
Teaching Game Theory to Kids and

Limits of Prediction

Alexander V. Outkin, Jun. 29, 2018

I have once been asked to read a lecture to a group of 6th graders on Game Theory. After agreeing to it, I

realized that explaining the game theory basics to 6th graders my be difficult, given that terms such as

Nash equilibrium, minimax, maximin, optimization may not resonate in a 6th grade classroom. Instead

I've introduced game theory using the rock-paper-scissors (RPS) game. Turns out kids are excellent game-

theoreticians. In RPS, they understood both the benefits of randomizing their own strategy and of

predicting their opponent's moves. They offered a number of heuristics both for the prediction and

opening move. These heuristics included optimizing against past opponent moves, such as not playing

rock if the opponent just played scissors, and playing a specific opening hand, such as "paper". Visualizing

the effects of such strategic choices on-the-fly would be interesting and educational. This brief essay

attempts demonstrating and visualizing the value of a few different strategic options in RPS.

Specifically, we would like to illustrate the following: 1) what is the value of being unpredictable?; and 2)

what is the value of being able to predict your opponent?

In regard to prediction of human players, the question 2) has been reflected in Jon McLoone's entry in

Wolfram Blog from January 20, 2014[1]. McLoone created a predictive algorithm for playing against human

opponents, that learns to beat human opponents reliably after approximately 30 - 40 games. I use

McLoone's implementation to represent a predictive and random strategies.

The rest of this documents 1) investigates performance of this predictive strategy against a random

strategy (which is optimal in RPS) and in 2) attempts to turn this predictive power against the predictive

strategy by allowing the opponent the full knowledge of the predictor's strategy (but not the choices made

using the strategy). This exposes a weakness in predictions made without taking risks into account by

illustrating that predictive strategy may make the predictor predictable as well.

The Rock, Paper, Scissors Game
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The game includes the following components:

• Player strategies. Strategy takes the current state and past history and determines new action. It can

be represented as a map from history up to the current state to action (Rock, Paper, of Scissors). We

represent R, P, S respectively as 1, 2, 3.

• Game history. This includes the actions of both players. Game history at time t is a tuple of both

player actions.

• Game play outcome at each time. The game at each time step results in one of the players winning

or in a draw. The draw only occurs if both players choose the same action. A graph representing the

game outcomes is represented below. Directed links means that origin node beats the sink node. For

example P (paper) beats R (rock).

GraphPlot [{R -> S, S -> P, P -> R} , Di rectedEdges -> True, VertexLabeling -> True]
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R

Because of the circular nature in the graph above, RPS does not have a Nash equilibrium in pure

(deterministic) strategies. The Nash equilibrium strategy for each player to uniformly randomize over the

three action choices. We call this strategy "random".

Predictive and Random Strategy Implementation

I start with predictive strategy from [1]. I changed it to look back to the past 100 games, rather than to the

entire history, to speed-up the code.

Code (* Predictive and Random Strategies Implementation*)
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(* Probabilistic prediction based on past choices of player 2 *)

prediction[pastchoices_List]:=1If[Length[pastchoices]<2,1,DistributionFitTest[pastchoices

Randomchoice[Commonest[pastchoices/.{}-,{1,2,3}M;

(* Search throught patters of historic play *)

historySeek[history_,n_Integer,col_]:=If[nAength[history]-1,0,

If[#==={},{},#[[1,All,11]]&[

Reap[Do[

If[history[p;;(i+n-1),col]]...history[pn;;,col]],Sow[history[p+n]]]],

fi,Length[history]-nl]][[2]]]];

(* Wrappers for prediction *)

bestGuess[0]:=RandomInteger[{1,3}];

bestGuess[data_]:=Block[{max=Min[100, Length[dataM,

Sort[Flatten[Outer[prediction[historySeek[data,#1,#2]]&,Range[max],[1,2,All}],{1,2}]]][[1

chooseGo[data_]:=Mod[bestGuess[datal+1,3,1];

(* Utility to calculate historic game outcomes based on historic play *)

winTest[p1_,p2_]:=Switch[Mod[p1-p2,3],

0,"Draw",

1,"Win",

2,"Losel;

