering and leaving the transfer node, where mode transfer are
possible. Such representation also permits one to restrict certain commodities to subsets of modes. In
some other models (Jones et al. (2011); Ham et al. (2005)), an explicit logit model is used for mode
selection at specific facilities (ports, transfer location) to handle transfers.

The model described in this paper is a network model, where shippers and carriers are not distinct
actors in the decisions made. Table.1 summarizes the most relevant network focused models. Origins
and destinations correspond to relatively large geographical areas, which aggregate all the individual
shippers for the same product. The O-D table for each commodity is assumed to be determined from
other sources. We assume the path and mode selection for each shipment is performed so as to
minimize the generalized cost of the transportation for that shipment. This assumption leads to an
equilibrium assignment across a “high level” network. The logit model is adopted to handle mode
selection and transfer, which is similar to Jones et al. (2011) and Ham et al. (2005). However, this
research also includes a relatively detailed representation of the rail network including prohibitions of
specific commodities on individual facilities. The rail network is modeled separately, in contrast to most
of literature mentioned above, integrates the rail and road network together. Hence, this paper
integrates a user equilibrium-based logit argument for path selection (for shipments) with a system-
optimal argument for rail network operations. This leads to a bi-level modeling structure that
necessitates the use of a unique solution procedure. The formulation and solution procedure are
demonstrated in a large-scale analysis focused on all intercity domestic freight and U.S export/import
containerized freight.

Table.1. lllustrative Network Flow Models

Multi-product assignment model formulations
This section develops a mathematical model that characterizes the equilibrium traffic assignment in the
U.S. for containerized imports and exports, as well as for intercity freight transportation (i.e. full



truckload and rail carload by commodity). We assume that a single shipment of non-bulk freight (full
trailer/container) can be transported either by truck or by rail inside the U.S. but not both. In contrast,
bulk freight (grain, coal, etc.) is assumed to always travel by rail inside the U.S.

We assume that shippers select modes and paths to minimize total logistics costs as given by a logit
model. We assume that rail transport is operated by rail carriers as a single integrated rail network, and
that they assign traffic to this network consistent with a system optimal routing policy. The need to
include two different “levels” of link assignment (shipper and rail carrier) necessitates the use of a bi-
level structure. In the upper level model, shippers make mode and path choices in a “service network”.
When a shipment’s path includes a highway or ocean segment, a physical path for those movements is
identified in the upper level. If the path includes a rail movement, only the decision of the end points of
that movement is identified in the upper level. In the lower level, the physical path for that portion of
the movement is identified. The next subsection describes the upper level network and model
formulation. The second subsection gives the lower level network and model formulation.

Upper level model formulation and network

We formulate the traffic assignment in the upper level as a general form of the equilibrium flow
problem (with link capacity constraints) as follows:

Minimizes:
Yoy Calw) dw (1)

Subject to:
ZkeKmn fmkn = qmn vm,n (2)
Va = Zm,n ZkEKmn 51%(1fmkn Va (3)
0<v, <U, Va (4)
fk.=0  vmnk (5)

Where v, is the flow on link a; C,(v,) is the unit equilibrium cost on link @; gy is the volume needed
to be transported from origin m to destination n ; K,,,,, is the set of the paths that connect the origin
and the destination; £X,, is the flow on path k, k € K,,,,,; 8%k equals 1 if link a is part of path k from
origin m to destination n and 0 otherwise; U, is the capacity of link a.

The mode selection decision is assumed to be made by the shippers. There are many factors that
influence this decision, some of which are difficult to quantify. Hence, like other authors, we apply a
logit choice model using generalized costs. We use this structure to empirically match mode spit
between rail and truck at each port. This is the same process used in Jones et al (2011) and is equivalent
to Sheffi (1985). The logit model is given in Eq.(6).



qirf = 1+eei,-(ccgj—cfj—<pij) (6)
where g;;: total O-D flow from origin i to destination j; qirj: total rail flow from origin i to destination j;
Cl-r]-: cost of using rail from origin i to destination j; Cl-t]-: cost of using truck from origin i to destination
J; 6;j: unit conversion parameter (estimated from data); ¢;;: rail bias parameter (estimated from
data). @;;gives the relative distaste for rail on comparision to truck that is not the result of differences in
costs. 6;; gives the sensitivity of the choice between rail and truck to the difference in the cost
(including the “costs” that stem from the rail bias parameter) of using the two modes. Eq.(6) can be
manipulated so that (with i, j subscripts suppressed):

ct=c+im(-5) - g (7)
0 q-q"

Thus, Eq.(7) can be viewed as the equilibrium condition between the generalized total costs of the two
modes, (Ct, C"), as a function of the rail volume. In computing the total cost for import and export
flows, the ocean voyage and the port costs are the same for both domestic rail and truck modes. The
last two terms in Eq.(7) can be viewed as an “extra link” to use the domestic rail system. We adopt the
language for this extra link of rail access link (Sheffi, 1985). Note: both 8 and ¢ are used for calibrating
the rail access pseudo-cost function to match the observed mode split at port. Fig. 1. illustrates the rail

access link between port; and /™.
Fig. 1. lllustration of “rail access” link.

While 8 and ¢ can be specified for each O-D pair, the data to perform this calibration is limited, hence
we use a simplified network representation, as shown in Fig. 2. Hence, for all import flows from port;
using rail, a single rail access link is used. Similarly, for all containerized exports leaving the U.S. via port;,
a different rail access link is used. Since several ports have limitations that are directional (imports
separate from exports) on how much freight can be transferred from the port (or to the port) to the rail
network (from the rail network), we use these rail access links to impose these capacity constraints
where they exist.

Fig. 2. One “rail access” link to multiple destinations.

The network that is input to the upper level model is essentially a service network. The network
represents the mode and path characteristics, summarized by costs and capacities, available to the
shipper. Fig. 3 illustrates this service network with a single foreign country, a single port and two traffic
analysis zone (TAZs). It is easiest to understand how this network is constructed by focusing, in turn, on
each type of shipment included in the model. These types are (1) U.S. imports, (2) U.S. exports, (3)
containerized domestic, and (4) non-containerized shipments to be transported on the rail network.

