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Abstract

This study was conducted to document the extent and basis of compositional variation of
shoot biomass of the energy Sorghum bicolor hybrid TX08001 during development under field
conditions. TX08001 is capable of accumulating ~40 Mg/ha of dry biomass under good growing
conditions and this genotype allocates ~80% of its shoot biomass to stems. After 150 days of
growth TX08001 stems had a fresh/dry weight ratio of ~3:1 and soluble biomass accounted for
~30% of stem biomass. A panel of diverse energy sorghum genotypes varied ~6-fold in the ratio
of stem structural to soluble biomass after 150 days of growth. Near-infrared spectroscopic
analysis (NIRS) showed that TXO08001 leaves accumulated higher levels of protein, water
extractives and ash compared to stems, which have higher sugar, cellulose, and lignin contents.
TX08001 stem sucrose content varied during development, whereas the composition of TX08001
stem cell walls, which consisted of ~45-49% cellulose, ~27-30% xylan, and ~15-18% lignin,
remained constant after 90 days post emergence until the end of the growing season (180 days).
TX08001 and Della stem syringyl (S)/guaiacyl (G) (0.53-0.58) and ferulic acid (FA)/para-
coumaric acid (pCA) ratios were similar whereas ratios of pCA/(S+G) differed between these
genotypes. Additionally, an analysis of irrigated versus non-irrigated TX08001 revealed that non-
irrigated hybrids exhibited a 50% reduction in total cell wall biomass, an ~2-fold increase in stem
sugars, and an ~25% increase in water extractives relative to irrigated hybrids. This study provides
a baseline of information to help guide further optimization of energy sorghum composition for

various end-uses.



Introduction

World population growth and development projected by 2050 will significantly increase
the demand for food, feed, energy, chemicals, and bio-based products [1]. Renewable low-cost
sources of plant-derived biomaterials could significantly enhance long-term food, energy, and
environmental security. High-biomass C4 grasses such as Sorghum bicolor, Miscanthus x
giganteus, sugarcanes (Saccharum spp.), and Pennisetum genotypes (i.e., Napier grass) can
accumulate >40 Mg of dry biomass per hectare each growing season [2,3]. Sugarcane, the most
economically important high-biomass C4 grass, was grown on 26 million ha and produced 1.83
billion Mg of high-moisture stem biomass in 2012 [4]. Sugarcane grown in Brazil provides an
economical source of sucrose, bio-power, and bioethanol supplying a large portion of Brazil’s
transportation fuel [5]. In the U.S., bioethanol production from corn (Zea mays) grain has increased
10-fold since 2000 to nearly 15 B gallons/year consuming 30-40% of the corn grain crop [6]. Corn
bioethanol production has an energy output/input ratio of 1.4-2.3 whereas this ratio is significantly
higher for energy crops such as sweet sorghum (~21), sugarcane (~8-10) and Miscanthus (~22)
[7]. The US Energy Independence and Security Act of 2007 mandated that ~30% of the fuel used
for US transportation be met by production of alternative fuels by 2030, with no more than 15
billion gallons being derived from grain crops and ~21 billion gallons from lignocellulose and
other non-grain sources of biofuels [8,9]. Progress towards the latter goal has been slow due to the
high cost of biofuels production from lignocellulosic biomass. Highly productive energy crops that
accumulate low-cost biomass with a composition optimized for harvesting, storage, processing,

and conversion are needed to produce cost-competitive biofuels and bio-products [10].



C4 grasses are excellent genetic systems for the design of next-generation high-biomass
multiuse energy crops due to their photosynthetic efficiency, high biomass yield potential, and
wide adaptation [3,7,11,12]. Energy sorghum is unique among the high-biomass C4 grasses
because sorghum is an annual hybrid crop [3,13]. Energy sorghum’s drought resilience, good water
use efficiency, heat tolerance, and low input requirements allows production on annual cropland
that is marginal for most food crops [3]. The sorghum germplasm collection (n=43,000) contains
extensive genetic and phenotypic diversity for traits relevant to the design of high-biomass energy
crops [13]. Sorghum’s facile genetics, well established energy sorghum hybrid breeding and
production systems [13], good genomic resources, and rapidly improving technology for cis-genics
and genome editing [14—16], make it an excellent genetic platform for fundamental research on
C4 grass grain, forage, and bioenergy crops and a source of commercial hybrids for bio-based
industries.

Cell walls that comprise the bulk of plant biomass evolved to provide mechanical strength
and protection from pests making them recalcitrant to the release of sugars for microbial upgrading
[17]. In grasses, the structural portion of biomass is composed primarily of cellulose,
glucuronoarabinoxylan (GAX) hemicelluloses, pectins, and lignin, together with low amounts of
wall-associated proteins, inorganics, and other compounds. Cellulose is the most abundant cell
wall polysaccharide and represents the largest potential source of glucose for microbial production
of biofuels and bio-products. GAX, a complex hemicellulosic polysaccharide, has a xylan
backbone decorated with (4-O-methyl)glucuronic acid, and arabinose substituents, and hydroxyl
groups that may be acetylated [18]. GAX is also covalently linked to the lignin polymer matrix
through ferulate substituents that are attached to the primary C5-OH of arabinosyl units [19]. GAX

deconstruction is complex requiring expensive enzymatic cocktails, and the sugars released are



not readily metabolized by most yeast strains [20]. The constituents of the cell wall include an
amorphous lignin polymer matrix that increases cell wall strength and recalcitrance. The soluble
portion of plant biomass is comprised of sugars, proteins, amino acids, inorganics, water-
extractable organic acids, phenolic glycosides, alditols, and mixed-linkage glucans [21]. The
water-insoluble but ethanol-extractable fraction of biomass is composed of lipids, waxes,
terpenoids, and other hydrophobic compounds such as chlorophyll.

