SAND2017-6758C

Background-Free Characterization of
Traveling-Wave Optomechanical Devices
with Ultrafast Time Domain Spectroscopy

Aleem Siddiqui,!t Charels Reinke, Heedeuk ShinZ2, Robert L. Jarecki?,
Andrew L. Starbuck?! and Peter Rakich?

ISandia National Laboratories, Albuquerque, NM\

’Yale University, New Haven, CT

U.8. DEPARTMENT OF I YA I =g ) ) . ) . . - .
ENERGY ."Av Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Nattona Nuclear Securtly Admirsatrtion Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-0112 C




Overview

= Motivation: Non-resonate waveguide device concept

" Prior characterization with CW optical beams

= |nvestigation of pulsed opto-mechanical transduction with
Asynchronous Optical Sampling (ASOPS)

= Conclusion




Motivation Tl 2
=  Optomechanics has been studied extensively with cavity-coupled resonant opto
mechanical dgvices
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= Non-resonant waveguide devices allow high-frequency, broadband transduction
for information processing devices.

—>non-resonant for optical mode allows
broadband transduction

—>Previously experimentally and theoretically studied device with CW laser sources.

= In this work, we us pulsed ps-laser sources to study pulsed opto-mechanical
transduction to evaluate potential use in information processing applications
with phonon pulses.



Traveling-Wave Phonon-Photon Device Concept WE=S

= Practical non-resonant devices require high optomechanical transduction to be viable.

=  Previously shown dramatic enhancement of optomechanical transduction do to coherent
combination of radiation pressure and electrostrication in nanoscale waveguides
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= Additionally we have shown ultra-broadband transduction bandwidth
with transversely oriented phonon modes

Ultra-Broadband Stimulated Phonon Emission

- N Peter T. Rakich, et. al.”
Optical Mode _ . Giant Enhancement of
F, F,, Optical Force E 1;33"()" Gain Stimulated Brillouin
Acoustic Power Acoustic Power £ 15 Scattering in the Sub-
00y 715G Wavelength Limit,”
E . TR Physical Review X Vol 2,
§ Rapid escape of acoustic energy. Frequency ?GHZ)J No. 1, 011008 (2012)




Previous Device Design and Characterization with

) =,
CW laser sources in frequency domain
= Previously designed and characterized traveling-
wave phonon device w =313 nm

. h =194 nm
/Alr slot P— =124 nm

st )

Si waveguide

Si waveguide
= Optomechanical transduction was characterized with a dual color CW heterodyne
setup = mechanical modes linewidths were measured by scanning frequency
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Pulsed Optomechanical Transduction with
Asynchronous Optical Sampling (ASOPS)

= Transduction of laser pulses to phonon modes assess the viability of pulsed
phonon devices Probe A Pump
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" In ASOPS, the repetition rate of pulsed pump (f,,.,,) and probe (f . ,..) lasers are
detuned by an offset frequency (f ;) such that the time delay between consecutive
pulses is ramped linearly
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= 100 MHz laser sources with 10kHz f

pump

2 fopticar =1 THz without the need for
mechanical delay lines. 6
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Experimental Setup )

= Two ps-fiber laser sources (pump and probe) locked with an 80MHz repetition rate
and a 1kHz offset, allow 80,000 samples of 12.5ns. o
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= The pump pulse generates a phonon-pulse via optical transduction which imparts a phase
shift on the signal pulse that is measured in an interferometer having shot-noise-limited
detection of a few p-rad phase.

= “Slot” waveguide devices with varying widths were measured

Probe ¢ A ,PUMP  pLonon
M ___ A pulse
e —— a— - el

. ]
7




Time-domain signals allow separation of

nonlinearities
=  Experimental data captures Kerr effect and free carrier background
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=  In prior work, Kerr and free carrier response dramtically limited dynamic range
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=  Here we can use signal processing to separate fast phonon oscillation from

slow transients and the instantaneous Kerr effect 8




Simulation of System (D}

= Simulated parametric pumping with side-wall reflections

Steady state Displacement Phase Shift Imparted onto
: Amplitude | - Wayeguidle -
% I \'\“}:'“' \' }\' 1) ,"gg‘zr;\‘/ r\‘\f\” f“m ('m[l mhi | ”;
o i £ I P P R D o
VA VARVARYARYAAY %ﬂ'lj ‘l y“ ! v\/m i i w‘ i
y 211“ Jnv l'fsllllr ij: | N _

Time (ns)

Time (ns)

= Parametric pumping do to limited measurement window

= Large side-wall reflections indicate that optical delay with dual
waveguide devices are feasible.




Measurement of impulsive phonon response vsg g,
device width

"  Frequency domain (magnitude and phase) shows phonon spectrum.
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I-ASOPS: Signal Re-ordering
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Measured Transient Responses

= Transient response dominated by optical kerr effect and free carrier generation.
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= Artifact reduced by 1/200 from Kerr Effect which is localized
in time only effecting discrete regions

= Re-ordered and processed data reveals phonon dynamics
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Comparison to ASOP ) i,
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= Longer measurement window afforded by I-ASOPS enables full measurement of transient

without parametric pump.—> Preserves timing resolution while increasing resolution
bandwidth 13



Dramatically Enhanced Spectral Resolution ) e,
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Summary and Conclusion ) i

=  Developed an ASOPS system enabling rapid time domain acquisition over
long durations (ns-us) with high (ps) temporal resolution and p-radian
sensitivity.

=  Measured pulsed optical-phonon transduction in a traveling wave devices,
and have ample sensitivity to measured the influence of phonon
reflection from sidewalls.

=  The number of modes excited and the degree of broadening due to
phonon dispersion is sufficient for wide devices to allow for pulsed
transduction.