For U.S. imports, each container originates in a foreign country and hence it enters the network via a
node that represents that particular foreign country. For illustration, in Fig. 3, this node is labeled
foreign node i. From that node, a transocean link is used to move the shipment to a U.S. port. In Fig. 3,
this port is labeled port;. The port of entry to the U.S. is decided by optimization, but for the purposes



of this example we assume it enters via port{. Each U.S. port is represented by two nodes because: (1)
the level of congestion (and therefore the resultant generalized cost on that link) at a port is a function
of the total traffic (inbound and outbound); and (2) there is a fixed port capacity that the optimized port
flows must not exceed. The volume to generalized cost function and the capacity constraint for a port is
associated with the directed link that connects the two port nodes (port;* and portf’ in Fig. 3) together.
Both import and export flows will enter the port through port{* and exit the port throuth portf’. From
the U.S. port, the shipment either travels by highway or rail to its final destination. If the transport is by
truck, because we do not represent congestion on the highway system, there is a single link (termed the
highway service link) that connects the port of import with the destination TAZ. That link is associated
with the generalized cost to move that shipment from the port to the destination using the lowest
generalized cost path by truck. If the shipment is moved to its destination TAZ by rail, there is a rail
access link and a rail transport link that connects the port to the destination TAZ. The rail transport link
representes the lowest generalized cost from the port to the TAZ via rail.

For export flows, a container enters the network via one of the TAZ nodes. For illustration, in Fig. 3 this

node is labeled TAZiout’ . The port of export is also a decision made by the optimization (same as for U.S.
imports). In Fig. 3, we assume it uses port;. The container can either travel by truck or rail to enter the
port via node portf. If the travel is by truck, the highway service link is used. If the travel is by rail, the
rail transport link is used via the rail access node, and the rail access link to the port. Once the container
reaches the port, it uses the same port link as U.S. imports. Finally, the transocean link is used to move
the shipment to its final destination, in this case, foreign country node i.

For containerized domestic traffic, the movements associated with a single container are illustrated

using TAZ; and TAZ;.Two direct links between TAZiout’ ‘and TAZ}" represent the truck and rail services

available. The optimization model selects which mode to use.

Fig. 3 also illustrates the links used for non-containerized traffic between TAZ; and TAZ;. Node

TAZL.OM' " is the origin of the shippment, through the rail transport link to reach the destination node
TAZ".

Fig. 3. Upper level network

It is important to notice three characteristics of the network described in Fig. 3. First, a port is
represented using two nodes and a directional link connecting them ( port{ and portf’). This is done to
aggregate imports and exports, to compute the port generalized cost, as well as enforce capacity
constraints.

Second, for domestic containerized traffic between TAZ; and TAZj, the cost of using rail is captured in
the rail service link, as shown in Fig. 3. The rail service link is essentially the combination of rail access
link and rail transport link. The rail transport link represents the cost of using rail, calculated from the
lower level.



Third, and as illustrated in Fig. 3, the TAZ; node is split into three separate nodes. The node TAZl-i” is
the sink for all traffic bound for TAZ;. The other two nodes, TAZ?*““ and TAZ{“*™ are the origin
nodes for shipments that originate at TAZ;. Two nodes are necessary for for two reasons. First, so that
the route choice can be tailored to each type of shipment (containerized and non-containerized).
Second, in the lower-level rail yards are explicitly included and only non-containerized shipments use
these yards. By mainitaining two separate nodes of origin by TAZ, containerized and noncontanierzed
flows can be treated seperately.

The cost function is given in Eq.(8) for each non-rail associated link, a, in the network.

C,(vy) = c2 (1 +a, (Z—‘;)ﬁa> , (8)

where v, and U, are, respectively, the traffic volume and the capacity of link a, cJ is the cost of using
link @ when the volume is zero, and a, and 3, are link specific parameters. We assume that a, = 0 for
transocean links and highway service links, which means the cost is independent of volume for
movements along the links that connect foreign and U.S. ports, or on links that represent the U.S.
highway system.

The cost functions for rail service links for domestic traffic, to support the allocation of containerized
traffic to the rail network when both the origin and destination are in the U.S is given in Eq.(9). We
assume that the probability that goods are transported either by rail or truck at each O-D pair in the U.S.
follows a logit distribution. Suppose that g, is the volume to be transported from origin m to
destination n. The cost of use a rail service link a, to transport volume v, for the O-D pair mn, takes the
following form.

Va

Ca(ve) = Chn + 5= 0 (—22-) = Prun, (©)

dmn—Va
Where CJ,,, is the cost to transport the volume from the origin to the destination by rail calculated from
the lower level model; 8,,,, is the unit conversion parameter; and ¢,,,,, is the rail bias parameter at origin
m and destination n. 6,,,, and @,,, must be estimated from available data. .

The cost functions for rail access links at ports are defined as follows. Suppose that Ul-im is the capacity
of port i to transfer imported containers to the rail network. The cost to use the rail access link a is
assumed to take the following form.

Calva) = 31n () - gim, (10)

im
Ui =vq

Similarly, suppose that U is the capacity of port i to transfer containers from the rail network to
export.

Calva) = 3 1n (%) - o, (11)

ex
Uf*-v,



Where 6; is the unit conversion parameter and (pfm, @{*are the rail bias parameters at the port. As in
Jones et al (2011), we use the capacities in Eq.(10) and Eq.(11) to calibrate the mode split between rail
and truck at the ports for imports and exports separately.

For non-containerized traffic, nearly all coal and over 68% of grain are transported by rail in highly
productive unit trains, which typically operate continuously and generally follow “direct shipping routes”
(Association of American Railroads, 2017). Thus, for these two commodities, as well as for containerized
traffic, we assume they bypass rail yards.

The cost to use the rail transport link a to transport a volume v, from origin m to destination n takes
the following form.

Ca(va) = Cinn (12)

Where CJ,,, is the cost to transport the volume from the origin to the destination by rail calculated from
the lower level model.

The cost function for each port in the U.S. in given in Eq.(13). We assume the unit cost function for port i
takes the form:

Ca(va) =c; + lgdi(va) (13)

where c; is the constant unit handling cost in the port; v, is the total volume through the port i; d; is the
delay at the port, which is a function of the volume; and f§ is the unit conversion parameter that
translates time delays into equivalent cost (Jones et al, 2011).

Lower Level Rail Traffic Assignment Optimization Problem

As mentioned previously, we assume that the rail network is opperated via a system optimal paradigm.
It is this assumption that leads to the use of a bi-level model structure. The remainder of this subsection
gives the model formulation for the rail network.