Comprehensive knowledge of the composition of biomass accumulated by bioenergy crops
under field conditions is needed for the design of optimal systems for production, harvesting,
storage, and biorefinery operations [22—-26]. NIRS is routinely used for high-throughput analysis
of biomass composition. The National Renewable Energy Laboratory (NREL) created an NIRS
prediction model to facilitate the analysis of biomass composition [27]. This model is capable of
predicting the relative abundance of cellulose, lignin, xylose, arabinose, and galactose as well as
hot-water-soluble extractives, hot-ethanol extractives, ash, and protein [27,28]. NIRS analysis of
total shoot biomass from diverse sorghum genotypes used for forage, grain, sugar and biomass
production revealed that sorghum germplasm has a wide compositional range [28]. Part of this
variation is due to sorghum genotypes that accumulate high levels of sucrose in stems during the
reproductive phase [29-32].

First-generation energy sorghum hybrids such as TX08001 were developed using a unique
breeding program that enables production of late flowering energy sorghum from early flowering
inbreds [13]. TX08001 has been characterized under field conditions for biomass yield, phenology,
radiation use efficiency, nitrogen use efficiency and in multi-location field studies [23,33,34].
Additional information about variation in energy sorghum hybrid composition under field

conditions is needed to optimize harvesting, processing, and conversion of derived biomass to



biofuels and other bioproducts and to guide further improvements in energy sorghum biomass
composition. In the current study NIRS and NMR methods were used to characterize the

composition of TX08001 grown in irrigated and non-irrigated field conditions.

Materials and methods

1. Harvest of the Energy Sorghum Association Panel (ESAP)

Harvest of plant tissue for the analysis of energy sorghum composition from the energy
sorghum [Sorghum bicolor (L.) Moench] association panel (ESAP) was conducted at the Texas
A&M University Field Station near College Station, Texas (30°37°40"N, 96°20"3"W, 100 m above
sea level) during the summer of 2012 using previously described fertilization, planting densities,
and plot layout [33]. At this location, soils are a Belk Clay (fine, mixed, thermic Entic Hapludert)
[35] that can hold up to 40% water by volume [36]. Rows were thinned to 10 cm spacing and the
spacing between rows was 76 cm, resulting in a planting density of 132,000 plants per hectare.
Five plants were harvested from the center of the row to avoid edge effects. Five adjacent plants
were harvested to mitigate unintentional selection. Compositional analysis was confined to a three
internode section with the middle internode of the three internode section located at the mid-point
of the stem. Harvesting of internode sections located at the middle of the stem was performed to
minimize variation in composition due differences in stage of internode development. Internode
samples from 3 plants were excised from each plant and bulked to form one sample per genotype.
The bulked stem sections were cut into smaller pieces and subsequently dried in a forced air oven

at 60°C. Internode sections were ground in a Wiley Mill (Thomas Scientific, Inc.) until the biomass



particles could pass through a 2 mm sieve and used for NIRS analysis. To prepare internode tissue
for analysis of MLG and nonstructural carbohydrates, biomass was ground further in a Cyclone
Sample Mill (Udy Corporation, Fort Collins, Colorado, USA) until the tissue exhibited the

consistency of a powder.

2. Harvest of the energy sorghum hybrid: TX08001

The composition of the energy sorghum hybrid TX08001 was characterized during
development in the field in 2008 and 2009 at the Texas A&M University Field Station near College
Station, Texas. Plants were grown in the same location and at similar densities as the ESAP
described above. The experimental design for collection of TX08001 biomass from sorghum plants

grown under field conditions was previously described [32,33].

3. Harvest of stem tissue from the sweet sorghum Della

Harvest of sweet sorghum tissue for stem composition analysis was conducted in 2012.
Plants were grown at the same location as the ESAP and TX08001 experiments. Fertilizer was
applied at the same rate as the other two experiments. Plots were thinned to 10 cm spacing. At the
time of harvest, 9 plants were harvested. Plants were harvested near the middle of the row away
from gaps in plant density. Three adjacent plants were selected from each row to maintain random
sampling. Leaf tissue was removed from the stem. Internode tissue from three fully elongated mid-
stem internodes was excised at the node. These internodes were cut into smaller pieces to facilitate
drying and subsequently dried in a forced air oven at 60°C. Internodes sections were ground using

identical methods as stated for samples from TX08001 and the ESAP.



Near-infrared spectroscopic analysis of internode composition

To prepare ground tissue for NIRS analysis, the ground internode samples were re-dried at
60°C to remove residual moisture thereby minimizing variation in moisture content between
samples. NIR spectra were acquired using the stationary module of a Foss XDS grating-
monochromator (Foss North America, Eden Prairie, MN). The samples were scanned in
reflectance mode across the wavelength range of 4,000-9,000 cm™. Two NIR spectra of each
sample were collected on separate occasions to ensure reproducibility of measurement. The spectra
were analyzed using a previously published compositional prediction model developed for
sorghum by NREL [27]. The NREL NIRS model was originally constructed using whole plant
biomass. To assess the applicability of the NIRS model for predicting the composition of stems
and leaves independently, Global H (GH) values were assessed. Spectra with GH >3 are generally
considered too dissimilar to the global spectra set to have their composition accurately predicted
by the model. Analysis of the GH values of all TX08001 internode samples revealed an average
GH = 1.26, with minimum and maximum GH values of 0.521 and 2.72 respectively, indicating
that the NREL NIRS model can be used to predict the composition of leaves and stems.
Additionally, the variation between TX08001 leaf and stem composition and the composition of
the whole plant is much lower than the variation in composition observed between grain, energy

and sweet sorghums that were used to train the NREL NIRS model.

