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11-Nitride Challenges il

[ Substrate choice and trade-offs ]
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AlGaN alloy growth

M. F. Schubert, Ph.D. Thesis, Rensselaer Polytechnic Institute (2009).
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InNAlGaN materials system ()
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Boron-containing nitride alloys @&
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BGaN and BAIN )

Expanded view: Lattice-matching opportunities:
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after Ougazzaden, J. Cryst. Growth (2007).
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BGaN and BAIN ) .

Expanded view: o "oony Lattice-matching opportunities:
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Challenges in BAIGaN Growth @&

Growth of BAIGaN alloys not yet extensively studied

= Few groups actively publishing on BAIGaN in situ reflectance
= Typical B mole fractions less than 5%

=  Simplistic calculations of B% in literature
= Rough surfaces, poor crystal quality

TEB/I = 3,4%

TEBI/Il = 4%

T v T v T v T
1000 1500 2000 2500

:

Reflectance (a. u.)

Time (s.)

Potential obstacle with B miscibility in AIN/GaN
= (Calculated miscibility gap beginning at ~5% B in GaN
= Phase mismatch — hexagonal (2D) BN vs. wurtzite AIN/GaN

V. Ravindran, Ph.D. Thesis, Georgia Institute of Technology (2013).
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Initial BAIN Growth on AIN @

= 1070°C, H,+N, ambient, 75 Torr
= 10 ymol/min TMA, 0% or 5% TEB, 20 sccm NH,

No TEB — 0.8 nm RMS 5% TEB — 6.5 nm RMS
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Initial BAIN on AIN il
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Pulsed BAIN on AIN il

= Pulse sequence: 3s MO / 3s NH,
= 1070°C, 20 Torr, H, ambient
= 10 ymol/min TMA, 10% TEB, 15 sccm NH;

No TEB — 0.3 nm RMS 10% TEB — 1.0 nm RMS
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Pulsed BAIN on AIN il

(0002) AIN/BAIN
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Low-temperature pulsed BAIN: @i,
AIN vs. SIC Substrate

= 980°C, H, ambient, 10% TEB, pulsed 3s MO / 3s NH;
On AIN — 1.8 nm RMS On 6H-SiC — 2.0 nm RMS

. -
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Low-temperature pulsed BAIN: @i,
AIN vs. SIC Substrate

(0002) AIN/BAIN

... —on AlN/sapphire
—on BH-SIC B~1.2-1.8%

«— B~29-4.0%
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LT Pulsed BAIN on SiC il

(0002) AIN/BAIN

B~29-4.0%
(0002) RC FWHM ~ 35 arcsec
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BAIN/SiC TEM Microstructure = @&

COHVP319
DNZ06494

Dark Field TEM HAADF STEM
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BAIN/SIC SAED

COHVP319
DNZ06494
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.

Stacking faults tilted by ~70° relative to substrate

<110> {111} slip system in zinc-blende crystal
- Basal plane stacking faults on equivalent (1 1 1) planes
- 70.5° angle between (1 1 1) and (1 -1 1) planes

Gunning et al., J. Crystal Growth 464 (2016) 190-196.
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Potential Device Prospects

@

= ~40nm BAIN grown directly on undoped 6H-SiC wafer

Psp_an ~ -081 C/m? - po \p iy ~ 277
Psp_st-sic ~ -009 C/m?
= O, ~4x10"3 cm~
Hg-probe C-V

~40nm By 5,Alg g6N
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Summary il

Initial BAIN investigation

AIN-like conditions - very rough surfaces, poor boron incorporation

= Low temp, low pressure, H2 ambient, pulsed growth > ~4.5%
boron, specular surfaces

= Higher B incorporation on SiC substrate vs. AIN

BAIN structural characterization
» Fine-grained surface morphology
= Extremely columnar microstructure
= No evidence for cubic phase (vs. BGaN)

Possible SiC/BAIN heterostructure device
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Pulsed AIN vs. BAIN on SiC ) e

= 980°C, H, ambient, pulsed 3s MO / 3s NH;

Without TEB — 0.4 nm RMS With TEB — 2.0 nm RMS

14 nm
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