We assume that the cost function for these links takes the following form (Clarke, 1995).

B
Calva) = c2 (1 +¥ava + a0 (22) ), (14)
a
Where v, and U, are respectively the traffic volume and the capacity of the link; c? is the cost for using
the link when the volume is zero on the link; and «, , , and y,are the parameters associated with the
link.

For a given shipment from origin s to destination t, we let g, be the volume needed to be transported,
and K,; be the set of the rail paths that connect the origin and the destination. It might be useful to note
that each origin s is defined as either containerized or non-containerized; therefore knowing the origin
implies the type of goods to be moved. Also, recall that the paradigm in the rail network is to assign the
traffic based on the system optimal principle, i.e., assign the traffic volume to the paths fs’g, fork € K;.
Minimizes
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Ya Calvpiug (15)
Subject to
Treky fot = st Vst (16)
Vg = Zs,t ZkESt 6satkfs’§ Va (17)
fk=0 Vstk (18)

We employ Frank-Wolfe (Sheffi, 1985) to solve this formulation, using marginal travel costs rather than
the volume to delay curves directly. Also, we generate paths while solving the problem rather than pre-
compute them. When implementing the algorithm, if the origin is for non-containerized traffic, bypass
links are not included in the network when the shortest path is computed.

Solution Procedure
We propose a heuristic algorithm that iterates between the lower and upper level optimization
problems to develop the flow assignment.

Bi-level traffic assignment algorithm

1. Lower level Initialization. Assuming all link volumes are zero on all rail links, find the path that
minimizes the total cost for each port-destination, origin-port, containerized O-D and non-containerized
O-D by rail in the U.S. The cost will be the coefficient, C", for the rail links in Eq.(9) and Eq.(12). Let [ be
the number of iterations completed and L be the maximum number of iterations. Let [ = 1.

2. Solve the upper level model. Given the cost coefficient C”, identified from either step 1if L =1 or
step 4 if | > 1, solve the optimization problem given in Egs. (1) — (5) to create the user equilibrium
assignment for the upper level service network and to identify the O-D table for the lower level model.
We solve this model by using the Frank-Wolfe algorithm (Sheffi, 1985) but convert the sub-problem in
each step into a multi-commodity network flow problem with capacity constraints.

3.Test. If l > 1 and [ < L stop if the difference in link flows from iteration [ and [ — 1 are sufficiently
close. Otherwise, [ = [+ 1 and go to step 4.

4. Solve the rail optimization model. This step consists of the following two steps.

4.1 Solve the model given in Egs. (15) — (18) using the O-D table developed in Step 2. Again, we
use the Frank-Wolfe algorithm with marginal costs to identify a system optimal solution.

4.2. Based on the solution from step 4.1, update C". Following section describes how we
estimate for C". Go to step 2.

Computing C" (expected rail costs by O-D pair)
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As mentioned previously, flows in the lower level rail network give system optimal link volumes.
However, the upper level requires a travel cost on each rail link (each represents rail travel for a unique
O-D pair). In order to compute this, in the lower level model, at each iteration of the Frank-Wolfe
algorithm for each O-D pair, the volume on each path identified is updated. It is worth remembering
that marginal cost is used to optimize the link flows in the lower level but the rail travel cost
communicated to the upper level is the actual cost. More specifically, the procedure used to estimate
these rail travel costs is as follows.

1. Perform all-or-nothing assignment based on C, = C,(0). Record the path volume and the links in
the path for each O-D pair 2 identified in the assignment. This yields {v}}. Set counter k=1.
Update link cost. Set C¥ = C, (vk).
Perform all-or-nothing assignment based on updated cost. Find the shortest path fs’§ for each O-D
pair and corresponding link volumes {wX}
4. Line search. Find A, that solves
Min ¥, f;"'f”"(w"f‘”g) Colwdw, 0<A, =1 (19)
5. Volume shift. Set vE+1=pF + A, (WE — v}). Set fX = A, qs;. Set all previous paths volumes to (1 —
M) fl,0<i<k-1
6. Convergence test. If the difference in link flows from lower level iteration k and k — 1 are
sufficiently close, {v¥} is the set of link flows. Compute the actual travel cost for all links and the
corresponding travel cost for all k paths. The expected travel cost for each O-D pair for upper level
Ykek g forCE
cyf =Rt
the used paths. If the criterion is not met, set k = k + 1, go to step 2.

iteration [ equals: , where CK is the travel cost of using path k. K, is the set of

Now we update the CJ; for Eq.(9) and Eq.(12) for the next upper level calculation as follows:

1 7
r _ Cse+lCor
st 1+1

(20)

Where the calculation of the expected travel cost CJ; is smoothed with those computations, C; , from
the previous iterations.

Model calibration

Model calibration is required to identify values for the port capacities, rail capacities for facilities
supporting each port, the per TEU port costs and the rail bias parameter so that the link volumes, port
volumes and travel delays produced by the model match empirical observations of these values. Further,
it is also important to compare the link volumes produced by the lower level rail model to link volumes
reported by the Association of American Railroads (AAR) (Cambridge Systematics Inc., 2007). Next
Section describes the upper level model calibration and then we examine the link volumes in the rail
model.

Upper level calibration
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The upper level model has 46 countries (reflected as foreign ports that are assumed to be the
international origins and destinations), 27 U.S. ports and 84 domestic TAZs. The 46 countries represent
over 94% (PIERS, 2006) of total containerized trade with the U.S. through these 27 ports. Furthermore,
the 27 ports represent over 87% (American Association of Port Authorities, 2010) of total conainerized
traffic of U.S. ports.

We set 8; equal to 0.013 as in Jones et al (2011) for all ports. Using a single value for all ports has the
advantage of implying that the sensitivity of mode choice decisions to changes in rail or truck costs is the
same at all ports. <pfm and @7*plays a role of capturing the impact of other factors that differ by port,
such as the rail access availability. Table. 2 gives the remainder of the parameter values required. Note
that we assume the same port rail capacities for exports via a port as for imports. Finally, it is important
to notice that, based on the choice model adopted, the impact of the per unit cost at a port is only
relavent in comparision to the costs at other ports and hence the actual magnitide is not intriscially
meaningfull.

