

1 DOI: 10.1002/ ((please add manuscript number))

2 Article type: Review

4 **Understanding Small Molecule Interactions in Metal-Organic Frameworks: Coupling**
5 **Experiment with Theory**

7 *Jason S. Lee, Bess Vlaisavljevich, David K. Britt, Craig M. Brown, Maciej Haranczyk, Jeffrey*
8 *B. Neaton, Berend Smit, Jeffrey R. Long, and Wendy L. Queen*

9 J. S. Lee

11 The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720;
12 Department of Chemical and Biomolecular Engineering, University of California, Berkeley,
13 CA, 94720, USA

14 Dr. B. Vlaisavljevich

15 Department of Chemical and Biomolecular Engineering, University of California, Berkeley,
16 CA, 94720, USA

17 Dr. D. K. Britt

18 The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

19 Dr. C. M. Brown

20 National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg,
21 MD, 20899, USA; Department of Chemical Engineering, University of Delaware, Newark,
22 DE, 19716, USA

23 Dr. M. Haranczyk

24 Computational Research Division Lawrence Berkeley National Laboratory, Berkeley, CA,
25 94720, USA

26 Prof. J. B. Neaton

27 The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720,
28 USA; Department of Physics, University of California, Berkeley, CA, 94720, USA

29 Prof. B. Smit

30 Department of Chemical and Biomolecular Engineering, University of California, Berkeley,
31 CA, 94720, USA; Department Institut des Sciences et Ingénierie Chimiques, Ecole
32 Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland

33 Prof. J. R. Long

34 Department of Chemistry, University of California, Berkeley, CA, 94720, USA; Division of
35 Materials Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

36 Prof. W. L. Queen

37 The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
38 wlqueen@lbl.gov; Department Institut des Sciences et Ingénierie Chimiques, Ecole
39 Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland

41 Keywords: ((metal-organic framework, density functional theory, gas adsorption, porous, in-
42 situ characterization))

44 **Abstract**

45 Metal-organic frameworks (MOFs) have gained much attention as next generation

46 porous media for various applications, especially gas separations/storage and catalysis. New

47 MOFs are regularly reported; however, to develop better materials in a timely manner for

48 specific applications, the interactions between guest molecules and the internal surface of the
49 framework must first be understood. In this review, we present a combined experimental and
50 theoretical approach that proves essential for the elucidation of small-molecule interactions in
51 a model MOF system known as $M_2(\text{dobdc})$ ($\text{dobdc}^{4-} = 2,5\text{-dioxido-1,4-benzenedicarboxylate}$;
52 $M = \text{Mg, Mn, Fe, Co, Ni, Cu, or Zn}$), a material whose adsorption properties can be readily
53 tuned via chemical substitution. We additionally show that the study of extensive families like
54 this one can provide a platform to test the efficacy and accuracy of developing computational
55 methodologies in slightly varying chemical environments, a task that is necessary for their
56 evolution into viable, robust tools for screening large numbers of materials.

57
58

1. Introduction

59 Separation processes consume an estimated 10-15% of global energy.^[1] With the
60 expectation that this consumption will greatly increase with population growth and the
61 implementation of large-scale carbon capture and sequestration technologies, there are
62 intensive scientific efforts focused on the development of new physical adsorbents that might
63 enable more energetically favorable gas separations relative to traditional distillation or
64 absorption processes. This feat is not easy, as the differences in the molecules of interest, such
65 as CO_2 and N_2 —the main components in a postcombustion flue gas, are minimal.^[2,3] As such,
66 these separations require tailor-made adsorbent materials with molecule-specific chemical
67 interactions on their internal surface.^[4,5]

68 Metal-organic frameworks (MOFs) are a particularly attractive class of porous
69 adsorbents that are under intense investigation for gas separations due to unmatched structural
70 versatility. Many stable, 3-D frameworks have been discovered that offer unprecedented
71 internal surface areas and the selective adsorption of a wide range of small guest molecules.^[6]
72 The molecular nature of the organic ligand in a MOF provides a convenient modular approach
73 to their synthesis and facile chemical tunability, creating a surge towards the directed design

74 of new materials (**Figure 1**).^[7-9] Through judicious selection of the ligand and metal, which
75 control pore size/shape and MOF-adsorbate interactions, MOF uptake properties, such as gas
76 selectivity, can be tuned.^[10] While there have been many MOFs discovered to date that
77 exemplify future promise in a myriad of applications such as gas storage^[11-15] and
78 separation,^[10,16-18] catalysis,^[19-21] and sensing,^[22] the rate at which materials with optimal
79 properties are discovered is still limited by empirical exploratory syntheses, which sometimes
80 require hundreds or even thousands of chemical reactions to isolate a single new porous
81 hybrid framework. As such, computational efforts, focused on both the structure and property
82 prediction of MOFs, are currently underway.^[23] The development of computational
83 methodologies that might provide experimentalists with targeted frameworks with predefined
84 function would significantly aid their rapid implementation for technological exploitation, a
85 paradigm that defines research-funding initiatives such as the Materials Genome.^[24]

86 Although the process of performing theory and simulation can be faster than its
87 experimental counterpart, the accuracy of simulation tools will govern what types of
88 predictions can be made and the types of systems that can be studied.^[25,26] As such,
89 experiments are often required for validation of developing computational models. This
90 practice will allow their evolution into viable tools that can be used to answer experimentally
91 intractable questions pertaining to structure-property relationships in large numbers of
92 hypothetical (not yet synthesized) MOFs^[27] and to evaluate the performance of reported
93 structures for varying applications.^[28] In this review we highlight the importance of coupling
94 experimental and theoretical efforts to understand small-molecule interactions within metal-
95 organic frameworks; while this partnership has been difficult to forge in the past, its presence
96 is becoming more prevalent throughout the literature and will certainly have a strong impact
97 in the implementation of MOFs in many energetically relevant applications in the future.

98
99 **2. MOFs with open metal coordination sites**

100 In many MOFs, weak van der Waals forces are the dominant interactions between the
101 framework and surface bound guest species; recent work has shown that an effective strategy
102 to increase binding energy and hence the surface packing density of adsorbates is through the
103 generation of MOFs that contain high concentrations of coordinatively-unsaturated metal
104 centers.^[29] These open metal sites are shown to induce framework selectivity in the adsorption
105 of small molecules and provide a mechanism for charge transfer on the framework surface.<sup>[30-
106 33]</sup> While open metal sites provide strong interactions allowing gas adsorption at higher
107 temperatures and lower pressures than typically used for energy consuming cryo-distillation
108 processes, the adsorbate-adsorbent interactions are often weak relative to the formation of
109 chemical bonds providing facile release of the molecules during the regeneration step of a
110 separation process. Recent work by McDonald *et al.* also revealed that certain diamines,
111 grafted to open metal sites, can offer strong, selective binding of CO₂ at low pressures (~400
112 ppm at room temperature)^[34,35] even after water exposure.^[36] All of these attributes have
113 brought understanding small-molecule interactions in materials with open metal sites to the
114 forefront of MOF chemistry.

115 One of the most well-studied MOFs to date is M₂(dobdc), alternatively known as M-
116 MOF-74 or CPO-27-M, where M = Mg, Mn, Fe, Co, Ni, Cu, or Zn (**Figure 2**).^[30,37-44] The
117 significance of this framework is related to the interesting adsorption properties that derive
118 from the existence of unique structural features. For instance, upon solvent removal, this
119 material offers one of the highest densities of open metal sites of any framework discovered to
120 date. It also undergoes chemical substitution with a wide range of first-row transition metals,
121 which is perhaps only rivaled by MOFs of the type M-BTT (BTT³⁻ = 1,3,5-
122 benzenetrifluorotetrazolate), where M = Mn, Fe, Co, Ni, Cu or Cd,^[45-48] and M₃(btc)₂ (btc³⁻ =
123 1,3,5-benzenetricarboxylate), where M = Cr, Cu, Zn, Mo, or Ru,^[49-53] providing a mechanism
124 for tuning the adsorption properties (**Figure 3**) whilst retaining the same framework bonding

125 motif.^[54] Further, all structural analogs within the M₂(dobdc) family are of high crystalline
126 quality allowing for detailed studies of structure-property relationships and providing an
127 experimental platform to test how accurately developing force fields can describe the guest
128 interaction in slightly varying chemical environments.^[55,56] Recent studies on this framework
129 encompass a wide range of experimental and theoretical methodologies utilized to
130 characterize interactions with various guests in the M₂(dobdc) compound family (Figure 3).^[57]
131 While this is certainly not the only important MOF, it is highly prominent and has been the
132 focus of many theoretical and experimental studies alike and consequently was chosen to be
133 our focus within the context of this review.