Soluble carbohydrate quantitation

To quantify the abundance of stem non-structural carbohydrates, internode and leaf tissue

was ground to a small particle size in a Cyclone Sample Mill (Udy Corporation, Fort Collins,



Colorado, USA) followed by removal of residual moisture overnight using a forced air oven at
70°C. Next, 200 mg of finely ground biomass was weighed (+ 0.5 mg) using an analytical balance
and transferred to a 15 mL conical glass tube. Water-soluble NSCs were extracted in 10 mL of
water/sodium azide (200 mg/L) solution at 50°C for 48 h with agitation. This length of incubation
was experimentally determined to be optimal for this experimental set-up. This extraction time
allowed the extraction solvent to fully penetrate all of the biomass particles and extract the soluble
carbohydrates. Aliquots of 20 puL were diluted 50X into 980 pL of deionized water. All HPLC
samples were filtered using 0.45 um cellulose acetate sterile filters. Concentrations of sucrose,
glucose, and fructose and glucose released from starch digestion were quantified using high-
performance anion-exchange-pulsed amperometric detection (HPAE-PAD) with a Carbopac PA1
analytical column (Dionex, Sunnyvale, CA, USA) as well as a Borate trap (Dionex) and an
Aminopac column (Dionex) to reduce borate and amino acid interference. A solution of 75 mM
NaOH was made from 50% NaOH solution (Sigma-Aldrich) to eliminate carbonate contamination.
The NaOH eluent was vacuum-degassed overnight and stored under a helium atmosphere for the
duration of the chromatographic run. The standard curve was validated by the incorporation of
curve-validation samples of known concentration throughout the experiment in accordance with
the NREL Laboratory analytical procedure [37]. Mixed-linkage glucan (MLG) was quantified
using the Megazyme [-glucan (mixed linkage) assay kit, assay procedure A (Megazyme, Bray,
Ireland). Glucose released from MLG digestion was assayed using the glucose oxidase/peroxidase
reaction and absorbance was determined using a Beckman Coulter DU730 Life Sciences UV/Vis

spectrophotometer (Beckman Coulter, Brea, CA).

Nuclear magnetic resonance characterization of cell-wall composition



The whole-cell-wall gel HSQC spectra were acquired following the standard protocol
[38,39]. The following protocol was performed on two single plant biological replicates of
TXO08001 at 150 DAE from experiment 2 and Della harvested at anthesis (80 DAE) from
experiment 3. Briefly, extract-free course-ground biomass (300 mg) was milled to a fine powder
with a Fritsch Pulverisette 7, using ZrO, grinding jars (20 mL) and 10 x 10 mm ZrO, balls at 600
rpm, 15 cycles (5 min on, 10 min rest). The fine powder (40 mg) was transferred to a 5 mm NMR
tube and gelled with a mixture of DMSO-ds/pyridine-ds (4:1, 500 puL). The whole-cell-wall gel
was characterized by HSQC spectroscopy on a Bruker Biospin (Rheinstetten, Germany) Avance
700 MHz NMR spectrometer equipped with a gradient 5 mm QCI "H/'P/'3C/!>N cryoprobe with
inverse geometry (proton coils closest to the sample). The central DMSO solvent peak was used

as internal reference (0. 39.5, du 2.49 ppm).

Analysis of lignin composition

The chemical composition of the lignin was determined by Derivatization Followed by
Reductive Cleavage (DFRC) [40,41]. This analysis was conducted on two single plant biological
replicates of both TX08001 at 150 DAE from experiment 2 and Della harvested at anthesis (80
DAE) from experiment 3 The DFRC analysis was performed as described [42]. In a 2 dram vial
with a stir bar and pressure-release PTFE cap (60 psi limit), dry extract-free whole cell walls (45-
50 mg) were treated with a solution of acetyl bromide in acetic acid (1:4, v/v, 5 ml) at 50°C for 3
h. The solvents were removed on a SpeedVac concentrator (ThermoFisher Scientific, 50°C, 30
min, 1.0 torr). The wet film was treated with ethanol (200 proof, 1 mL) to quench any remaining
acetyl bromide, and then the ethanol was removed on a SpeedVac (50°C, 10 min, 1.0 torr). The

samples were then immediately suspended in a solution of 1,4-dioxane : acetic acid : water (5:4:1,



by volume, 5 mL), and zinc nano-powder (150 mg) was added to the vial. The reaction was stirred
for 3 h at room temperature with the addition of more zinc as required to keep a fine suspension.
The reaction was then quenched with saturated ammonium chloride, spiked with a recovery
standard diethyl 5,5 -diferulate (34 pg). The organics were extracted with dichloromethane (5 x 4
mL), the combined organic fractions were dried over sodium sulfate, filtered, and the solvent was
removed under vacuum. The reactive free hydroxyl groups were acetylated with a mixture of acetic
anhydride and pyridine (1:1, 4 mL, 12 h). The excess acetic anhydride and pyridine was removed
on a rotary evaporator. The crude film was dissolved in ethyl acetate (200 puL) and then diluted
with hexanes (200 pL). This caused the residual sugars to precipitate from the solution. The ethyl
acetate : hexanes solution was loaded on to a Supelco Supelclean solid-phase extraction (SPE)
tube (150 mg LC-SI, Sigma-Aldrich part #505048). The products were eluted with ethyl acetate:
hexanes (1:1, 8 mL), the organics were combined and the solvent was removed on a rotary
evaporator. The resulting dry film was transferred to a GC vial with dichloromethane (1 mL), the
vial was spiked with an injection standard 1,1-bis-(4-phenol)ethane (BPA, 50 pg) and injected into
a Shimadzu TQ8030 GC-MRM-MS for quantitative analysis. Instrument calibration was

performed using synthetic standards.