Table. 2. Estimated parameters of port capacity, port handling cost, rail capacity and rail bias
parameter.
Fig. 4 illustrates the quality of the match between the weekly estimated TEUs by port (the values in
Table. 2) and the data published by AAR (Cambridge Systematics Inc., 2007). The match at LA and LB,
New York are very close with errors at each of about 3%. The maximum error at the ports with more
than 40,000 TEUs per week (LA and LB, New York and New Jersey, Seattle and Tacoma, Savannah,
Oakland, Norfolk) is around 5%.

Fig. 4. Comparison of model-estimated port volumes and those reported for 2007 (AAPA, 2010).

Fig. 5 gives a comparison of the mode split of the domestic portion of the movement of U.S. imports and
exports, predicted by the model for ports where at least 10,000 TEUs/week are handled, and
independent estimates based on a variety of sources. The estimation of the mode share is accomplished
by integrating data from multiple sources, such as The Geography of Transport Systems (2007). The data
on rail and truck splits at the ports is very limited, partially due to the fact that trucks may shuttle
containers to nearby rail loading points. These containers travel most of their inland distance by rail but
appear to be leaving by truck. The largest discrepancy happens at the port of New York and New Jersey.
The model predicts that 26% of the volume is shipped via rail, compared to the independent estimates
of 15%. The average absolute error is 4%.

Fig. 5. Comparison of estimated and “reported” rail penetration by ports.

We set 8,,,, to 0.013 for all O-D pairs. For the rail bias parameter, ¢,,,, we chose to adopt values based
on the distance between the origin m and the destination n. For O-D pairs for which the distance is less
than 750 miles, from 750 to 1,250 miles, and greater than 1,250 miles, ¢,,, are set equal to 100, O, and -
150 respectively. Using these values, Fig. 6 gives the resultant mode split as a function of distance, along
with a comparison with data obtained from Cambridge Systematics, Inc. (Cambridge Systematics, 2007).
Again, the match is quite close with larger discrepancies for domestic movements above 1,250 miles,
which is about 17% of TEUs.
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Fig. 6. Comparison of estimated and reported domestic container traffic mode split by distance.

Lower level illustration and calibration

We represent the rail network using the GIS network developed by Oak Ridge National Laboratory
(2005). That network has 10,145 links and 4,903 nodes, and is illustrated in Fig. 7. Clarke (1995)
identified 12 link types based on terrain condition, siding space, and single/double track. We focus on
flat double track; flat single track, and both of them sidings less than 10 miles. In this case, y, =
0.001723, a, = 29.52711, B, = 25.0, U, = 258 trains/day for double track, and y, = 0.005269,

a, = 29.52711, B, = 25.0, U, = 86 trains/day for single track. These parameters are the coefficients
in the link delay functions given in Eq. (14).

Fig. 7. Ports, TAZs and rail network (Oak Ridge National Laboratory, 2005).

The volume-to-capacity ratio, expressed as a level of service (LOS) estimated by the model, is similar to
data published by AAR (Cambridge Systematics Inc., 2007). The reported and the estimated LOS are
given in Table. 3. The largest discrepancy between the reported results and the model estimates lies in
LOS B and C. However, both B and C are within the same group of “below capacity” which implies short
delays. The overall fraction of tracks in categories A through C is 88% compared to the model estimate
of 89%. Fig. 8 shows the estimated link volumes by TEUs/week.

Table. 3. Comparison of estimated proportion of track miles by LOS category.

Fig. 8. Rail network link volumes under SO.

Comparison of system optimal and user equilibrium link assignment in

the rail network

We assume that the rail system is operated according to the principle of system optimal (SO). However,
it is interesting to understand how the costs of this system would vary if the principle were user
equilibrium (UE). Fig. 9 gives the cumulative costs for all rail traffic per week. It is important to notice
that when the rail system is operated according to SO, more carloads are handled and less cost is
incurred then when it is operated as UE.

Fig. 9. Cumulative volumes and costs on the rail network.

Fig. 10 illustrates how the cumulative total costs from ultimate origin to ultimate destination vary based
on whether SO or UE is adopted for the rail network. Notice that the cumulative costs are about 3.7%
lower when SO is used. Of course, not all O-D pairs benefit evenly from this. Fig. 11 gives a comparison
of cost differences by OD pair between SO and UE basis. Among the around 6,000 total O-D pairs, 1,700
have similar O-D costs under both assumptions, 1,200 experience an increase in cost under the SO
assumption, and 3,100 experience a decline in cost under the SO assumption.

Fig. 10. Cumulative O-D volumes and costs.
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Fig. 11. Difference of costs by O-D pairs (SO and UE).

Table. 4 compares the percentage of track in each LOS category under both assumptions (SO and UE).
We include the reported percentages in Table. 4, which are also given in Table. 3, for ease comparison.
Both assumptions produce similar results. However, one might argue that the SO assumption is
somewhat closer with about 11% of track in LOS E and F in comparison to about 8.3% for UE when the
reported value is on the order of 12%.

Table. 4. Comparison of estimated proportion of track miles by LOS category for
SO, UE and disruption scenarios.

Capability of the model and its applications

To illustrate the analyses that can be performed with the model we concentrate on two case studies: (1)
a serious disruption that leads to the closure of the Ports of Los Angeles and Long Beach, and (2)
imposition of user fees at all California ports.

Example 1: Closure of the Ports at Los Angeles and Long Beach

The postulated disruption is a complete inability to handle traffic at LA and LB. To perform this analysis,
we assume that the O-D table remains the same and we center on the following three questions. First, is
the current freight transportation system robust enough to adapt to this loss? More specifically, do
other ports have enough capacity to accommodate the additional traffic from the ports of LA and LB?
Second, if not, how much traffic cannot be accommodated? And third, for the traffic that can be
accommodated, what are the costs of doing so?

The ports of LA and LB are the largest ports in the U.S. and together handled around 40% of the total U.S.
imports and exports in 2007 (still true in 2015; Wang et al, 2016). Using the model, and prior to
disruption, the ports of LA and LB handle about 290,000 TEUs/week; about 168,000 TEUs that are
imports and 121,000 TEUs that are exports. Most of traffic at these ports is from Asia, with about
103,000, 17,329 and 14,148 TEUs/week imported from Mainland China, Hong Kong and Japan,
respectively. These three origins comprise about 79% of total imports at LA and LB.