134

135 **3. Examples of studies coupling experiment and theory**

136

137 **3.1 CO₂ adsorption in M₂(dobdc) series**

138 The realization that Mg₂(dobdc) exhibits an exceptionally high CO₂ uptake at low
139 pressure (<0.1 bar, Figure 3) and room temperature and rapid, reversible
140 adsorption/desorption of CO₂, sparked much interest in this framework for post-combustion
141 CO₂ capture.^[58,59] While it was hypothesized from high initial isosteric heats (-47 kJ/mol),^[40]
142 derived from gas adsorption measurements, that CO₂ molecules were preferentially binding at
143 the open metal site, other methods such as diffraction, IR, Raman, and density functional
144 theory (DFT) were used to afford direct evidence of the location and orientation of CO₂
145 molecules binding within the pore.^[60-65] From neutron powder diffraction (NPD) data, it was
146 found that CO₂ molecules bind in an “end-on” orientation with Mg-O(CO₂) distances and
147 angles that range from 2.24 to 2.39 Å and 125 to 144°, respectively, depending on the CO₂
148 loading level.^[60] These results agree well with DFT derived Mg-O(CO₂) distances and angles
149 computed at the B3LYP-D level to be 2.31 Å and 129°, respectively.^[63]

150 While the local structure around the CO₂ adsorption site seems to agree well with

151 theoretical efforts, there has been on-going debate within the MOF community as to whether
152 the CO₂ molecule adsorbs in a linear or nonlinear geometry. This debate is an important one
153 as intramolecular bending has strong implications for proposals that have been made to utilize
154 MOFs with open metal sites for the activation and chemical conversion of CO₂. Several
155 diffraction studies show that the O–C–O angle within the adsorbed CO₂ molecule deviates
156 significantly, >15°, from the expected 180°;^[60,66] however, first principles studies carried out
157 by Wu *et al.* indicate a significant energy penalty for such a bend;^[64] this result calls into
158 question whether the experimentally determined bending could be the result of a
159 misinterpretation of the diffraction data due to statically disordered molecules on the
160 framework surface. This debate has since been laid to rest as a recent study shows that an
161 improvement in the crystalline quality of Mg₂(dobdc) and slowly cooling the CO₂ adsorbed
162 sample before diffraction experiments yields an intramolecular CO₂ angle with minimal
163 deviation from the expected linear geometry, 179(2)°. Within error of the experiment, bending
164 cannot be observed. While this work shows a nice correlation between experiment and theory,
165 it also highlights the importance of sample quality and proper handling.

166 While many aforementioned techniques indicated that the exposed open metal sites are
167 the preferential binding sites for CO₂ in Mg₂(dobdc), a gap in understanding the diffusive
168 properties of CO₂ was still elusive. ¹³C NMR measurements of CO₂ adsorbed Mg₂(dobdc)^[67]
169 were carried out, revealing a distinct chemical shift anisotropy (CSA) powder pattern, which
170 was at the time interpreted to be the result of a uniaxial rotation with a fixed rotation angle θ
171 that ranged from 56° to 69° (200 K to 400 K). However, a more recent study used molecular
172 simulations to probe the free energy landscape of CO₂ in Mg₂(dobdc) under conditions similar
173 to those used in the NMR study. Monte Carlo Simulations, used to simulate CSA powder
174 patterns, suggested that the NMR signature was instead the result of a molecular hopping
175 motion between metals within the crystallographic *ab* plane indicating that the dynamics of
176 CO₂ within Mg₂(dobdc) were likely more complex than originally expected (**Figure 4**).^[68]

177 Since these studies of CO₂ adsorption in Mg₂(dobdc), several combined experimental
178 and theoretical approaches have been taken to identify the host–guest interactions that lead to
179 significant differences in isosteric heats among all of the metal substituted analogs in the
180 M₂(dobdc) series.^[54,69] Among those members, isosteric heats of adsorption (Figure 3) follow
181 a trend (Mg > Ni > Co > Fe > Mn > Zn > Cu) that unexpectedly does not correlate with ionic
182 radii.^[68] A recent study by Yu *et al.* gives an explanation for the observed trend through a
183 description of nuclear screening effects by M²⁺ *d*-orbitals. Their first-principles study reveals
184 that the relative strength of the electrostatic interaction is dictated by the effective charge of
185 the metal cation at the open coordination site where CO₂ binds.^[54] The most recent study of
186 CO₂ adsorption in M₂(dobdc) additionally used diffraction experiments to unveil the site-
187 specific binding properties of CO₂ within most of the analogs. DFT calculations accounting
188 for van der Waals interactions quantitatively corroborate and rationalize the observations
189 regarding intramolecular CO₂ angles and trends in relative geometric properties and heats of
190 adsorption in the M₂(dobdc)–CO₂ adducts (Table 1). Huck *et al.* compared the different
191 metals in their performance for carbon capture and showed that for ideal dry flue gas mixture
192 the Mg version of M₂(dobdc) performed optimally.^[70] However, Lin *et al.*^[56] showed that the
193 presence of trace amount of water makes Mg₂(dobdc) lose its selectivity.^[68]

194 Of particular interest was the weakest CO₂ adsorbent, Cu₂(dobdc) (Figure 3). The
195 structural analysis of this framework resulted in a local minimum with CO₂ bound in a parallel
196 orientation with the framework wall, rather than bound to the open metal site, a result that did
197 not agree with the vdW-DF2 calculations. To investigate this mismatch between experiment
198 and theory, the nudged elastic band transition state method,^[71] was used to assess the potential
199 existence of a kinetic barrier between the two structures. When no such barrier was found,
200 high intensity diffraction data obtained from a synchrotron source was assessed. The data
201 revealed a secondary adsorption site unidentified in the lower intensity NPD data, a direct
202 result of weakly-bound/ slightly-disordered CO₂. Assignment of the secondary site resulted in

203 stabilization of the expected structural model proposed from DFT, with CO₂ adsorbed at the
204 open metal, and an overall improvement in the structural refinement.^[69]

205 Given the recent success of computational methods in the prediction of adsorbate
206 interactions with open metal sites, as determined through experimental validation, recent
207 quantum mechanical calculations have been applied to predicting the CO₂ adsorption
208 properties of hypothetical materials within the M₂(dobdc) family. The goal is to provide
209 experimentalists with guidance towards synthesizing the most useful materials. A recent study
210 of Poloni *et al.* utilized van der Waals-corrected DFT and a local chemical bond analysis to
211 explain trends in the binding between CO₂ and open metal sites.^[72] They, and others^[73]
212 suggest that two yet-to-be synthesized materials, V₂(dobdc) and Ti₂(dobdc), would exhibit
213 CO₂ binding energies that are significantly stronger than any of the existing analogs. They
214 reason their result using the electronic configuration of these two divalent cations and
215 symmetry of the metal coordination site upon CO₂ binding, which give rise to empty
216 antibonding orbitals between CO₂ and the metal cation. It is additionally worth noting that
217 other studies have predicted, using both DFT and quantum-chemical methods, that V₂(dobdc)
218 could be of potential utility for the separation of N₂ from CH₄, a particularly challenging
219 separation of critical value in natural gas utilization.^[74] The vanadium(II) ions have a binding
220 energy that is significantly increased due to π back bonding with N₂ but not with CH₄. While
221 both of these theoretical efforts give a target for experimentalist to synthesize, to date the
222 reaction conditions necessary for the isolation of V₂(dobdc) or Ti₂(dobdc) have not been
223 identified. This lack of success calls into question the experimental feasibility of theoretical
224 targets. As such, computational methods to help identify the practicality of materials synthesis
225 through predictions of potential reaction conditions will be a worthwhile effort in the future.

226 Aside from structural properties, a strong synergy between experiment and theory
227 exists in the prediction of adsorption isotherms. The exceptional capacity for CO₂ adsorption
228 in Mg₂(dobdc) cannot be reproduced with off-the-shelf force fields as they do not properly

229 describe the CO₂-metal interaction. However, quantum chemical methods can be used to fit
230 force fields from *ab initio*. Dzubak *et al.* showed that by fitting a force field from the
231 interaction energies of a cluster model of Mg₂(dobdc) at the MP2 level of theory, adsorption
232 isotherms can be computed in good agreement with experimental data.^[75] Furthermore, by
233 comparing the computed and experimentally determined isosteric heats of adsorption, they
234 showed that approximately 20% of the metal sites are not accessible in the experimental
235 structure. This finding was recently supported by an experimental study, which revealed, from
236 a combination of diffraction data and adsorption measurements, that a large percentage of
237 open metal sites in the M₂(dobdc) series, up to 30 %, are inaccessible.^[69] Subsequently, Lin *et*
238 *al.*^[56] developed a scheme to fit force fields from periodic DFT (vdW-DF2 in particular)
239 eliminating the need to choose a cluster model. In this work, CO₂ and water force fields were
240 developed and by calculating mixture isotherms, they discovered that CO₂ uptake drops to
241 nearly zero even when small amounts of water are present. Studies like these are successful if
242 one wishes to study a particular framework for which force fields in the literature fail;
243 however, challenges remain when MOFs with open metal sites are included in screening
244 studies of large databases. Ongoing work in this area focuses on first identifying materials
245 with open metal sites, computing charges for a large database, and improving the force fields
246 used in screening to reliably capture binding at the open metal site.

247

248 **3.2 Hydrocarbon separations in M₂(dobdc)**

249 Likewise, members of the M₂(dobdc) family have shown significant promise for the
250 separation of light hydrocarbons, namely paraffin/olefin mixtures such as ethane/ethylene and
251 propane/propylene.^[31,76] These separations, which are currently carried out via distillation at
252 low-temperatures and high pressures, are among the most energy consuming in the chemical
253 industry.^[77] A physical adsorbent that could permit an efficient paraffin/olefin separation at
254 higher temperatures could offer remarkable energy savings.