Statistical analyses

Mean comparisons were conducted using the two tailed t-test. This was implemented using

the TTEST() function in Excel.

Results



Variation in stem biomass composition among TX08001 and high

biomass inbreds

Energy sorghum hybrids were grown in College Station for ~150 days. At the time of
harvest many of the energy sorghum accessions remained in the vegetative phase whereas some
had transitioned into the floral development stage. The accumulated stem biomass had a dry/fresh
weight ratio of ~0.17 and soluble compounds accounted for ~30% of the biomass (Fig 1A and B
and S1 Fig). TX08001 was compared to sorghum inbreds that were previously found to be useful
for high biomass production to assess the extent of variation in these stem traits among a selection
of energy sorghum germplasm [13]. The dry/fresh weight ratios of stems of these materials ranged
from ~0.15 to 0.35 at harvest. Analysis of dry biomass composition showed that, among these
genotypes, the soluble fraction of stem biomass ranged from ~15% to ~55% of total dry biomass.
The relative amount of soluble biomass was not correlated with percent dry weight (PCC = 0.13).
However, genotypes that had reached anthesis by 150 days after emergence (DAE) tended to have
higher relative amounts of soluble biomass. Sorghum genotypes are known to accumulate stem
sucrose following floral initiation [29,31]. Therefore, a selection of a subset of the energy sorghum
accessions from the diversity panel had reached or passed anthesis by 150 DAE (Fig 2 and S1 Fig,
denoted by *) and other accessions that were still vegetative (Fig 2 and S1 Fig, no asterisks) were
analyzed for stem sugar accumulation. As expected, genotypes that had reached anthesis prior to
harvest had higher levels of stem sucrose compared with TX08001 and other genotypes that had
not flowered. Mixed linkage glucans (MLG) were also assayed since these polymers can be readily

extracted and digested contributing to fermentable carbohydrate yield. All genotypes exhibited



measureable levels of mixed linkage glucan in their stems, varying between 1-3%. The abundance
of MLG was not correlated with developmental stage or with increasing levels of other stem
carbohydrate pools (Fig 2 and S1 Fig). Significant variation in the relative abundance of sucrose,
glucose, fructose, and starch was observed in stems of genotypes that accumulated high levels of

these compounds (Fig 2 and S1 Fig).

Fig 1. Variation in sorghum stem dry biomass composition in a representative survey of
energy and sweet sorghums. (A) Ratio of dry biomass to fresh biomass of a diverse selection of
sorghum internodes at 150 DAE (experiments 1, 2, and 3, see Materials and Methods). (B) NIRS
prediction of the percentage of the sorghum stem dry biomass that is composed of soluble and
structural molecules of the ESAP in 2012 at 150 DAE (experiment 1). Accessions with (*) were
at or past anthesis developmentally. Each bar represents data obtained from five bulked internode
segments from ESAP accessions. Soluble and structural compositional data was obtained from the
NIRS prediction model. Della and TX08001 stem segments from 150 DAE (experiments 2 and 3),

which are the average of nine plants, are included in the figure for comparison.

Fig 2. Nonstructural carbohydrate profiles of sorghum stems from a selection of
representative energy and sweet sorghums as a percentage of the dry biomass of the stem.
Data were obtained from plant material from experiments 1, 2, and 3. ESAP samples were obtained
from bulked internode samples of five plants that were harvested at 150 DAE (experiment 1). Data
from TX08001 (experiment 2) and Della (experiment 3) were obtained from plants harvested at
150 DAE and 80 DAE respectively and are from 9 biological replicates bulked into three samples.

Accessions with (*) were at or past anthesis developmentally. Measurement of sucrose, glucose,



fructose and starch was performed in duplicate and MLG assays were performed in triplicate. Error

bars represent standard error of the mean.

Biomass accumulation in TX08001 energy sorghum hybrids

The energy sorghum hybrid Tx08001 grown under field conditions was harvested at 30
day intervals in 2009 to characterize changes in biomass accumulation and composition during
~180 days of crop development [34]. During this time TX08001 remained in the vegetative phase.
The current study analyzed TX08001 stem biomass accumulation and composition starting at 90
DAE, a point in time when sufficient biomass had accumulated for potential harvest (~15-20
Mg/ha). Stem dry biomass of TX08001 plants doubled every thirty days from 90-150 DAE under
irrigated conditions and the dry biomass of the leaves increased approximately 2-fold during this
same time interval [34]. The total above-ground dry biomass of Tx08001 plants at 120 DAE was
~225 g (~30 Mg DW/ha) (Fig 3A). At 120 DAE the average dry weight of the energy sorghum
hybrid stems was ~160 g per plant (~21 Mg DW/ha) which accounted for ~66% of the total above
ground dry biomass. The dry biomass of the leaves at 120 DAE was ~70 g per plant (~9 Mg/ha)
and accounted for ~ 33% of the biomass of the total above-ground dry biomass. The rate of stem
biomass accumulation slowed from 150 to 180 DAE [34] and the biomass accumulated during the

last month of the season was due primarily to an increase in the sucrose content of the stem.