Fig. 12 shows the resulting volumes at the ports, when the ports of LA and LB are not available. Fig. 12
also gives the estimated capacities at each of the ports that are also included in Table. 2 to aid the
reader. Of the ports with estimated capacities above 20,000 TEUs/week, the ports at Houston, Norfolk,
Oakland, and Seattle and Tacoma are also very close to or at capacity post disruption. About 30% of the
flows (85,000 TEUs/week) that originally used the ports at LA and LB were diverted to the ports of
Seattle and Tacoma, leading to an increase in traffic of 112%, thereby reaching the estimated physical
capacity of these two ports. The volumes through the ports of Savannah and Charleston increased by
37,500 and 27,000 TEUs/week, respectively. The utilization of those ports post disruption is about 85%
at Savannah and 72% at Charleston.

Fig. 12. Redistribution of port flows after disruption.
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Fig. 13 gives the spatial distribution of the destination of U.S. imports that are handled by LA and LB, NY
and NJ, Savannah, Seattle and Tacoma. It is useful to note that LA and LB serve a wide range of
destinations, whereas the spatial distribution of the destinations served by Savannah are more clustered
in the southeast.

Fig. 13. Pre-disruption imports from selected major ports to TAZs.

The increased flows at Seattle and Tacoma mainly originated from, or are destined to, Southern
California, or the Southwest/Mountain areas (i.e. Los Angeles, Denver, Phoenix and San Diego), as
shown in Fig. 14. The ports of New York and New Jersey experiences volume increases of approximately
23,000 TEUs/week. Most of those flows originate from, or are destined to, New York and Chicago. Those
flows were originally carried by rail from and to LA and LB, but as a result of the disruption, they divert
to east coast ports as an alternative.

Finally, Table. 4 gives the proportion of track miles by LOS category under this disruption scenario. Since
the main effect of a disruption of this nature at LA and LB that is mostly bound for the eastern and
Midwestern parts of the US to ports located on the east coast, less long distance rail service is required
from LA and LB. This alleviates some of the strain on the rail network. It has resulted in less track miles
is in LOS category D; 10% pre-disruption to 6% post disruption. The generalized cost per TEU-mile for rail
transportation declined post disruption by about 3% in comparison to pre-disruption.

The disruption also results in a change in shipping costs and inventory costs. Prior to disruption, the total
cost for the transport of all imports and exports is approximately $2.03 billion/week. With the loss of LA
and LB, the total cost rise to $2.26 billion/week; about an 11% increase.

Fig. 14. Estimated imports using selected ports to TAZs when LA and LB are not available for use.

Example 2: Pricing changes in California.

In November 2014, several west coast ports implemented congestion surcharges on containerized
imports and exports. We assume a similar surcharge and analyze the impacts. We ignore other factors
that might also influence the route selection decision of shippers, as well as the decisions of the ship
operators. We suppose there is a $100 /TEU surcharge, assessed at each California port for both imports
and exports.

Fig. 15 shows the estimated impact of this fee on traffic volume by port. The model suggests a 10%
volume decrease at LA and LB, reducing volumes handled from 290,000 to 261,000 TEU per week. The
decrease in volume at Oakland and San Francisco are relatively smaller at 6%. About 56% of the diverted
traffic is handled at Savannah, Charleston, Wilmington, and New York. Also, about 5,000 additional TEUs
are estimated to be handled at Seattle and Tacoma ports per week. This about a 6% increase in weekly
volumes.

Fig. 16 shows the percentage decrease to each TAZ from the California ports (Oakland, LA and LB).
Notice that much of the decrease in in the Mid-Atlantic, Northeast and the eastern portions of the
Midwest, areas that are in relatively close proximity to the Port of New York and New Jersey. Prior to
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the imposition of the fee, these shipments entered the US via the California ports and were transported
by rail large distances. In contrast, the fee has a very limited impact on flows that enter via LA and LB to
destinations in the Western United States. For these goods, a $100 fee per TEU is insufficient.

The impact of this fee on the rail network is quite modest. Table. 4 gives the proportion of track miles
by LOS category. There is a small decline in the track operating at LOS D. There is also a very marginal 1%
decline in generalized costs per TEU-mile for rail service.

Fig. 15. Volumes change of port flows.

Fig. 16. Percentage decrease at Oakland and LA and LB.

Conclusions

Containerized import and export freight transportation, as well as multi-product intercity freight
transportation are vital to the U.S. economy. A bi-level framework is developed for analyzing the
distribution of these flows. Our model characterizes the equilibrium traffic assignment across U.S. ports,
as well as the highway and railroad networks.

This paper makes two important contributions to the literature. First, we integrate a system optimal
representation of the rail network into a multimodal user equilibrium model of freight flows in the U.S.
Second, we demonstrate that this model can be used to analyze a number of national level policies of
intrinsic importance, including rerouting analyses from a loss of one or more facilities, as well as to
understand the impacts of the imposition of congestion pricing. It can also be used to understand the
benefits of additional investments in these infrastructures.

Additional research would be useful in two areas. First, it is important to integrate traffic that uses
inland waterway into the model. Inland waterways are important resources for the movement of bulk
commodities; however many of those waterways are susceptible to flooding. Extending this modeling
environment to inland waterways would facilitate an understanding of how traffic might divert under
these conditions. The second area worth investigating is extending the model to suggest how a given
budget could be optimally invested to minimize transportation costs and/or to minimize environmental
impacts. The U.S. freight transportation system is under increasing strain and investment has lagged,
making advances in this domain particularly useful.

Acknowledgements

Sandia National Laboratories is a multi-mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA0O003525.

References



17

Aagaard, B. T., Blair, J. L., Boatwright, J., Garcia, S. H., Harris, R. A., Michael, A. J., . .. DiLeo, J. S. (2016)
Earthquake outlook for the San Francisco Bay region 2014-2043 (2327-6932).

Abadi, A., loannou, P. A., & Dessouky, M. M. (2016) Multimodal Dynamic Freight Load Balancing. IEEE
Transactions on Intelligent Transportation Systems, 17(2), 356-366.

Agrawal, B., & Ziliaskopoulos, A. (2006) Shipper-carrier dynamic freight assignment model using a
variational inequality approach. Transportation Research Record: Journal of the Transportation
Research Board(1966), 60-70.