255 An *in-situ* diffraction study revealed that the high selectivity of O₂ over N₂ observed in
256 Fe₂(dobdc) resulted from π -complexation of the open iron(II) site with oxygen, as indicated
257 by a side-on binding mechanism (Figure 2);^[30] this discovery led Bloch *et al.* to subsequently
258 begin investigating olefin/paraffin separations in this same analog.^[31] Single component
259 isotherms, breakthrough experiments, and NPD were used to determine isosteric heats and
260 selectivities, separation ability of binary mixtures, and binding geometries of C2 and C3
261 hydrocarbons, respectively. Results from the single component isotherms indicated a high
262 affinity for unsaturated hydrocarbons versus their saturated counterparts, and NPD also
263 revealed the expected side-on binding for acetylene, ethylene and propylene (Figure 2).
264 Breakthrough experiments, carried out on equimolar mixtures of ethane/ethylene and
265 propane/propylene at 318 K, indeed revealed good separation performance, with greater than
266 99% purity (at 318K) of the separated components in all cases.^[31]

267 As breakthrough experiments are extremely time consuming, Krishna in parallel
268 developed methodologies to simulate the breakthrough characteristics to assess many
269 materials and for a variety of industrially relevant hydrocarbon separations.^[31,76] The
270 aforementioned experimental results were first used to validate these tools to show that the
271 simulations could reproduce breakthrough experiments obtained from Fe₂(dobdc) with
272 reasonable accuracy. Then the tools were subsequently applied to make quantitative
273 comparisons with many other competitive adsorbent materials, including both zeolites and
274 other MOFs with open metal sites; the studies indicate superiority of Fe₂(dobdc) for
275 paraffin/olefin separations over all of those computationally analyzed. These predictive tools
276 were additionally applied to simulate breakthrough experiments for the iron(II) analog in a
277 quaternary gas mixture including methane, ethane, ethylene, and acetylene at 318 K. While
278 this separation is of high importance in the purification of natural gas, breakthrough
279 experiments with such complex gas mixtures are still experimentally intractable. The
280 simulation results suggest a successful separation could be carried out (**Figure 5**) with three

281 adsorbent beds packed with the title material. Finally, the tools were used to assess the
282 separation of low-concentrations of acetylene (0.01 bar) from ethylene (1bar), as the former is
283 not tolerable in ethylene polymerization reactors. The simulations suggest that acetylene
284 concentrations of approximately 10 ppm could be realized at 318 K with $\text{Fe}_2(\text{dobdc})$ as the
285 solid adsorbent.^[31] All of these studies are prime examples that highlight the evolution of
286 computational tools and their application in assessing materials properties that would
287 otherwise be experimentally challenging.

288 Since this time, several other comprehensive experimental and theoretical studies have
289 been carried out to assess other metal-substituted analogs of $\text{M}_2(\text{dobdc})$.^[65,76,78,79] Geier *et al.*
290 have demonstrated from adsorption isotherm data and breakthrough experiments collected on
291 the Mg, Mn, Fe, Co, Ni, and Zn containing analogs that the highest achievable separation
292 selectivity for ethane/ethylene and propane/propylene could be realized with the Fe^{2+} and
293 Mn^{2+} analogs, respectively (from 318 to 358 K).^[79] In a recent study, Lee *et al.* utilized vdW-
294 DF2 with Hubbard U corrections to assess 140 unique systems; they studied 10 metal-
295 substituted $\text{M}_2(\text{dobdc})$ analogs, both hypothetical and known, and their interactions with 14
296 different small molecules including C1-C3 hydrocarbons.^[65] Compared to experimental
297 results, the theoretically predicted binding geometries and enthalpies indicated good
298 agreement across all hydrocarbon systems studied, with the exception of C_3H_8 , which has
299 more internal degrees of freedom relative to other small molecules, making it difficult to
300 resolve the global minimum.

301 To the best of our knowledge, only a few other theoretical studies have been applied to
302 understand small hydrocarbon- $\text{M}_2(\text{dobdc})$ interactions, and those are solely focused on the
303 Fe^{2+} analog. Verma *et al.* studied an 88 atom (3 Fe atoms) and a 106 atom (5 Fe atoms)
304 cluster model using the M06L functional for C1-C3 hydrocarbons. While they were able to
305 show unsaturated hydrocarbons adsorb more strongly to open metal sites than saturated
306 analogs and accurately predict the trend observed in the experimentally determined binding

307 enthalpies ($C_2H_2 > C_2H_4 > C_3H_6 > C_3H_8 > C_2H_6 > CH_4$), the calculated enthalpies
308 overestimated the experimental values by 8.4 to 20.9 kJ/mol.^[80] Furthermore, the binding
309 energy was decomposed and the damped dispersion term was shown to correlate with the
310 bonding trends observed, with the exception of acetylene. Additionally, Kim *et al.* used first-
311 principles calculations to determine the orbital interactions between the open metal site and
312 C1-C3 hydrocarbons allowing them to directly assess olefin/paraffin separation ability in
313 $Fe_2(dobdc)$.^[81] Their periodic DFT calculations were equipped to fully describe both
314 intermolecular interactions and magnetic ordering from the host lattice. They found that the
315 HOMO of the paraffin only weakly interacts with iron(II) without back-donation, implying
316 that the separation is predominately facilitated by the well-known π -interaction of the olefins.
317 However, intermolecular interactions and magnetic ordering of the host lattice were also
318 shown to make a significant contribution to the binding energy, 2-28% and 6-8%
319 respectively.^[81]

320 It is clear from the aforementioned results that many computational methodologies
321 have been used to assess hydrocarbon interactions in this extensive family of metal-organic
322 frameworks; however, it is worth noting that the comprehensive experimental study presented
323 by Geier *et al.* also shows that methods of sample preparation and activation greatly influence
324 materials performance.^[79] As such, we again reiterate that experimental efforts focused on
325 maximizing sample quality are an essential component when trying to draw direct correlations
326 between experimental and theoretical results.

327

328 **3.3 Small molecule activation and conversion in $M_2(dobdc)$**

329 While most of this review has been focused on gas separations that are reliant on
330 weaker, electrostatic type interactions between open metal sites and adsorbates, open metal
331 coordination sites also offer an opportunity for charge transfer on the pore surface, making the
332 line between gas separation and chemical conversion on some occasions a bit obscure. This

333 was highlighted in a recent study of O₂/N₂ adsorption in Fe₂(dobdc).^[30] While it was
334 determined that the material was highly selective for O₂ over N₂, it undergoes a crossover
335 from a physisorption to a chemisorption regime (above 225 K) rendering the O₂ adsorption
336 process irreversible. It was found that the framework undergoes oxidation to form Fe³⁺ and a
337 surface bound peroxide species, as determined by a significant elongation in the O–O distance
338 from 1.25(1) to 1.6(1) Å.^[30] Maximoff and Smit explained these observations in terms of
339 charge-transfer-mediated adsorption of electron acceptor oxygen molecules in the metal-
340 organic framework, which is driven by quasi-one-dimensional metal–insulator–metal
341 transitions that localize or delocalize the quasi-one-dimensional electrons.^[82]

342 This study and many others^[32,83-88] have bolstered interest in developing new MOF
343 platforms that offer catalytically active sites for the conversion of small molecules into value-
344 added chemicals, a task that offers a strong economic and environmental payoff. MOFs offer
345 many attractive features as heterogenous catalysts that include well-defined and isolated
346 active sites that potentially prevent unwanted side reactions, crystalline lattices that are
347 conducive to understanding structure-property relationships, and size, shape, and chemical
348 exclusion that can make reactivity and product formation selective. One recent example in the
349 literature shows a comparative study between Mg₂(dobdc) and Ni₂(dobdc) for the gas phase
350 oligomerization of propylene into longer chain hydrocarbons (at 453 K and 5 bar), a study
351 relevant to the production of liquid fuels and detergents. While the Mg²⁺ analog was found to
352 be inactive, the Ni²⁺ derivative showed a relatively good reactivity compared to Ni²⁺-
353 exchanged aluminosilicates but a significantly higher selectivity for the production of linear
354 over branched chain oligomers. The increase in selectivity is likely related to steric effects
355 that result from active Ni²⁺ sites embedded in the MOF wall.^[88]

356 While in principle, it is possible to rationally design the active site and control its
357 surrounding environment with an unparalleled degree of precision, MOFs also have several
358 limitations related to stability and, as a result, long term cyclability.^[89] With few tandem

359 experimental and theoretical studies, there is currently a lot of room for strong partnerships,
360 particularly related to targeted design of materials with predefined function, identifying
361 reaction mechanisms or short-lived reaction intermediates, and understanding mechanical,
362 chemical, and thermal stability of materials in various application relevant environments.
363 While it is not our goal to review heterogeneous catalysis in MOFs, as that has been done
364 elsewhere,^[90-93] we will briefly highlight a couple tandem studies involving M₂(dobdc).