Fig 3. Biomass and composition of TX08001 stems and leaves at 120 DAE. (A) The dry biomass
of stems, leaves, and shoots and their components of TX08001 at 120 DAE in 2009 (experiment
2). (B) The percentage of total stem biomass represented by each component as determined by

NIRS. (C) Composition differences between TX08001 stem and leaf tissues at 120 DAE. Values



indicate the proportion in stem tissue relative to leaf tissue. (*) indicates statistically significant
difference (* = a < 0.05, ** = a < 0.01, and *** = o < 0.001) between stems and leaves at 120
DAE. The analysis consisted of 9 biological replicates. Statistics calculated using a t-test. Ex;

extractives.

TX08001 stem and leaf composition

Stem and leaf biomass was collected from TX08001 plants at 120 DAE for compositional
analysis using NIRS (Fig 3). Cell wall polymers (cellulose, GAX, lignin) accounted for ~60% of
TXO08001 stem biomass and ~55% of leaf biomass at this stage of development (Fig 3B). Cellulose
was the most abundant constituent of energy sorghum leaves and stems at 120 DAE, accounting
for ~31% of the stem dry biomass and ~25% of leaf dry biomass (Fig 3B). GAX is the major
hemicellulose present in grass cell walls. The NREL NIRS model reports on the predicted
percentage of arabinose, and xylose that are likely derived from GAX. Considering this, the NIRS
data shows that GAX (xylose and arabinose) was the second most abundant polymer, accounting
for ~18% and ~20% of the total dry biomass in the stem and leaves respectively (Fig 3B). Lignin
was ~12% of stem biomass and ~10% of leaf dry biomass. Arabinose and galactose was present
in comparably small quantities (1-3%) in both stems and leaves. Leaf cell walls contained slightly
more xylose than stem cell walls (28.4% versus 26.5%).

Approximately 40% of the stem biomass was comprised of nonstructural carbohydrates
(glucose, fructose and sucrose), protein, ash, and other extractives (water- and ethanol-soluble).
Leaf biomass was ~7% protein, ~2-fold greater than the stem (Fig 3B and C). Water extractives
not including sugars accounted for ~12% of stem biomass and 17% of leaf biomass (Fig 3B).

Ethanol extractives, which include chlorophyll, waxes, and other minor components, were 4% of



leaf dry biomass and 3% of the stem dry biomass (Fig 3B). Non-combustible biomass (ash)
including silica (non-soil, plant derived) accounted for ~7% and ~12% of the dry biomass of stems
and leaves respectively (Fig 3B). As the stem accounted for ~66% of the total plant dry biomass,

the whole plant composition more closely resembled the composition of the stem (Fig 3A and B).

Stem cell wall and lignin composition of TX08001 and Della

Stem cell wall composition of TX08001 grown in the vegetative phase for 150 days under
field conditions and Della stems harvested just before grain maturity were analyzed in greater
depth. TX08001 stem cell walls excluding protein and ash were comprised of 48% cellulose, 32%
GAX and 20% lignin, a compositional profile very similar to that of sugarcane (S1 Table)[43].
Cell wall GAX was composed of 26.1% xylose, and 3.4% arabinose (S1 Table).

Analysis of lignin composition by HSQC NMR showed a consistent S/G ratio of 0.53-0.58
in the cell walls of stems of the energy sorghum hybrid TX08001 and the sweet sorghum Della
(Table 1 and S2 Fig). There was more tricin T (a chain-initiating unit only recently discovered to
be a lignin monomer [44,45]) in Della than in TX08001 (Table 1 and S2 Fig), but more units A
and B containing chain-propagating units identified by their characteristic inter-unit linkages (B—
0O—4 and B-5) in TX08001. With a lower chain-initiating tricin level in TX08001, we hypothesized
that other indicators of chain initiation, ferulate FA, or components relating to monolignol dimer
formation C or C', and those with cinnamyl alcohol signatures X1, Ca (and perhaps the Ba derived
from them), would be higher but in fact all appeared to be the same or lower in TX08001 (Table
1 and S2 Fig). Incidentally, as recently reported for maize [44], sorghum has essentially no resinol
C levels, with all such dimerization coming from sinapyl p-coumarate that results in structures C'

in the lignin. The higher relative B-ether A level but the lower chain initiation levels make



predicting the relative ease of lignin polymer degradability complex challenging. Additionally, we
are looking at average compositions across harvested stem cell types here (because of the
homogenization/grinding), so changes in physical structure and lignin distribution could have
different (and opposite) impacts. The phenolic acid pendent groups (p-coumarate and ferulate,
acylating either polysaccharides or lignin) were found to be in higher relative abundances in Della

than in TX08001 (S2 Fig).

Table 1. Relative levels, determined from 2D-NMR volume-integrals, of various

units in the whole-cell-walls of sweet sorghum Della and the energy sorghum

TX08001.
Della (sweet) TX08001 (energy)
%S”" 38 36
%G” 62 64
%H 3 2
%T (tricin)” 3 2
%Ba (benzaldehyde)” 5 5
%Ca (cinnamaldehyde)” 4 4
%X1 (cinnamyl alcohol)” 4 4
S/G 0.58 0.53
pCA/(S+G) 0.51 0.44
FA/pCA 0.63 0.62
%A™ 75 79
%C" 19 13
A/OMe 0.26 0.29

S; syringyl, G; guaiacyl, pCA; p-coumarate, FA; ferulate, B-ether units A + A' (B—O0—4



lignin linkage), phenylcoumarans B + B' (-5 lignin linkage), furans C + C' (B— lignin
linkage), and methoxy, OMe. “Percentages on a G+S+S'=100% basis ““Percentages on
an A+A'+B+B'+C+C'=100% basis. The data represent the means of two technical

replicates of two biological replicates from experiments 2 and 3.