American Association of Port Authorities. (2010) North America container traffic 1990 — 2009.
http://aapa.files.cms-
plus.com/Statistics/CONTAINER%20TRAFFIC%20NORTH%20AMERICA%201990%20-%202009.xls,
accessed July 28, 2017.

Association of American Railroads. (2017) Railroads and Coal.
https://www.aar.org/BackgroundPapers/Railroads%20and%20Grain.pdf, accessed July 30, 2017.

Association of American Railroads. (2017) Railroads and Grain.
https://www.aar.org/BackgroundPapers/Railroads%20and%20Grain.pdf, accessed July 30, 2017.

Beuthe, M., Jourquin, B., Geerts, J.-F., & a Ndjang'Ha, C. K. (2001) Freight transportation demand
elasticities: a geographic multimodal transportation network analysis. Transportation Research
Part E: Logistics and Transportation Review, 37(4), 253-266.

Bujanda, A., Villa, J., & Williams, J. (2012) Development of Statewide Freight Flow Assignment with
Freight Analysis Framework: Learning from Case Study on International Trade Corridors in Texas.
Transportation Research Record: Journal of the Transportation Research Board(2285), 155-166.

Bureau of Transportation Statistics. (2013) Pocket Guide to Transportation 2013.
https://www.rita.dot.gov/bts/publications/pocket guide to transportation/2013/system use
and livable communities/table 03 05, accessed July 29, 2017.

Bureau of Transportation Statistics. (2015) Freight Facts and Figures.
https://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/TSAR 2015 final 0.pdf, accessed July
29, 2017.

Cambridge Systematics, Inc. (2007) National Rail Freight Infrastructure Capacity and Investment Study.
https://expresslanes.codot.gov/programs/transitandrail/resource-materials-new/AARStudy.pdf,
accessed July 27, 2017.

CBRE research. (2015) North America Ports Logistics Annual Report.
http://f.tlcollect.com/fr2/215/82000/North America Ports Logistics-Annual Report-2015.pdf,
accessed July 28, 2017.

Clarke, D. B. (1995) An examination of railroad capacity and its implications for rail-highway intermodal
transportation.

Crainic, T. G., Florian, M., & Léal, J.-E. (1990) A model for the strategic planning of national freight
transportation by rail. Transportation Science, 24(1), 1-24.

de Cea Ch, J. n., & Soto, A. (2003) A multi-modal supply—demand equilibrium model for predicting
intercity freight flows. Transportation Research Part B: Methodological, 37(7), 615-640.

Dial, R. B. (2006) A path-based user-equilibrium traffic assignment algorithm that obviates path storage
and enumeration. Transportation Research Part B: Methodological, 40(10), 917-936.

Fan, L., Wilson, W. W., & Tolliver, D. (2010) Optimal network flows for containerized imports to the
United States. Transportation Research Part E: Logistics and Transportation Review, 46(5), 735-
749.

Federal Highway Administration. (2016) Freight Quick Fact Report.
https://ops.fhwa.dot.gov/publications/fhwahop16083/fhwahop16083.pdf, accessed July 29,
2017.




18

Friesz, T. L., Gottfried, J. A., & Morlok, E. K. (1986) A sequential shipper-carrier network model for
predicting freight flows. Transportation Science, 20(2), 80-91.

Guelat, J., Florian, M., & Crainic, T. G. (1990) A multimode multiproduct network assignment model for
strategic planning of freight flows. Transportation Science, 24(1), 25-39.

Ham, H., Kim, T. J., & Boyce, D. (2005) Implementation and estimation of a combined model of
interregional, multimodal commodity shipments and transportation network flows.
Transportation Research Part B: Methodological, 39(1), 65-79.

Harker, P. T. (1986) Alternative models of spatial competition. Operations Research, 34(3), 410-425.

Harker, P. T., & Friesz, T. L. (1985) The use of equilibrium network models in logistics management: with
application to the US coal industry. Transportation Research Part B: Methodological, 19(5), 457-
470.

Ishfaq, R. (2013) Intermodal shipments as recourse in logistics disruptions. Journal of the Operational
Research Society, 64(2), 229-240.

Jones, D. A, Farkas, J. L., Bernstein, O., Davis, C. E., Turk, A., Turnquist, M. A,, . .. Ostrowski, S. D. (2011)
US import/export container flow modeling and disruption analysis. Research in Transportation
Economics, 32(1), 3-14.

Jourquin, B., & Beuthe, M. (1996) Transportation policy analysis with a geographic information system:
the virtual network of freight transportation in Europe. Transportation research part c: emerging
technologies, 4(6), 359-371.

Jourquin, B., & Limbourg, S. (2006) Equilibrium traffic assignment on large Virtual Networks:
Implementation issues and limits for multi-modal freight transport. European Journal of
Transport and Infrastructure Research, 6(3), 205-228.

Labys, W. C., & Yang, C. W. (1997). Spatial price equilibrium as a foundation to unified spatial commodity
modeling. Papers in Regional Science, 76(2), 199-228.

Levine, B., Nozick, L., & Jones, D. (2009) Estimating an origin—destination table for US imports of
waterborne containerized freight. Transportation Research Part E: Logistics and Transportation
Review, 45(4), 611-626.

Mahmassani, H., Zhang, K., Dong, J., Lu, C.-C., Arcot, V., & Miller-Hooks, E. (2007) Dynamic network
simulation-assignment platform for multiproduct intermodal freight transportation analysis.
Transportation Research Record: Journal of the Transportation Research Board(2032), 9-16.

Maia, L., & Couto, A. (2013) Strategic rail network optimization model for freight transportation.
Transportation Research Record: Journal of the Transportation Research Board(2378), 1-12.

Miller-Hooks, E., Chen, L., Nair, R., & Mahmassani, H. (2009) Security and Mobility of Intermodal Freight
Networks: Evaluation Framework for Simulation and Assignment. Transportation Research
Record: Journal of the Transportation Research Board(2137), 109-117.

Nagurney, A., Dong, J., & Zhang, D. (2002). A supply chain network equilibrium model. Transportation
Research Part E: Logistics and Transportation Review, 38(5), 281-303.

Oak Ridge National Laboratory. (2005) Railroad Network. http://cta.ornl.gov/transnet/RailRoads.html,
accessed October 27, 2017.