365 Efficient catalysts that can aid in the activation C–H bonds could help to transform the
366 chemical industry by allowing the conversion of cheap, abundant alkanes into other valuable
367 organic compounds. Currently activation is readily carried out in nature by metalloenzymes
368 but mimicking this reactivity is quite difficult in synthetic systems that do not have the
369 protective protein superstructure, making reactive iron(IV)–oxo sites susceptible to
370 decomposition. A recent study by Xiao *et al.* has shown the conversion of ethane to ethanol
371 with N₂O oxidation of Fe₂(dobdc) (**Figure 6**).^[94] NPD was first used to unveil the binding
372 mechanism of N₂O at low-temperatures where the coordination is reversible. It revealed the
373 Fe²⁺–N₂O adduct has mixed η^1 -O and η^1 -N coordination, with distances of 2.42(3) Å and
374 2.39(3) Å from the metal, respectively. This was further validated by DFT studies with the
375 M06 functional, which also showed that η^1 -O is favored over η^1 -N by only 1.1 kJ/mol, further
376 supporting the observation of mixed coordination. When heating the N₂O dosed framework to
377 348 K there is an irreversible transformation to Fe₂(OH)₂(dobdc) with an Fe–OH distance of
378 1.91(1) Å, a value that was further corroborated both by EXAFS and periodic DFT
379 calculations. When the framework is heated in mixtures of N₂O, Ar, and ethane the reaction
380 yields various ethane-derived products. The authors propose that a short-lived iron(IV)–oxo is
381 the active species; however, they were unable to capture this using these standard
382 characterization methods as it quickly decomposes to an iron(III) containing material,
383 Fe₂(OH)₂(dobdc). Electronic structure calculations via periodic DFT (PBE+U) and a cluster
384 model at the M06/M06L level of theory were used to characterize the active site. Both

385 methods predict the existence of a quintet ground state with a short Fe–O bond distance of
386 1.64 Å, a value consistent with previously characterized iron(IV)–oxo species.^[94] It should be
387 additionally noted that the authors synthesized a material that was diluted with Fe²⁺,
388 Fe_{0.1}Mg_{1.9}(dobdc), in hopes to separate the reactive sites and inhibit other side reactions.
389 Indeed this yielded the exclusive formation of ethanol and acetaldehyde (in a 10:1 ratio).

390 To the best of our knowledge, other combined theoretical and experimental studies
391 focused on small molecule activation and conversion in the title compounds appear to be
392 limited to a recent study of Tan *et al.* that investigates the water dissociation mechanism on
393 the surface of several M₂(dobdc) analogs.^[95] This understanding is very difficult in many
394 materials, such as nanocrystals, that rely on surface defects as active sites, making the process
395 much less straight forward to characterize; however, MOFs, particularly the system of
396 interest, offer a nice means to study water dissociation on open metal sites with easy structural
397 characterization. In this study the authors used a combination of *in-situ* IR spectroscopy with
398 first principles calculations to characterize the materials. They find a dissociation of D₂O at
399 temperatures above 423 K as determined by the appearance of an absorption band at 970 cm⁻¹.
400 DFT calculations indicate the O–D bond is attributed to that of a D atom attached to the
401 phenolate linker, while the (OD)⁻ binds to the metal. It is suggested that the reactivity of the
402 metal-substituted frameworks has the following trend, Zn> Mg > Ni > Co, as determined by
403 the intensity of the absorption bands for each materials under the same conditions; however,
404 the authors make no assessment of sample quality nor the number of open metal sites likely
405 available in the materials which has proven important in many previous studies.^[69]

406
407 **4. Characterization of MOFs**

408

409 **4.1 Experimental approaches, limitations, and need for theory**

410 Since the discovery of the first MOF with open metal sites, Zn(bdc) (bdc=1,4

411 benzenedicarboxylate),^[96] synthetic efforts based on multiple strategies have led to the
412 generation of many open metal site-containing materials. These approaches include the
413 incorporation of metalloligands^[97-99] or syntheses where open metal site-containing metal
414 clusters are used *ab initio*.^[100,101] In other cases, serendipity has led to the incorporation of
415 solvent into a coordination site of the metal upon framework formation.^[49] In any of these
416 instances, activation procedures, which are typically carried out with a combination of
417 vacuum and heat, are necessary to liberate solvent molecules from the metals for subsequent
418 *in-situ* characterization of adsorption properties.

419 For most *in-situ* measurements, customized cells are integrated with gas dosing
420 manifolds that deliver predefined amounts of adsorbate to materials that are then cooled or
421 heated *in-situ* to the temperature regime of interest. For example, for measurements meant to
422 unveil static structural properties, low temperatures less than 100 K are typically used, while
423 for spectroscopic measurements, used to observe phenomena such as diffusion, much higher
424 temperatures are often required to activate dynamic modes.^[67] Much recent effort has also
425 been put into studying materials in more application relevant environments, such as high
426 pressures and temperatures that are required for many gas storage and separation applications;
427 these studies are focused on unveiling information related to framework flexibility and
428 mechanical stability.^[102]

429 With most practical applications of MOFs reliant on specific interactions with small
430 guest molecules, understanding these interactions is a necessity to interpret the properties of
431 existing frameworks, and in turn, inform the design of new and improved MOFs with desired
432 function. The crystalline nature of these materials gives rise to a nonhomogeneous potential
433 energy landscape that dictates how incoming guest species arrange themselves on the
434 framework surface. As such, *in-situ* diffraction techniques are the most direct way to
435 characterize static host-guest interactions and are particularly powerful when paired with
436 adsorption measurements. Diffraction can reveal, for example, the location and orientation of

437 static guest molecules, relative differences in binding energies between sites, the nature of
438 binding interactions, and the framework response to various stimuli such as pressure and
439 temperature.

440 While *in-situ* structural characterization of MOFs has become relatively common,
441 there are inherent limitations in this approach. For instance, position and time-averaged
442 diffraction experiments can be limited by static or dynamic disorder making it difficult to
443 elucidate, on some occasions, fine structural detail associated with important bond angles and
444 distances. These problems can become even more significant with variations in sample
445 handling and low crystalline quality as previously discussed. Recent theoretical work suggests
446 that inconsistencies of the crystal structure inputs obtained from experimentally determined
447 diffraction data can greatly influence the results of molecular simulation studies^[28]; Dzubak *et*
448 *al.* report *Grand Canonical Monte Carlo* (GCMC) simulations of CO₂ adsorption isotherms
449 from several experimentally determined structures of M₂(dobdc).^[74] It was found that the
450 predicted adsorption isotherms obtained from the experimental data deviated greatly from the
451 experimental isotherm, while those obtained from the DFT-optimized structures showed good
452 agreement.^[75] It was hypothesized that the lack of agreement was the result of variations in
453 lattice parameters from the as-prepared samples, highlighting the sensitivity of these
454 calculations to atomic structure.^[75,103]

455 A wide range of *in-situ* spectroscopic methodologies such as IR and Raman,^[104,105]
456 inelastic neutron scattering (INS),^[106] NMR,^[67] and others^[107-109] are highly sensitive to
457 molecular interactions in porous media and have been used to successfully characterize
458 various guest-framework interactions. While many of these techniques directly probe small
459 molecule dynamics related to rotations, vibrations, and diffusion; the resulting spectra can
460 also be used to extract binding configurations, binding enthalpies, and even loading levels.
461 While we do not intend to review all of these techniques individually, as they have been
462 thoroughly covered elsewhere^[104,109-113] we would like to point out that there are limitations

463 related to data interpretation that can be significantly aided by theoretical investigations.^[114]

464 Information pertaining to small-molecule interactions is often extracted from line
465 shifts, widths, and/ or intensities. There are false assumptions throughout the literature that
466 correlate line shifts in IR, Raman, and INS spectra with adsorption energy; this is often not
467 the case as peak positions are extremely sensitive to the coordination environment around the
468 open metal site.^[104,106,115] In addition, integrated peak intensities are often assumed to be
469 associated with the loading level^[114]; however, in systems where increased loading results in
470 additional intermolecular interactions this correlation does not always hold true. This was
471 highlighted by a combined experimental and theoretical study of Nijem *et al.* who studied H₂
472 adsorption in the M₂(dbodc) series. They found that high H₂ loadings in Mg₂(dobdc) resulted
473 in a counterintuitive decrease in IR intensity due to a decrease in the effective charge of H₂ at
474 the open metal site.^[116] While these tools are widely accepted as a means to assess host-guest
475 interactions, interpretation of the data should proceed with caution and when relevant theory,
476 capable of incorporating van der Waals interactions, should be used as a tool to help interpret
477 the data.