Lignin composition, as determined by DFRC, was not substantially different between Della
and TX08001 (Fig 4). As noted by NMR, the amounts of phenolic esters are higher in Della than
TXO08001. The phenolic acids in sorghum cell-walls are linked to the arabinosyl subunits of the
hemicelluloses and to the y-OH of lignin side-chains. Cell-wall-bound ferulate has been shown to
function as a powerful cell wall cross-linking agent, covalently crosslinking hemicelluloses to each
other and to lignins [19,46]. Ferulate has also been recently found to acylate lignins, again on the
v-OH of lignin side-chains; as for p-coumarates, this lignin acylation results from the pre-acylated
lignin monomers [42]. The involvement of monolignol ferulates in lignification produces so-called
‘Zip-lignins’ that are of significant interest because, unlike ‘normal’ lignins, these have ester
linkages in the lignin backbone that are readily cleaved during pretreatment processes and
therefore reduce the recalcitrance of lignin to processing [47,48]. The increase of ferulate pendent
groups in Della indicates a possible increase in ferulate-based crosslinking and/or zip-lignin
formation. Detection of the products of ferulate’s crosslinking into lignin is extremely difficult due
to the large number of products possible (see figure S2 Wilkerson et al.) [48]. However, DFRC
degradation of zip-lignins releases a diagnostic marker compound; the release extent has been
shown to be linearly correlated with the amount of monolignol ferulate used to prepare artificial
maize cell wall lignins [42]. As there was no apparent change in DFRC-releasable monolignol

ferulates, the difference in cell-wall bound ferulate units can be attributed to changes in the ferulate



pool on hemicelluloses.

Fig 4. Monolignol and monolignol hydroxycinnamate conjugate concentrations released
from TX08001 and Della stems by DFRC. Error bars represent standard error of mean. H; 4-
hydroxycinnamyl alcohol, G; coniferyl alcohol, S; sinapyl alcohol, G-DHpCA; coniferyl dihydro-
p-coumarate, G-DHFA; coniferyl dihydroferulate, S-DHpCA; sinapyl dihydro-p-coumarate, S-
DHFA; sinapyl dihydroferulate, all as their diacetates. Data were obtained from two technical

replicates of two biological replicates for both TX08001 and Della (experiments 2 and 3).

Variation in stem composition during vegetative growth

The composition of TX08001 stems changed to a small extent during crop development
from 90 to 180 DAE (Fig 5A). Glucose and fructose as a percentage of the stem dry weight peaked
at 120 DAE and declined slightly thereafter. Sucrose as a percentage of stem dry biomass increased
from ~0.5% to ~3% during this phase of development (Fig 5B and S3 Fig). Glucose and fructose
concentrations peaked at 120 DAE and declined thereafter (S3 Fig). Protein levels in stem biomass
gradually decreased from 3.6% to 1.8% during development and water extractives decreased by a
similar amount (Fig 5B). Between 90 DAE and 180 DAE, the percentage of the dry biomass that
was ash declined by ~3%, from 8.8% to a minimum of ~5.8% (Fig 5A and B). The cellulose,
lignin, and xylan composition of the cell wall did not change significantly during crop development

(S1 Table).

Fig 5. Variation in stem biomass and composition of TX08001 during vegetative

development. (A) TX08001 stem biomass components as a percentage of total biomass of



TX08001 in 2009 (experiment 2). (B) Composition changes in stem tissue from 90 to 180 DAE
of TX08001. Positive values indicate a higher relative percentage in stems at 180 DAE vs. 90
DAE. (*) indicates statistically significant difference (* = a <0.05, ** = a <0.01, and *** = a <
0.001) calculated using a t-test, between 90 DAE and 180 DAE component percentages. The

analysis consisted of 9 biological replicates. Statistics calculated using a t-test. Ex; extractives.

Water deficit decreases biomass and increases stem sucrose

Energy sorghum will routinely be grown without irrigation in regions subject to
intermittent periods of water deficit during long growing seasons [3]. Therefore, the impact of
water deficit on energy sorghum biomass accumulation and composition was evaluated by
growing TX08001 with and without irrigation from July 7 through September 7, 2009 (~150
DAE), summer months nearly always subject to limited rainfall in central Texas [33]. In 2009,
between July 7 and harvest in early September significant rainfall (~40 mm) occurred only once
on July 25th. Energy sorghum grown with irrigation accumulated ~325 g of stem biomass by
harvest, versus ~150 g of stem biomass in plants without irrigation (Fig 6A). In general, the relative
amounts of soluble compounds in stems of non-irrigated TX08001 increased relative to cell wall
biomass compared to plants grown with irrigation (Fig 6C). The relative amounts of sucrose,
glucose and fructose were ~2.6%, ~3.2%, and ~1.7% higher in stems of non-irrigated plants (Fig
6B and C). The total non-structural carbohydrate content of irrigated plants was ~9% of the stem’s
dry weight whereas non-structural carbohydrates accounted for ~17% of stem dry weight in non-
irrigated plants. Metabolites in the water-extractable fraction also increased from 12% to 15% of
dry weight in non-irrigated plants (Fig 6B and C, p-value >0.001). The amount of protein as a

percent of stem biomass in non-irrigated plants was 50% higher than irrigated plants whereas the



percentage of the dry biomass allocated to ash decreased slightly from 6% in the irrigated versus

5% in the non-irrigated cohort (Fig 6B).