PIERS Global Intelligence Solutions. (2006) PIERS Trade Data. http://www.piers.com/, accessed July 28,
2017.

Port of Los Angeles. (2009) Intermodal Logistics & Ports of Los Angeles/Port of Long Beach Rail
Infrastructure. https://www.portoflosangeles.org/pdf/Rail Workshop Presentation.pdf,
accessed July 29, 2017.

Surface Transportation Board (2007) Carload Waybill Sample.
http://www.stb.dot.gov/stb/industry/econ waybill.html, accessed July 28, 2017.




19

Tavasszy, L., Minderhoud, M., Perrin, J.-F., & Notteboom, T. (2011) A strategic network choice model for
global container flows: specification, estimation and application. Journal of Transport
Geography, 19(6), 1163-1172.

The Geography of Transport Systems. (2007) Modal Split at Selected North American Container Ports.
https://people.hofstra.edu/geotrans/eng/ch2en/appl2en/NA ports modal split.html, accessed
July 29, 2017.

Uddin, M. M., & Huynh, N. (2015) Freight Traffic Assighment Methodology for Large-Scale Road—Rail
Intermodal Networks. Transportation Research Record: Journal of the Transportation Research
Board(2477), 50-57.

Wang, H., Gearhart, J., Jones, K., Frazier, C., Nozick, L., Levine, B., & Jones, D. (2016) Estimation of an
origin—destination table for US imports of waterborne containerized freight. Transportation
Research Record: Journal of the Transportation Research Board(2548), 35-42.

Wilson, A. G. (1970) Inter - regional Commodity Flows: Entropy Maximizing Approaches. Geographical
analysis, 2(3), 255-282.

Yamada, T., Imai, K., Nakamura, T., & Taniguchi, E. (2011) A supply chain-transport supernetwork
equilibrium model with the behaviour of freight carriers. Transportation Research Part E:
Logistics and Transportation Review, 47(6), 887-907.

Yen, J. Y. (1971) Finding the k shortest loopless paths in a network. management Science, 17(11), 712-
716.

Zhang, K., Nair, R., Mahmassani, H., Miller-Hooks, E., Arcot, V., Kuo, A., . . . Lu, C.-C. (2008) Application
and Validation of Dynamic Freight Simulation—Assignment Model to Large-Scale Intermodal Rail
Network: Pan-European Case. Transportation Research Record: Journal of the Transportation
Research Board(2066), 9-20.




Figures:

im
i

Rail access node e,

Rail access link N e N

Transocean link Highway service link

Foreign node i Port;

Fig. 1. lllustration of “rail access” link.

20



Rail access node e/™

Foreign node i Port; |

Rail access link for export N N %

Legend

Highway service link

D T T Rail transport link

TAZ;

Fig. 2. One “rail access” link to multipule destinations.



Foreign node i

Rail access node e/™

TAZ;
‘,—"— ------ T s
“ee. in
b TAZ!
i ey, O i
..,
I, LT
4
\\\

Links

——> Highway service link
— — — > Rail access link
sesssseseed poil transport link
— * =2  Rail Service link

——>—  port cost link
~ ~\ Transocean link

Nodes

I”’ N\
(M) Port; representation

TAZ; representation

Fig. 3. Upper level network.

\
\
1
1
1
1
ci
1
1
1
;]
1

7

TAZ;
_____ ~—
~~\\
\\
\\
I/ )
8 .
1~ O : #
/ Sa_TAZY -~
|' Sl ]’ - .
out,c out,n
|\ TAZ: ™ Y TAZ
1 J 1 J
1
X 1
\ I
\\ | Il
N\, ’
., | ’
) 7’
. /
. 1 L
I

T g

22



350,000

300,000 ry

250,000

200,000

150,000

100,000 \ 4

50,000 p *°
0 O’ ' ' ' ' ' . :

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000
Reported weekly TEUs

Predicted weekly TEUs

Fig. 4. Comparison of model estimated port volumes and those reported for 2007 (AAPA, 2010).



24

T
[J]
-
2
o
(]
=
(-9

30% 40%
Reported

Fig. 5. Comparison of estimated and “reported” rail penetration by ports.



= estimated rail

H estimated truck

™ reported rail

Rail share percentage

M reported truck

i il

<200 200-750 750-1250 1250-2000 >2000
Distances(miles)

Fig. 6. Comparison of estimated and reported domestic container traffic mode split by distance.



Fig. 7. Ports, TAZs and rail network (Oak Ridge National Laboratory, 2005).
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Table. 1. lllustrative Network Flow Models
(RO = Road; R = Rail; S = Ship; En. = Endogenous; Ex. = Endogenous)