478 In many instances, computational tools have proven necessary for the interpretation of
479 spectra. This was highlighted by the work of Lin *et al.* that for the first time used molecular
480 simulations to reproduce CSA powder patterns of C¹³NMR, work that was proven essential
481 for the interpretation of diffusive motions of CO₂ in Mg₂(dobdc).^[68] More recently, NEXAFS,
482 an element specific technique, was used to probe the Mg K-edge in the activated Mg₂(dobdc)
483 and then with DMF and CO₂ bound to the open metal site. Spectra, simulated using a DFT-
484 based protocol and compared with the experimental spectra, proved essential in understanding
485 variations in the local electronic environment around the open metal site with adsorption.^[107]

486 **4.2 Computational approaches, limitations, and comparisons with experiment**

488 In the study of adsorption properties of MOFs, there are many opportunities to draw

489 comparisons between experiment and theory. DFT can be used to optimize structures, predict
490 binding energies, and compute spectroscopic properties comparable with diffraction data,
491 isosteric heats derived from adsorption measurements, and experimental spectra. On the other
492 hand, molecular simulations such as Grand Canonical Monte Carlo (GCMC) are used to
493 simulate single or mixed component adsorption isotherms, the Henry coefficient, and the heat
494 of adsorption, while molecular dynamics simulations are used to obtain diffusion coefficients
495 (**Figure 7**). The development of a computational toolbox for characterization is not only
496 meant to aid in small scale experimental endeavors like understanding host-guest interactions
497 in families of MOFs as presented here, but is ultimately meant to be applied to large scale
498 computational screening of databases derived from both experimental and hypothetical
499 materials. From an experimental perspective, while the synthesis of large numbers of
500 frameworks in a high-throughput manner is already time intensive, large scale experimental
501 screening of materials properties is still nonexistent.

502 For any calculation, computationally ready structure files, either derived from
503 diffraction data or structure simulations, are first required. It should be noted, that
504 experimentally determined structures must first be corrected so they are devoid of missing
505 protons, adjusted for solvent, or partially occupied or disordered atoms. With this purpose in
506 mind, The Computationally-Ready, Experimental (CoRE) MOF database, which contains
507 ~5,000 structures that have been deemed ‘computationally ready’ was created.^[28] A
508 hypothetical framework can also be generated either by modifying an existing experimental
509 structure (e.g. ligand functionalization or metal substitution) or through the use of a MOF
510 building algorithm.^[117,118] Generally, both experimental structures and those generated via
511 assembling building blocks should be optimized with either molecular mechanics or
512 electronic structure calculations prior to their use. Due to the large size of MOF unit cells,
513 DFT seems to be the only viable QM method to study MOFs across their diverse chemistries.
514 While the accuracy of DFT always depends on the functional, the Generalized Gradient

515 Approximation (GGAs) are typically in good agreement with experiment. For example, the
516 $M_2(\text{dobdc})$ series ($M=\text{Mg, Mn, Fe, Co, Ni, Cu, and Zn}$) optimized with PBE+ U resulted in
517 mean absolute errors (MAEs) in the metal-oxygen bonds ranging from 0.9-2.1% and lattice
518 constants in good agreement with experiment.^[65] Finally, we should note that the current
519 efforts in generating hypothetical structures have many limitations. For example, trade-offs in
520 computational costs between evaluating structures for synthetic accessibility and exploring
521 additional degrees of structural freedom make it difficult to develop a high-throughput
522 algorithm that still yields an accurate, yet exhaustive list of predicted structures.^[119]

523 A significant challenge in DFT is related to the development of functionals that are
524 able to account for the contribution that dispersion forces have on adsorbate-adsorbent
525 interactions.^[120-121] The Local Density Approximation (LDA) or GGA exchange correlation
526 functionals do not accurately account for dispersion forces causing an overestimation or
527 underestimation of the interaction energies, respectively. As such, several approaches have
528 been taken to include dispersion within DFT formalism including the semiempirical
529 correction approaches developed by Grimme (DFT-D2 or DFT-D3)^[122,123] and the nonlocal
530 vdW-DF functionals.^[124,125] The vdW-DF2^[124] functional, among the best performing vdW-
531 DF functionals, slightly overestimates distances between adsorbed guest species and the metal
532 site; however, binding energies are generally in good agreement with the experiment. More
533 extravagant methods include several high level corrections to the DFT energies, but these
534 methods require system specific correction factors and are not transferable from one MOF
535 system to another. Additionally, meta-GGAs like the Minnesota functionals^[126] have been
536 shown to account for dispersion to some extent. (See a recent review on vdW forces in
537 DFT)^[127] Furthermore, MOFs that contain metals with unpaired d electrons located on the
538 metal center require the use of Hubbard U corrections to properly describe the electronic
539 structure when employing periodic DFT and a plane wave basis.^[128] In open metal sites, this
540 correction is required to properly predict the spin ground state and improve the energetics of

541 the d band. If either is not correct, the interaction with the open-metal site and the guest will
542 not be accurate. While these QM methods have not been used in a truly high-throughput
543 manner for screening materials, they have been applied to families of materials to understand,
544 for example, how metal substitution effects adsorption properties.^[65]

545 For molecular simulations a classical force field that properly describes the host-guest
546 and guest-guest interactions must be chosen. For other classes of porous materials (e.g.
547 zeolites and the isoreticular MOF series), well-established force fields in the literature have
548 been shown to perform well. However, for the strong interactions in MOFs with open metal
549 sites, off-the-shelf force fields fail to describe the guest-open metal site interaction,
550 underestimate the binding strength, and results in an adsorption isotherm in poor agreement
551 with the experiment (Figure 7).^[75,129] Two approaches have been used to develop force fields
552 for open-metal site MOFs. One approach is to employ a standard force field but scale the
553 partial charges or empirically refit the vdW parameters in order to obtain good agreement
554 with a set of experimental data.^[130] However, this approach requires accurate experimental
555 data and while the adsorption isotherm or heat of adsorption may be well reproduced, it does
556 not guarantee that the physics of the system is properly described. In other cases, force fields
557 are fit to quantum chemical calculations.^[26,75,131-136] This approach does not require any input
558 from experiment but requires a significant amount of work. The choice of level of theory for
559 the QM calculation, to use a cluster model or periodic approach, the charge model, and the
560 functional form of the force field are all essential choices one must make (see recent review
561 by Yang *et al.* for more details).^[137]

562 GCMC simulations have been used successfully to not only study specific MOFs, but
563 also to perform high-throughput screening^[137] of MOF databases (see recent reviews).^[25]
564 MOFs with open metal sites are particularly challenging for these types of studies. Not only is
565 it challenging to identify which of the MOFs in the database contain open metal sites without
566 visually inspecting each MOF, one must decide if the force field being used in the screening is

567 able to treat that metal site appropriately. Due to the large number of MOFs included in a
568 screening study, a new force field cannot be developed for each material and ongoing work in
569 this field is focused on these types of problems.

570

571 **5. Future Outlook**

572 Though progress as been made in cooperative advancement of both theory and
573 experiment in understanding MOF-small molecule interactions, the rate at which materials are
574 symbiotically being discovered, characterized, and actively utilized remains slow. One
575 challenge is the difficulty of developing synthetic pathways towards a specific structure
576 containing desired building blocks. Even when a new MOF is successfully synthesized, there
577 are few guarantees aside from chemical intuition and empirical trends that it can be used for
578 the application motivating its development. Hence, a genomic approach to MOF design^[23,24]
579 would enable scientists to screen many hypothetical structures, identify those with the highest
580 potential for a specific application, and propose possible synthetic conditions to expedite the
581 discovery process. Alongside the computational frameworks utilizing high-level theory,
582 computational tools, such as Zeo++,^[138] are being developed to further bridge the gap
583 between theoretical prediction and experimental synthesis by integrating high-throughput
584 exploration of materials space. One of the challenges to be addressed in the near future is
585 better control of the diversity and biases in the libraries being generated as well as better
586 assessment of synthetic feasibility during the enumeration process. Such algorithms have been
587 published for zeolites,^[139,140] and similar tools need to be developed to capture the structure
588 and pore diversity of MOFs. Similarly, data mining and machine learning approaches^[141,142]
589 will require more MOF-focused classifiers, including structure and pore geometry, to
590 correlate available simulation and experimental data with possible applications. Hence, tools
591 that do not utilize intensive QM calculations are offering valuable information, even if it's just
592 pore geometry and species-specific accessible void space, towards guiding the discovery and

593 application of MOFs.

594 These tools, along with high throughput screening with QM and GCMC methods, will
595 push past the era of largely serendipitous MOF discoveries^[143] and allow for engineered
596 porous media for solving specific problems. Despite the successes that have been
597 demonstrated in M₂(dobdc), transferring that success to other materials of interest and
598 executing the “genomic approach” remains challenging. Computational tools are still
599 uncertain as to the limits of valid MOF structures. Regardless, the MOF field continues to be
600 a rapidly growing field for both experimental and theoretical work due to the cooperative
601 efforts that push both to grow together.

602
603 **Acknowledgements**

604 We would like to acknowledge the Nanoporous Materials Genome Center of the US
605 Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences,
606 Geosciences and Biosciences under Award Number DE-FG02-12ER16362 for the support of
607 J. S. L. and W. Q. We would also like to acknowledge the Center for Gas Separations
608 Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the
609 U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award
610 DE-SC0001015 for support of C. B., J. N., B. S., and J. R. L. M. H. was supported by the
611 Center for Applied Mathematics for Energy Research Applications (CAMERA), funded by
612 the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231.