Fig 6. Impact of limited irrigation on the biomass and composition of TX08001 stem tissue
at 150 DAE. (A) The difference in dry biomass of irrigated (IRR) and limited irrigation (L-IRR)
stems of TX08001 at 150 DAE in 2009 (experiment 2). (B) TX08001 stem biomass components
as a percentage of the total composition of irrigated and non-irrigated plants at 150 DAE. (C) Stem
composition changes between irrigated and non-irrigated TX08001 at 150 DAE. (*) indicates
statistically significant difference (* = a < 0.05, ** = a < 0.01, and *** = o < 0.001) calculated
using a t-test, between L-IRR and IRR component percentages. The analysis consisted of 9

biological replicates. Statistics calculated using a t-test. Ex; extractives.

Discussion

In the early 1980s, following the oil embargo, forage sorghum’s potential utility as a
biofuel crop was evaluated and late flowering genotypes with high biomass yield were identified
as promising for high biomass energy crop development [13]. Following a hiatus of nearly 20
years, research on energy sorghum was reinitiated in the late 1990s following the discovery of a
feasible way to produce energy sorghum hybrids [49]. Subsequent development of this breeding
system established genetic resources useful for production of photoperiod sensitive energy
sorghum hybrids with high biomass yield [13,23,33]. This activity also created populations and
diversity panels for research aimed at improving the yield, resilience, and composition of energy

sorghum [13,50,51].



The composition of biomass has a significant impact on the logistics of harvesting,
transport, storage, and the methods, efficiency, and the cost of conversion of biomass to biofuels
and bioproducts [10,52]. Composition also impacts potential end-product use and the spectrum of
specialty bioproducts that can be produced economically from biomass feedstocks. Techno-
economic analysis indicates that the cost of biomass contributes ~38% and conversion to products
~25% to the cost of lignocellulosic biofuels [10]. Therefore, it would be ideal to improve biomass
yield and optimize biomass composition while increasing crop resilience.

Due to the relatively recent development of energy sorghum hybrids, there are gaps in our
knowledge of the crop’s biomass composition. Prior studies characterized the composition of
biomass derived from grain, forage, and high biomass sorghum crops harvested at the end of each
crop’s typical growing season [28]. The time-course of sucrose accumulation in sweet sorghum
stems has also been characterized [32], as well as the composition of sorghum grain [53]. In the
current study, the composition of energy sorghum leaves and stems was characterized during the
~180 day growing season. During development, energy sorghum produces a canopy that closes
between ~60-75 DAE [34], followed by rapid stem growth until ~150-175 DAE under optimal
growing conditions [33]. This study evaluated the composition of energy sorghum starting at 90
DAE when biomass yield could justify harvesting in some systems of production. Floral initiation
occurred in mid-September in the field location used in this study when day lengths decrease below
~12.4 hours after ~150 days of vegetative growth.

First-generation energy sorghum hybrids such as TX08001 have the potential to
accumulate >40 Mg/ha of harvestable biomass during 180-210 days of development in good
growing conditions if water supply is not limiting [23,33]. Stems account for ~80% and leaves

~20% of harvestable above ground biomass with roots adding another 15-20% to total plant



biomass accumulation [33]. Green leaf area reaches a plateau by mid-season when lower leaf
senescence matches production of new green leaf area at the top of the canopy [34]. Although
leaves account for only ~20% of harvestable biomass, leaf biomass is potentially a significant
source of protein and energy that could be separated from stems during harvesting and used for
forage [54], processed separately, or returned to the field as a soil amendment [55]. Leaves of
energy sorghum have high dry/fresh weight ratios (~0.43) and more protein and ash content
compared to stems. Ash (wall-associated + non-wall-associated inorganics) neutralizes dilute-acid
pretreatment solvents and therefore reduces its efficiency, increases slag formation during
combustion, reduces the efficiency of catalysts, and generates corrosive byproducts resulting from
pyrolysis [56]. Leaf biomass is easier to dry compared to stem biomass and ensilage allows long-
term storage [57]. Therefore, use of energy sorghum leaf biomass as forage could enhance
economic sustainability [54].

Energy sorghum is principally a stem biomass crop, even though panicles and grain may
accumulate in some genotypes before harvest in locations where short days induce flowering
before harvest. Stem cell walls of TX08001 are composed of ~50% cellulose, ~30% GAX, and
20% lignin and make up the largest fraction of stem biomass (~30-60% of total). The composition
of TX08001 stem cell walls was similar to that of other C4 grasses such as sugarcane [58]. The
ratio of the major constituents of stem cell walls as well as xylose and arabinose content was
relatively constant from 90 DAE to 180 DAE. The composition of Miscanthus stem cell walls also
showed minimal variation during the growing season [22].