1. Prediction vs. Randomization

This experiment shows the cumulative payoff of the predictive strategy against random strategy for a

game of 1000 moves.

hi story2 = { {1, 1} }

Nest [AppendTo [history2, {chooseGo [1:t] , chooseGo[{}]}] &, hi story2 , 1000] ;
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outcomes2 = (wi nTest @@@ hi story2) / . {"Win" -> 1, "Lose" -> - 1, "Draw" -> 0} ;

Li stLi nePlot [Accumulate [outcomes2] ]
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The cumulative payoff of the predictive strategy spends most of the time in positive domain. It is not

entirely expected, because it is playing against the optimal strategy in RPS for which there is nothing to

predict. This may be a consequence of the predictive strategy being probabilistic and thus randomizing in

response to a random strategy.

2. Random vs. Random

This experiment shows the cumulative payoff of the optimal strategy (random) playing against the same

strategy.

history3 = {{1, 1}}

Nest [AppendTo [ hi story3 , {chooseGo [ {} ] , chooseGo [ {} ] } ] &, hi story3 , 1000] ;
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outcomes3 = (wi nTest @@@ hi sto ry3) / . {"Wi n" -> 1, "Lose" -> - 1, "Draw" -> 0) ;

Li stLi nePlot [Accumulate [outcomes3] ]
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There is no clear winner in two random optimal strategies playing against each other, which is expected.

The probabily of deviations of the cumulative payoff from zero can be evaluated analytically.

3. Beating the Predictor at their Own Game

Here we assume that the first player is using the same probabilistic strategy as before, but the second

player has access to the first player strategy definition, but not the choices made by the strategy, and are

using a naive probabilistic optimization against the first player strategy.

Code (* This desribes the player 2 strategy that

exploits predictability inherent in the predictive strategy *)
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anti Pred-icti on [pastChoices_List] : = {If [Length [pastChoices] < 2, 1,

Di stributionFitTest [pastChoices, Di screteUni formDi stri buti on [ {1 , 3}] ] ] ,

RandomChoice [Commonest [pastChoices / . {} -> {1 , 2 , 3}]]};

worstGuess [ { } ] : = RandomInteger [ {1, 3}] ;

worstGuess [data_] := Block [ {max = Min [100, Length [data] ] } ,

Sort [Flatten [Outer [anti Predi ction [historyseek [data , 131 , 132] ] &,

Range [max] , {1 , 2, All} ] , {1, 2}] ] ] [ [1 , - 1] ] ;

antiChooseGo [data_] := Mod [worstGuess [data] + 1, 3 , 1] ;

history4 = {{1, 1}}

Nest[AppendTo[history4, IchooseGo[U], antiChooseGo[13]}]&,history4,1000];

outcomes4 = (wi nTest @@@ history4) / . {"Wi n" -> 1, "Lose" -> - 1, "Draw" -> 0} ;

Li stLi nePlot [Accumulate [outcomes4] ]
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This shows the predictive strategy cumulative payoff convincingly trending down over the course of 1000

games and indicates limits of prediction in the face of better predictive capabilities. However, it is unclear

why the predictive strategy of the first player does not converge to a random play as may have happened

against random strategy.
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Further explorations

While extremely simple and incomplete, these examples may have bearing on the following topics:

• Limits of prediction

Predictive strategy is reasonably effective against the optimal (in the Nash equilibrium sense)

strategy.

The specific predictive strategy used here is ineffective against generally suboptimal strategy that

has access to the predictive strategy decision rule.

These two observations imply that predictive strategies should be used with caution.

• Application to automated decision making in society

The result in experiment 3. maybe indicative of potential problems with self-driving cars and other

autonomous technologies. For example if the autonomous cars attempt to optimise on their local

objective, they may (inadvertently) exploit weakness in predictive strategies of other autonomous

cars leading to globally sub-optimal outcomes.

• Kids appear to be enthusiastic and skilled RPS players. Yet, you rarely see grown-ups playing RPG,

who seem to prefer throwing a coin or a dice or doing some other kind of randomization that

requires no skill or predictive ability. Is it because kids are optimistic about their ability to predict the

future? To affect it? Do adults optimize and conserve the resources by not bothering with prediction

in certain situations?
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