613
614 Received: ((will be filled in by the editorial staff))
615 Revised: ((will be filled in by the editorial staff))
616 Published online: ((will be filled in by the editorial staff))

617
618 [1] J. R. Long, Center for Gas Separations, <http://www.cchem.berkeley.edu/co2efrc/>, January,
619 2015.

620 [2] D. M. D'Alessandro, B. Smit, J. R. Long, *Angew. Chem. Int. Ed.* **2010**, *49*, 6058.

621 [3] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H.
622 Bae, J. R. Long, *Chem. Rev.* **2011**, *112*, 724.

623 [4] J.-R. Li, J. Yu, W. Lu, L.-B. Sun, J. Sculley, P. B. Balbuena, H.-C. Zhou, *Nat. Commun.*
624 **2013**, *4*, 1538.

625 [5] J.-R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, H.-C. Zhou, *Coord.*
626 *Chem. Rev.* **2011**, *255*, 1791.

627 [6] O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q.
628 Snurr, S. B. T. Nguyen, A. Ö. Yazaydin, J. T. Hupp, *J. Am. Chem. Soc.* **2012**, 134, 15016.

629 [7] H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, *Nature* **1999**, 402, 276.

630 [8] H. K. Chae, D. Y. Siberio-Pérez, J. Kim, Y. B. Go, M. Eddaoudi, A. J. Matzger, M.
631 O'Keefe, O. M. Yaghi, *Nature* **2004**, 427, 523.

632 [9] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, *Science*
633 **2002**, 295, 469.

634 [10] J.-R. Li, R. J. Kuppler, H.-C. Zhou, *Chem. Soc. Rev.* **2009**, 38, 1477.

635 [11] N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi,
636 *Science* **2003**, 300, 1127.

637 [12] D. L. Sarkisov, O. M. Yaghi, R. Q. Snurr, *Langmuir* **2004**, 20, 2683.

638 [13] G. Férey, *Nature* **2005**, 436, 187.

639 [14] R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H.
640 Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, *Nature* **2005**, 436, 238.

641 [15] L. J. Murray, M. Dincă, J. R. Long, *Chem. Soc. Rev.* **2009**, 38, 1294.

642 [16] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, *Nature* **2000**, 404, 982.

643 [17] D. Bradshaw, T. J. Prior, E. J. Cussen, J. B. Claridge, M. J. Rosseinsky, *J. Am. Chem.
644 Soc.* **2004**, 126, 6106.

645 [18] Z. R. Herm, E. D. Bloch, J. R. Long, *Chem. Mater.* **2013**, 26, 323.

646 [19] J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. B. T. Nguyen, J. T. Hupp, *Chem.
647 Soc. Rev.* **2009**, 38, 1450.

648 [20] J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, *Chem. Soc. Rev.* **2014**, 43, 6011.

649 [21] M. Ranocchiari, J. A. van Bokhoven, *Phys. Chem. Chem. Phys.* **2011**, 13, 6388.

650 [22] F. Luo, S. R. Batten, *Dalton Trans.* **2010**, 39, 4485.

651 [23] I. Siepmann, Nanoporous Materials Genome Center, <http://www.chem.umn.edu/nmgc/>,
652 January 2015.

653 [24] Materials Innovation, <http://materialsinnovation.tms.org/genome.aspx>, January 2015.

654 [25] Y. J. Colón, R. Q. Snurr, *Chem. Soc. Rev.* **2014**, *43*, 5735.

655 [26] M. Fischer, J. R. B. Gomes, M. Jorge, *Mol. Simulat.* **2014**, *40*, 537.

656 [27] C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, R. Q. Snurr,

657 *Nat. Chem.* **2012**, *4*, 83.

658 [28] Y.G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, T.

659 Yildirim, O. K. Farha, D. S. Sholl, R. Q. Snurr, *Chem. Mater.* **2014**, *26*, 6185.

660 [29] Y. Liu, H. Kabbour, C. M. Brown, D. A. Neumann, C. C. Ahn, *Langmuir* **2008**, *24*,

661 4772.

662 [30] E. D. Bloch, L. J. Murray, W. L. Queen, S. Chavan, S. N. Maximoff, J. P. Bigi, R.

663 Krishna, V. K. Peterson, F. Grandjean, G. J. Long, B. Smit, S. Bordiga, C. M. Brown, J. R.

664 Long, *J. Am. Chem. Soc.* **2011**, *133*, 14814.

665 [31] E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, *Science*

666 **2012**, *335*, 1606.

667 [32] S. Horike, M. Dincă, K. Tamaki, J. R. Long, *J. Am. Chem. Soc.* **2008**, *130*, 5854.

668 [33] Y.-S. Bae, C. Yeon Lee, K. C. Kim, O. K. Farha, P. Nickias, J. T. Hupp, S. B. T.

669 Nguyen, R. Q. Snurr, *Angew. Chem. Int. Ed.* **2012**, *51*, 1857.

670 [34] T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Wiers, C. S. Hong, J. R. Long, *J. Am.*

671 *Chem. Soc.* **2012**, *134*, 7056.

672 [35] T. M. McDonald, J. A. Mason, X. Kong, E. D. Bloch, D. Gygi, A. Dani, V. Crocella, F.

673 Giordanino, S. O. Odoh, W. Drisdell, B. Vlaisavljevich, A. L. Dzubak, R. Poloni, S. K.

674 Schnell, N. Planas, K. Lee, T. Pascal, L. F. Wan, D. Prendergast, J. B. Neaton, B. Smit, J. B.

675 Kortright, L. Gagliardi, S. Bordiga, J. A. Reimer, J. R. Long, *Nature* **2015**, *519*, 303.

676 [36] W. R. Lee, S. Y. Hwang, D. W. Ryu, K. S. Lim, S. S. Han, D. Moon, J. Choi, C. S.

677 Hong, *Energy Environ. Sci.* **2014**, *7*, 744.

678 [37] N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'Keeffe, O. M. Yaghi, *J. Am. Chem. Soc.*
679 **2005**, *127*, 1504.

680 [38] P. D. C. Dietzel, R. E. Johnsen, R. Blom, H. Fjellvåg, *Chem.–Eur. J.* **2008**, *14*, 2389.

681 [39] P. D. C. Dietzel, R. Blom, H. Fjellvåg, *Eur. J. Inorg. Chem.* **2008**, *23*, 3624.

682 [40] S. R. Caskey, A. G. Wong-Foy, A. J. Matzger, *J. Am. Chem. Soc.* **2008**, *130*, 10870.

683 [41] W. Zhou, H. Wu, T. Yildirim, *J. Am. Chem. Soc.* **2008**, *130*, 15268.

684 [42] P. D. C. Dietzel, R. E. Johnsen, R. Blom, H. Fjellvåg, *Chem.–Eur. J.* **2008**, *14*, 2389.

685 [43] P. D. C. Dietzel, R. Blom, H. Fjellvåg, *Eur. J. Inorg. Chem.* **2008**, *23*, 3624.

686 [44] S. Bhattacharjee, J.-S. Choi, S.-T. Yang, S. B. Choi, J. Kim, W.-S. Ahn, *J. Nanosci.*
687 *Nanotechno.* **2010**, *10*, 135.

688 [45] M. Dincă, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann, J. R. Long, *J. Am. Chem.*
689 *Soc.* **2006**, *128*, 16876.

690 [46] M. Dincă, W. S. Han, Y. Liu, A. Dailly, C. M. Brown, J. R. Long, *Angew. Chem. Int. Ed.*
691 **2007**, *46*, 1419.

692 [47] Biswas, M. Maes, A. Dhakshinamoorthy, M. Feyand, D. E. De Vos, H. Garcia, N. Stock,
693 *J. Mater. Chem.* **2012**, *22*, 10200.

694 [48] K. Sumida, S. Horike, S. S. Kaye, Z. R. Herm, W. L. Queen, C. M. Brown, F. Grandjean,
695 G. J. Long, A. Dailly, J. R. Long, *Chem. Sci.* **2010**, *1*, 184.

696 [49] S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, *Science*.
697 **1999**, *283*, 1148.

698 [50] M. Kramer, U. Schwarz, S. Kaskel, *J. Mater. Chem.* **2006**, *16*, 2245.

699 [51] J. I. Feldblyum, M. Liu, D. W. Gidley, A. J. Matzger, *J. Am. Chem. Soc.* **2011**, *133*,
700 18257.

701 [52] L. J. Murray, M. Dincă, J. Yano, S. Chavan, S. Bordiga, C. M. Brown, J. R. Long, *J. Am.*
702 *Chem. Soc.* **2010**, *132*, 7856.

703 [53] O. Kozachuk, K. Yusenko, H. Noei, Y. Wang, S. Walleck, T. Glaser, R. A. Fischer,
704 *Chem. Commun.* **2011**, *47*, 8509.

705 [54] D. Yu, A. Ö. Yazaydin, J. R. Lane, P. D. C. Dietzel, R. Q. Snurr, *Chem. Sci.* **2013**, *4*,
706 3544.

707 [55] J. Borycz, L.-C. Lin, E. D. Bloch, J. Kim, A. L. Dzubak, R. Maurice, D. Semrouni, K.
708 Lee, B. Smit, L. Gagliardi, *J. Phys. Chem C* **2014**, *118*, 12230.