Reference Multi- Mode | Discrete o/D Assign- Capacity Con- Ind. Solution Insights
comm Choice matrix ment Limits gestion Links Methodology
odity Model Method
Guelat et al. (1990) Yes RO,R, No Ex. SO No Yes No Adaptation of Frank- Truck still offers the most rapid alternative,
Crainic et al. (1990) S Wolfe; Dijkstra shortest even with construction of a new rail line in
path algorithm San Francisco.
Jourquin and Beuthe (1996) Yes RO,R, No Ex. SO No Yes Yes Method of the successive Railway transports appears more sensitive to
Beuthe et al. (2001) S averages; All or nothing; cost variation in road transport than inland
Jourquin and Limbourg Frank-Wolfe; Dijkstra waterways.
(2006) shortest path
Agrawal and Ziliaskopoulos Yes RO,R No Ex. UE & SO Yes Yes No Dantzig—Wolfe Shipments with higher delay costs tend to be
(2006) decomposition; shipped using faster modes.
Shortest path
Jones et al. (2011) No RO,R, Yes Ex. UE Yes Yes Yes Adaptation of Dial’s (2006) | Other ports have capacity for goods disrupted
S by lack of rail access at LA and LB. Fees are
effective to incentive re-routing.
Fan et al. (2010) No RO,R, No Ex. SO Yes Yes Yes Linear programming solver $135/TEU in cost reduction if capacity at
s Houston is expanded.
Tavasszy et al. (2011) No RO,R, No Ex. UE No No Yes Newton-based greedy Slow-steaming encourages sea—sea
S search method transshipment operations at hubs.
Maia and Couto (2013) No RO,R Yes Ex. SO Yes Yes Yes Custom heuristic algorithm Compared improvement of existing links and
based on greedy algorithm construction of new ones.
Ishfaq (2013) No RO,R No Ex. SO No Yes Yes Adaptation of Frank- Intermodal freight has both cost advantages
Wolfe; Dijkstra shortest and competitive transit times over road under
path algorithm disruption.
Uddin and Huynh (2015) Yes RO,R No Ex. UE No Yes No Custom algorithm Synthetic network used for analysis.
Mahmassani et al. (2007) Yes RO,R, No Ex. DTA Yes Yes Yes Simulation; Method of the Rail infrastructure improvements can
Zhang et al. (2008) S successive averages substantially improve the attractiveness of
Miller et al. (2009) rail.
Abadi et al. (2016) No RO,R No En. DTA Yes Yes Yes Simulation The proposed control system can reduce
traffic congestion and travel times.
Harker and Friesz (1985) Yes RO,R, No En. UE No Yes Yes Adaptation of Lemke's Demonstrated with U.S. coal freight that
Harker(1986) S algorithm; Frank-Wolfe intuitive predictions in complex systems can
Friesz et al. (1986) algorithm be incorrect.
Joaquin et al. (2003) Yes RO,R, Yes En. UE & SO No Yes Yes Adaptation of Evans’ Carriers with lower transportation fares, carry
S (1976) algorithm more shipments (tons).
Ham et al. (2005) Yes RO,R Yes En. UE No Yes Yes Evans’ (1976) algorithm; Predicted commodity shipments compare
Wilson’s (1970) algorithm reasonably well with the observed commodity
shipments.
Wang and Nozick Yes RO,R, Yes Ex. UE & SO Yes Yes No Adaptation of Frank- SO rail reduces costs vs. UE. Loss of LA and LB
S Wolfe; Dijkstra shortest can be accommodated. $100 port fee at
path algorithm California ports causes traffic diversions for
goods bound for the eastern US.




Table. 2. Estimated parameters: port capacity, port handling cost, rail capacity and rail bias

parameters.
Port Port capacity (U;) C; Port rail capacity o, pf*
W™, ugr)
TEU/week S/TEU TEU/week S/TEU

Baltimore 28,800 515 20,000 465
Boston 8,000 720 2,400 300
Charleston 82,900 30 22,000 225
Chester PA 6,500 550 1,300 400
Freeport TX 2,200 315 500 300
Galveston 700 525 200 200
Gulfport 9,800 700 2,000 450
Houston 35,400 235 20,000 635
Jacksonville 53,300 100 3,000 250
Los Angeles-Long beach 529,100 0 200,000 -60
Miami 43,000 230 14,200 425
Mobile 7,000 435 1,100 300
New Orleans 16,500 700 3,100 450
New york-New jersey 143,400 460 60,000 600
Norfolk 54,900 245 26,000 425
Oakland 49,500 490 24,000 300
Philadelphia 16,700 550 3,300 400
Portland OR 10,200 590 2,000 300
Everglades 39,000 215 9,400 350
Richmond VA 1,200 455 800 400
San francisco 1,000 625 400 200
Savannah 102,800 0 22,000 175
Seattle-Tacoma 160,300 265 80,000 -110
Tampa 1,400 320 400 150
Palm BCH 7,600 210 1,200 350
Wilmington DE 9,000 520 3,100 400
Wilmington NC 11,800 260 2,400 200

Values for U;, Ul-im and UF* are as given in Jones et al (2011) or as estimated using the process in Jones et al (2011).



Table. 3. Comparison of estimated proportion of track miles by LOS category.
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LOS LOS in relative Description Volume/ Reported Estimated
to Capacity Capacity
ratio
A Below Low to moderate train flows with 0.0t0 0.2 19.0% 20.3%
B capacity capacity to accommodate 0.2to 0.4 30.0% 37.7%
C maintenance and recover from 0.4t00.7 39.0% 31.3%
incidents
Heavy train flow with moderate
D Near capacity capacity to accommodate 0.7t0 0.8 9.0% 10.3%
maintenance and recover from
incidents
Very heavy train flow with very
E At capacity limited capacity to accommodate 0.8t0 1.0 3.0% 0.4%
maintenance and recover from
incidents
F Above Unstable flows; service breakdown >1.0 <1.0% 0.0%
capacity conditions
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Table. 4. Comparison of estimated proportion of track miles by LOS category for
SO, UE and disruption scenarios

LOS Volume/ Reported Estimated: Estimated: UE Estimated: Estimated: Pricing

Description Capacity SO Closure of changes in

ratio LA and California

LB(SO) ports(SO)
A 0.0to 0.2 19.0% 20.1% 21.6% 20.2% 20.8%
B Below capacity 0.2to 0.4 30.0% 37.8% 40.0% 39.8% 37.9%
C 0.4t00.7 39.0% 31.4% 30.1% 33.6% 31.8%
D Near capacity 0.7t00.8 9.0% 10.1% 3.4% 6.1% 9.1%
E At capacity 0.8t0o 1.0 3.0% 0.6% 4.9% 0.4% 0.4%
F Above capacity >1.0 <1.0% 0.0% 0.0% 0.0% 0.0%
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Captions for figures

1. lllustration of “rail access” link.

2. One “rail access” link to multiple destinations.

3. Upper level network.

4. Comparison of model estimated port volumes and those reported for 2007 (AAPA, 2010).
5
6
7
8
9

Comparison of estimated and “reported” rail penetration by ports.

. Comparison of estimated and reported domestic container traffic mode split by distance.
. Ports, TAZs and rail network (Oak Ridge National Laboratory, 2005).

. Rail network link volumes under SO.

. Cumulative volumes and costs on the rail network.

10. Cumulative O-D volumes and costs.

11. Difference of costs by O-D pairs (SO and UE).

12. Redistribution of port flows after disruption.

13. Pre-disruption Imports from selected major ports to TAZs.

14. Estimated imports using selected ports to TAZs when LA and LB are not available for use.
15. Volumes change of port flows.

16. Percentage decrease at Oakland and LA and LB.
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Table. 2. Estimated parameters of port capacity, port handling cost, rail capacity and rail bias parameter.

Table. 3. Comparison of estimated proportion of track miles by LOS category.
Table. 4. Comparison of estimated proportion of track miles by LOS category for
SO, UE and disruption scenarios.
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