Sorghum completes elongation of a stem internode approximately every 4 days during
vegetative growth and after floral initiation until a week before anthesis. The current study

indicates that stem nodes/internodes produced during the growing season are similar in overall cell



wall composition. Analysis of DFRC-released monolignol composition showed that TX08001
stem lignin has a ratio of syringyl (S) to guaiacyl (G) units of approximately 0.53-0.58 (S/G),
similar to that of other C4 grasses. Increasing sorghum stem lignin S/G ratios may improve
saccharification efficiency as has been demonstrated in other plants [59,60]. For the
hydroxycinnamates, p-coumarate (pCA) and ferulate (FA), the amount of pCA/(S+G) and
FA/pCA ratios differ significantly between stems of the sweet sorghum Della and TX08001; these
differences were related to the change in hemicellulose-bound pCA and FA and not changes the
lignin bound pCA and FA. The biological significance of these differences in cell wall
composition has not been examined, but indicates that there is significant natural variation in the
extent and chemistry of cell wall crosslinking that might provide useful ways to improve biomass
saccharification [48]. Changes in cell wall cross-linking may also improve forage digestibility in
conjunction with variation in lignin composition and chemistry already available in forage
sorghum bmr-genotypes [61-63]. Recent development of new methods for biomass and lignin
deconstruction, removal, and conversion to useful products may significantly improve lignin
utilization while increasing the accessibility of other cell wall constituents for conversion to
biofuels and bio-products [64—66].

Sorghum stems can accumulate up to 50% of their biomass in the form of sucrose, glucose
and fructose [4,32]. In addition to fermentable sugars, the stem’s soluble components also include
protein, MLG, ash and a diverse set of other compounds. Efficient utilization of these
heterogeneous materials will enhance the economics of energy sorghum production. The
proportion of soluble biomass relative to structural biomass in stems of diverse energy sorghum
genotypes ranged from 55% to 15%. Accumulation of stem sugars in genotypes that had reached

floral initiation was correlated with higher levels of soluble biomass. The high levels of



fermentable sugars in energy sorghum stems could be extracted and converted to biofuels and
bioproducts at relatively low cost and high efficiency. This suggests that one viable approach to
improving energy sorghum biomass is to increase the amount and density of non-structural
carbohydrates in energy sorghum stems. Energy sorghum genotypes with minimal levels of soluble
stem biomass were also identified (~15% of total). Interestingly, there was little correlation
between the dry/fresh weight ratios and the ratio of soluble/structural biomass.

Crop residues and perennial bioenergy grass crops such as switchgrass and Miscanthus are
harvested at the end of the season after plants have senesced following remobilization of a
significant portion of their carbon and nitrogen to roots for use the following season. Although
remobilization reduces biomass yield by ~20-30% the resulting biomass has a higher dry/fresh
weight decreasing transportation costs and increasing biomass stability. In contrast, energy
sorghum and sugarcane are typically harvested prior to senescence when canopies are green and
sucrose levels in stems are high. Energy sorghum stems have high moisture content (~70-85%) at
harvest, similar to sugarcane. Sorghum stems dry slowly after harvest due to their structure and
high amounts of surface wax, especially in regions of production that have high relative humidity.
Differences in cell wall content/unit stem volume, thickness, or the formation of stem aerenchyma
could contribute to the observed variation in stem dry/fresh weight [67,68].

The utility of large high-moisture stems of sorghum and sugarcane that have the capacity
to accumulate sugars has been recently reviewed [4]. The stems of sugarcane and sorghum can
accumulate ~0.5 M sucrose [4]. Sucrose, glucose and fructose can account for 50% of sweet
sorghum stem dry weight [32] providing significant buffering when the demand for carbohydrate
for growth or seed development is low relative to photosynthetic activity. The accumulated sugars

are a source of carbohydrate for seed filling post-anthesis, tiller production after grain maturation,



or for growth following periods of adverse weather during the vegetative phase. In the current
study TX08001 accumulated higher levels of stem sugars during the vegetative phase under water-

limiting conditions when cell wall biomass accumulation associated with growth was reduced.
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Supporting information

S1 Fig. A comparison between stem nonstructural carbohydrate profiles, dry to fresh
biomass ratios, and the percentage of soluble and structural biomass from a representative

selection of energy and sweet sorghums. Data were obtained from plant material from



experiments 1, 2, and 3. ESAP samples consisted of bulked internodes taken from five plants that
were harvested at 150 DAE (experiment 1). Data from TX08001 (experiment 2) and Della
(experiment 3) were obtained from 9 plants harvested at 150 DAE and bulked into three samples.
(A) Stem nonstructural carbohydrtes profiles from select energy and sweet sorghums.
Measurement of sucrose, glucose, fructose and starch was performed in duplicate and MLG
assays were performed in triplicate. Error bars represent standard error of the mean. (B) Ratio of
dry biomass to fresh biomass of sorghum internodes at 150DAE from the sorghum panel
described above. (C) NIRS prediction of the percentage of the sorghum stem dry biomass that is
composed of soluble and structural molecules from the panel described above. Genotypes with *
flowered during the experiment. Each bar represents data obtained from five bulked internode

segments from ESAP accessions.

S2 Fig. 2D '"H-"3C HSQC NMR spectra of energy sorghum stem cell walls at 150 days after
emergence and sweet sorghum stem cell walls at anthesis. (A, B) Aromatic region, percentages
are based on the summation of peak area of G + S = 100. (C, D) Aliphatic region, percentages
based on summation of the area of the side chain signals for the three components, A + B + B' +

C' =100%.

S3 Fig. Time-course of nonstructural carbohydrate accumulation during energy sorghum
TX08001 development. Data were obtained from plant material harvested form irrigated
TX08001 in 2009. The red data series represents glucose, purple represents fructose, and turquoise

represents sucrose. Errors bars represent standard error of mean.



S1 Table. Cell wall composition of the energy sorghum stem determined by NIRS at 60-180
DAE. The data were obtained from Tx08001 field grown plants in 2008. To measure variation in
cell wall composition throughout the growing season, the means of all time-points of each trait

were used to calculate the standard deviation for that trait through time.
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(A) Sweet sorghum Della

(B) Energy sorghum TX08001
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