709 [56] L.-C. Lin, K. Lee, L. Gagliardi, J. B. Neaton, B. Smit, *J. Chem. Theory Comput.* **2014**,
710 *10*, 1477.

711 [57] P. Canepa, C. A. Arter, E. M. Conwill, D. H. Johnson, B. A. Shoemaker, K. Z. Soliman,
712 T. Thonhauser, *J. Mater. Chem.* **2013**, *1*, 13597.

713 [58] D. K. Britt, H. Furukawa, B. Wang, T. G. Glover, O. M. Yaghi, *P. Natl. Acad. Sci. USA.*
714 **2009**, *106*, 20637.

715 [59] A. Ö. Yazaydin, R. Q. Snurr, T.-H. Park, K. Koh, J. Liu, M. D. LeVan, A. I. Benin, P.
716 Jakubczak, M. Lanuza, D. B. Galloway, J. J. Low, R. R. Willis, *J. Am. Chem. Soc.* **2009**, *131*,
717 18198.

718 [60] W. L. Queen, C. M. Brown, D. K. Britt, P. Zajdel, M. R. Hudson, O. M. Yaghi, *J. Phys.*
719 *Chem. C* **2011**, *115*, 24915.

720 [61] R. Poloni, B. Smit, J. B. Neaton, *J. Phys. Chem. A* **2012**, *116*, 4957.

721 [62] Y. P. Yao, N. Nijem, J. Li, Y. J. Chabal, D. C. Langreth, T. Thonhauser, *Phys. Rev. B*
722 **2012**, *85*, 064302.

723 [63] L. Valenzano, B. Civalleri, S. Chavan, G. T. Palomino, C. O. Areán, S. Bordiga, *J. Phys.*
724 *Chem. C* **2010**, *114*, 11185.

725 [64] H. Wu, J. M. Simmons, G. Srivivas, W. Zhou, T. Yildirim, *Chem. Lett.* **2010**, *1*, 1946.

726 [65] K. Lee, J. D. Howe, L.-C. Lin, B. Smit, J. B. Neaton, *Chem. Mater.* **2015**, *27*, 668.

727 [66] P. D. C. Dietzel, R. E. Johnsen, H. Fjellvåg, S. Bordiga, E. Groppo, S. Chavan, R. Blom,
728 *Chem. Commun.* **2008**, 5125.

729 [67] X. Kong, E. Scott, W. Ding, J. A. Mason, J. R. Long, J. A. Reimer, *J. Am. Chem. Soc.*
730 **2012**, *134*, 14341.

731 [68] L.-C. Lin, J. Kim, X. Kong, E. Scott, T. M. McDonald, J. R. Long, J. A. Reimer, B. Smit,
732 *Angew. Chem. Int. Ed.* **2013**, *52*, 4410.

733 [69] W. L. Queen, M. R. Hudson, E. D. Bloch, J. A. Mason, M. I. Gonzalez, J. S. Lee, D.
734 Gygi, J. D. Howe, K. Lee, T. A. Darwish, M. James, V. K. Peterson, S. J. Teat, B. Smit, J.
735 B. Neaton, J. R. Long, C. M. Brown, *Chem. Sci.* **2014**, *5*, 4569.

736 [70] J. M. Huck, L.-C. Lin, A. Berger, M. N. Shahrak, R. L. Martin, A. Bhowm, M.
737 Haranczyk, K. Reuter, B. Smit, *Energy. Environ. Sci.* **2014**, *7*, 4136.

738 [71] G. Mills, H. Jónsson, G. K. Schenter, *Surf. Sci.* **1995**, *324*, 306.

739 [72] R. Poloni, K. Lee, R. F. Berger, B. Smit, J. B. Neaton, *Chem. Lett.* **2014**, *5*, 861.

740 [73] J. Park, H. Kim, S. S. Han, Y. Jung, *Chem. Lett.* **2012**, *3*, 826.

741 [74] K. Lee, W. C. Isley III, A. L. Dzubak, P. Verma, S. J. Stoneburner, L.-C. Lin, J. D.
742 Howe, E. D. Bloch, D. A. Reed, M. R. Hudson, C. M. Brown, J. R. Long, J. B. Neaton, B.
743 Smit, C. J. Cramer, D. G. Truhlar, L. Gagliardi, *J. Am. Chem. Soc.* **2014**, *136*, 698.

744 [75] A. L. Dzubak, L.C. Lin, J. Kim, J. A. Swisher, R. Poloni, S. N. Maximoff, L. Gagliardi,
745 *Nat. Chem.* **2012**, *4*, 810.

746 [76] Y. He, R. Krishna, B. Chen, *Energy Environ. Sci.* **2012**, *5*, 9107.

747 [77] R. B. Eldridge, *Ind. Eng. Chem. Res.* **1993**, *32*, 2208.

748 [78] D.L. Chen, H. Shang, W. Zhu, R. Krishna, *Chem. Eng. Sci.* **2014**, reprint.

749 [79] S. Geier, J. A. Mason, E. D. Bloch, W. L. Queen, M. R. Hudson, C. M. Brown, J. R.
750 Long, *Chem. Sci.* **2013**, *4*, 2054.

751 [80] P. Verma, X. Xu, D. G. Truhlar, *J. Phys. Chem. C* **2013**, *117*, 12648.

752 [81] H. Kim, J. Park, Y. Jung, *Phys. Chem. Chem. Phys.* **2013**, *15*, 19644.

753 [82] S. N. Maximoff, B. Smit, *Nat. Commun.* **2014**, *5*, 4032.

754 [83] K. Schlichte, T. Dratzke, S. Kaskel, *Micropor. Mesopor. Mater.* **2004**, *73*, 81.

755 [84] P. Horcajada, S. Surblé, C. Serre, D. Y. Hong, Y. K. Seo, J. S. Chang, J. M. Grenèche, I.
756 Margiolaki, G Férey *Chem. Commun.* **2007**, 2820.

757 [85] F. Vermoortele, M. Vandichel, B. Van de Voorde, R. Ameloot, M. Waroquier, V. Van
758 Speybroeck, D. E. De Vos, *Angew. Chem. Int. Ed.* **2012**, *51*, 4887.

759 [86] J. Kim, S. Bhattacharjee, K.-E. Jeong, S.-Y. Jeong, W.-S. Ahn *Chem. Commun.* **2009**,
760 3904.

761 [87] D. Ruano, M. Díaz-García, A. Alfayate, M. Sánchez-Sánchez, *Chem. Cat. Chem.* **2015**,
762 7, 674.

763 [88] A. N. Mlinar, B. K. Keitz, D. Gygi, E. D. Bloch, J. R. Long, A. T. Bell, *ACS Catal.*
764 **2014**, *4*, 717.

765 [89] J. Gascon, A. Corma, F. Kapteijn, F. X. Llabrés i Xamena, *ACS Catal.* **2014**, *4*, 361.

766 [90] A. Corma, H. García, F. X. Llabrés i Xamena, *Chem. Rev.* **2010**, *110*, 4606.

767 [91] F. Llabrés i Xamena, J. Gascon (Editors): *Metal Organic Frameworks as Heterogeneous*
768 *Catalysts*, Royal Society of Chemistry, Cambridge, England, **2013**.

769 [92] D. Farrusseng, S. Aguado, C. Pinel, *Angew. Chem. Int. Ed.* **2009**, *48*, 7502.

770 [93] J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, *Chem. Soc.*
771 *Rev.* **2009**, *38*, 1450.

772 [94] D. J. Xiao, E. D. Bloch, J. A. Mason, W. L. Queen, M. R. Hudson, N. Planas, J. Borycz,
773 A. L. Dzubak, P. Verma, K. Lee, F. Bonino, V. Crocellà, J. Yano, S. Bordiga, D. G. Truhlar,
774 L. Gagliardi, C. M. Brown, J. R. Long, *Nat. Chem.* **2014**, *6*, 590.

775 [95] K. Tan, S. Zuluaga, Q. Gong, P. Canepa, H. Wang, J. Li, Y. J. Chabal, T. Thonhauser,
776 *Chem. Mater.* **2014**, *26*, 6886.

777 [96] H. Li, C. E. Davis, T. L. Groy, D. G. Kelley, O. M. Yaghi, *J. Am. Chem. Soc.* **1998**, *120*,
778 2186.

779 [97] A. M. Shultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, *J. Am. Chem. Soc.* **2009**, *131*, 4204.

780 [98] O. K. Farha, A. M. Shultz, A. A. Sarjeant, S. T. Nguyen, J. T. Hupp, *J. Am. Chem. Soc.*
781 **2011**, *133*, 5652.

782 [99] D. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei, H.-C. Zhou, *Angew. Chem. Int. Ed.*
783 **2012**, *51*, 10307.

784 [100] D. Feng, K. Wang, Z. Wei, Y.P. Chen, C. M. Simon, R. K. Arvapally, R. L. Martin, M.
785 Bosch, T.-F. Liu, S. Fordham, D. Yuan, M. A. Omary, M. Haranczyk, B. Smit, H.-C. Zhou,
786 *Nat. Commun.* **2014**, *5*, 5723.

787 [101] U. Schubert, *Chem. Soc. Rev.* **2011**, *40*, 575.

788 [102] K. W. Chapman, G. J. Halder, P. J. Chupas, *J. Am. Chem. Soc.* **2008**, *130*, 10524.

789 [103] W. Sun, L. C. Lin, X. Peng, B. Smit, *AIChE J.* **2014**, *60*, 2314.

790 [104] S. Zuluaga, P. Canepa, K. Tan, Y. J. Chabal, T. Thonhauser, *J. Phys.: Condens. Matter.*
791 **2014**, *26*, 133002.

792 [105] J. Vitillo, L. Regli, S. Chavan, G. Ricchiardi, G. Spoto, P. D. C. Dietzel, S. Bordiga, A.
793 Zecchina, *J. Am. Chem. Soc.* **2008**, *130*, 8386.

794 [106] W. L. Queen, E. D. Bloch, C. M. Brown, M. R. Hudson, J. A. Mason, A.-J. Cuesta-
795 Ramirez, V. K. Peterson, J. R. Long, *Dalton Trans.* **2012**, *41*, 4180.

796 [107] W. S. Drisdell, R. Poloni, T. M. McDonald, J. R. Long, B. Smit, J. B. Neaton, D.
797 Prendergast, J. B. Kortright, *J. Am. Chem. Soc.* **2013**, *135*, 18183.

798 [108] N. Rosenbach Jr., H._ Jobic, A. Ghoufi, F. Salles, G. Maurin, S. Bourrelly, P. L.
799 Llewellyn, T. Devic, C. Serre, G. Férey, *Angew. Chem. Int. Ed.* **2008**, *47*, 6611.

800 [109] L. Valenzano, J. G. Vitillo, S. Chavan, B. Civalleri, F. Bonino, S. Bordiga, C. Lamberti,
801 *Catal. Today* **2012**, *182*, 67.

802 [110] H. C. Hoffmann, M. Debowski, P. Müller, S. Paasch, I. Senkovska, S. Kaskel, E.
803 Brunner, *Materials*. **2012**, *5*, 2537.

804 [111] A. Sutrisno, Y. Huang, *Solid State Nucl. Mag.* **2013**, *49-50*, 1.

805 [112] J. L. C. Rowsell, J. Eckert, O. M. Yaghi, *J. Am. Chem. Soc.* **2005**, *127*, 14904.

806 [113] S. Bordiga, E. Groppo, G. Agostini, J. A. van Bokhoven, C. Lamberti, *Chem. Rev.*
807 **2013**, *113*, 1736.

808 [114] S. Chavan, O. Zavorotynska, C. Lamberti, S. Bordiga, *Dalton Trans.* **2013**, *42*, 12586.

809 [115] N. Nijem, J.-F. Veyan, L. Kong, K. Li, S. Pramanik, Y. Zhao, J. Li, D. Langreth, Y. J.
810 Chabal, *J. Am. Chem. Soc.* **2010**, *132*, 1654.

811 [116] N. Nijem, J.-F. Veyan, L. Kong, H. Wu, Y. Zhao, J. Li, D. C. Langreth, Y. J. Chabal, *J.*
812 *Am. Chem. Soc.* **2010**, *132*, 14834.

813 [117] R. L. Martin, M. Haranczyk, *Cryst. Growth Des.* **2014**, *14*, 2431.

814 [118] M. A. Addicoat, D. E. Coupry, T. Heine, *J. Phys. Chem. A* **2014**, *118*, 9607.

815 [119] S. Bureekaew, R. Schmid, *Cryst. Eng. Comm.* **2013**, *15*, 1551.

816 [120] L. Valenzano, B. Civalleri, K. Sillar, J. Sauer, *J. Phys. Chem. C* **2011**, *115*, 21777.

817 [121] K. Sillar, J. Sauer, *J. Am. Chem. Soc.* **2012**, *134*, 18354.

818 [122] S. Grimme, *J. Comput. Chem.* **2006**, *27*, 1787.

819 [123] S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.* **2011**, *32*, 1456.

820 [124] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, B. I. Lundqvist, *Phys. Rev.*
821 *Lett.* **2004**, *92*, 246401.

822 [125] K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, D. C. Langreth, *Phys. Rev. B* **2010**, *82*,
823 081101.

824 [126] Y. Zhao, D. G. Truhlar, *Chem. Phys. Lett.* **2011**, *502*, 1.

825 [127] K. Berland, C. A. Arter, V. R. Cooper, K. Lee, B. I. Lundqvist, E. Schröder, P.
826 Hyldgaard, *J. Chem. Phys.* **2014**, *140*, 18A539.

827 [128] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, *Phys. Rev.*
828 *B* **1998**, *57*, 1505.

829 [129] R. Krishna, J. M. van Baten, *Sep. Purif. Technol.* **2012**, *87*, 120.

830 [130] J. M. Castillo, T. J. H. Vlugt, S. Calero, *J. Phys. Chem. C* **2008**, *112*, 15934.

831 [131] M. Fischer, F. Hoffmann, M. Fröba, *Chem. Phys. Chem.* **2010**, *11*, 2220.

832 [132] M. Fischer, B. Kuchta, L. Firlej, F. Hoffmann, M. Fröba, *J. Phys. Chem. C* **2010**, *114*,
833 19116.

834 [133] L. Chen, L. Grajciar, P. Nachtigall, T. Düren, *J. Phys. Chem. C* **2011**, *115*, 23074.

835 [134] L. Grajciar, A. D. Wiersum, P. L. Llewellyn, J.-S. Chang, P. Nachtigall, *J. Phys. Chem. C* **2011**, *115*, 17925.

836 [135] M. Rubeš, L. Grajciar, O. Bludský, A. D. Wiersum, P. L. Llewellyn, P. Nachtigall, *Chem. Phys. Chem.* **2012**, *13*, 488.

837 [136] L. Chen, C. A. Morrison, T. Düren, *J. Phys. Chem. C* **2012**, *116*, 18899.

838 [137] Q. Yang, D. Liu, C. Zhong, J. R. Li, *Chem. Rev.* **2013**, *113*, 8261.

839 [138] T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, M. Haranczyk, *Microporous Mesoporous Mater.* **2012**, *149*, 134.

840 [139] R. L. Martin, B. Smit, M. Haranczyk, *J. Chem. Inf. Model.* **2012**, *52*, 308.

841 [140] M. Pinheiro, R. L. Martin, C. H. Rycroft, A. Jones, E. Iglesia, M. Haranczyk, *J. Mol. Graph. Model.* **2013**, *44*, 208.

842 [141] S. L. Kinnings, N. Liu, P. J. Tonge, R. M. Jackson, L. Xie, P. E. Bourne, *J. Chem. Inf. Model.* **2011**, *51*, 408.

843 [142] R. L. Martin, C. M. Simon, B. Smit, M. Haranczyk, *J. Am. Chem. Soc.* **2014**, *136*, 5006.

844 [143] W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle, M. Bosch, H.-C. Zhou, *Chem. Soc. Rev.* **2014**, *43*, 5561.

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **Table 1.** Experimental and Theoretical (DFT) data comparing CO₂ adsorption properties of
 865 the M₂(dobdc) series.^{a),b)} taken from reference 69.

M	M···O(CO ₂) [Å]		∠ O–C–O(CO ₂) [°]		∠ M–O–C(CO ₂) [°]		−Q _{st} [kJ/mol] ^{c)}	−ΔH [kJ/mol] ^{d)}
	Experiment	Theory	Experiment	Theory	Experiment	Theory	Experiment	Theory
Mg	2.27(1)	2.41	178(2)	178.3	131(1)	123.8	43.5(2)	40.9
Mn	2.51(3)	2.57	176(3)	178.8	120(2)	122.2	31.7(1)	33.9
Fe	2.29(3)	2.62	179(3)	178.7	106(2)	120.6	33.2(1)	34.1
Co	2.23(4)	2.56	174(4)	178.7	118(2)	118.6	33.6(1)	33.8
Ni	2.29(3) ^{e)}	2.52	162(3) ^{e)}	178.6	117(2) ^{e)}	120.1	38.6(6)	37.3
Cu	2.86(3)	2.87	180(2)	179.1	117(1)	112.4	22.1(2)	27.1
Zn	2.43(4)	2.84	178(6)	178.7	117(3)	114.6	26.8(1)	30.2

866 ^{a)} Values reported came from reference 69 unless otherwise specified; ^{b)} Structural parameters
 867 from NPD data were obtained from CO₂ loadings ranging from 0.35 to 0.82 CO₂ per M²⁺ at
 868 10 K. ^{c)} Low-coverage CO₂ isosteric heats of adsorption for the M₂(dobdc) analogues were
 869 calculated at a loading of 0.1 CO₂ per M²⁺; ^{d)} Theoretical values were calculated using 0K
 870 DFT binding enthalpies corrected at the harmonic level for ZPE and TE contributions, at
 871 loadings of 0.167 CO₂ per M²⁺. DFT binding energies on which these binding enthalpy
 872 calculations are based have been previously published in reference 72; ^{e)} Values were
 873 previously reported by Dietzel *et al.* in reference 39.

874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887