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Abstract

To analyze and coordinate the operation of distribution systems with rapidly increasing amounts
of PV, more accurate distribution system models are required, especially for the distribution
system secondary (low-voltage) circuits down to the point of common coupling for distributed
PV. There is a growing need for automated procedures to calibrate the distribution system
secondary circuit models that are typically either not modeled at all or are modeled with a lower
level of detail than the better modeled medium-voltage systems. This report presents an accurate,
flexible, and computationally efficient method to use measurement data to estimate secondary
circuit series impedance parameters in existing utility feeder models. The parameter estimation
method assumes well-modeled primary circuit models, known secondary circuit topologies, and
AMI active power, and reactive power measurements at all the loads in the secondary circuit.
The method also requires AMI voltage measurement at most of the loads in the secondary circuit
but can handle loads that do not have voltage measurements. No existing secondary circuit
model information is needed, except for topology. The method is based on the well-known
linearized voltage drop approximation and linear regression. The performance of the method is
demonstrated on a three-phase test circuit with ten different secondary circuit topologies and on
the Georgia Tech campus distribution system with AMI data. The developed method can be
utilized to improve existing utility feeder models for more accurate analysis and operation with
ubiquitous distributed PV interconnected on the low-voltage circuits.
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1. INTRODUCTION

1.1. Enhanced Distribution System Models for High PV Penetrations

Driven by falling costs and government incentive programs, solar photovoltaics (PV) has
experienced exponential growth rates, as shown by the International Energy Agency (IEA)
statistics on the top of Figure 1. Assuming strong PV growth rates continue, IEA high renewable
(hi-Ren) scenario expects PV to make up to 16% of the global electricity supply by 2050 [1].
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Figure 1. Rapid increase of distributed PV: global cumulative growth of PV capacity [1]

In February 2014, the total U.S. solar electric capacity was 12.1 GW. In 2014 , the U.S. PV
capacity grew by 6.2 GW, growth 30% higher than in 2013 and over 12 times higher than five
years earlier [2]. With the expected annual growth rate of 6.8% between 2013 and 2040, PV is
expected to expand faster than any other source of renewable energy [3, p. 81]. The experienced
past growth and expected future growth are shown in Figure 2.
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Figure 2. Past and future PV growth in the u.S.[4]
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High PV penetration levels are already seen in some geographic areas with high solar resources
and supportive politics. In Hawaii, the national leader of customer PV penetration, there are
already circuits where the installed PV capacity exceeds 75% of the daytime peak load and 250%
the daytime minimum load, as shown in Figure 3. California leads the nation in both number of
PV installations with over 230,000 and with total installed PV capacity at almost 10 GW [5], [6].
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Figure 3. O'ahu island Hawaii PV penetration of circuit daytime peak load (left) and minimum load
(right) [4]

An increasing share of PV will be located in distribution systems where it raises concerns of
maintaining feeder operation within component loading and voltage standard limits [7], [8]. In
order to maintain economic, high-quality, reliable, and safe distribution system operation under
pervasive PV, faster and more accurate monitoring, coordination and control is imperative [9].
Much of distribution system operation is based on the assumption that the system analysis is
correct, which means that the system models and the input data to those models must be very
accurate. Currently, neither is. Instead, the models are often outdated and inaccurate, and
measurement data is typically not properly integrated to be fully leveraged. However, emerging
data and new sensors have the potential to provide enough information to support the new
operational needs.

Simultaneously, efficiency, quality, reliability, and safety requirements drive smart distribution
automation schemes, including advanced Volt/VAr optimization, conservation voltage reduction
(CVR), demand response (DR), and fault location, isolation and service restoration (FLISR).
Smart distribution automation schemes require more accurate and reliable situational awareness
[9]—[11], which is increasingly being provided by modern distribution system measurement
sources such as smart meters and PV micro inverters [12]. Accurate and robust use of all
available measurement information, as well as accurate distribution system models, will be
essential for future distribution system state estimation (DSSE). DSSE is envisioned to become
the cornerstone of the monitoring and coordination of future smart distribution system with
ubiquitous PV and advanced distribution automation functions [13], [14].

Much of the distribution system analysis and operation is based on the assumption that the
models used to run steady-state simulation are accurate. Circuit models, including the parameter
values, may be incorrect as a result of data entry errors, inaccurate equipment data, network
changes (e.g. phase balancing), incorrect tap information, etc. [15]. The most commonly
encountered errors in the distribution system Geographical Information System (GIS) and power
flow models include incorrect component parameters, customers modelled connected to the
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wrong distribution transformer, and distribution transformers modelled on the wrong phases of
feeders [16]. Improving the accuracy of feeder parameters becomes critical as the numbers of
DERs increases. DERs make it more challenging to operate the feeder within ANSI limits while
optimally managing advanced applications such as Volt/VAr optimization, protections, and CVR
schemes.

It is particularly important to improve the models of the distribution system secondary (low
voltage) networks where a large share of the new controllable devices, such as electric vehicles,
PV with smart inverters, and demand response, are located. The secondary networks are typically
either not modeled at all or modeled with a low level of detail although a significant portion of
per-unit voltage drop/raise occurs over the high impedance service transformers and low voltage
lines with high losses.

The typical approaches to correct circuit errors, such as performing physical inspections or
utilizing added measurements, require considerable man hours and additional resources and thus,
are not cost-effective [16]. Physical inspections can also be hard to perform in densely populated
urban areas with wiring underground and in buildings. There is a growing need for automated
procedures to improve the accuracy of distribution system including secondary circuit models
with minimal physical inspections.

1.2. Parameter Estimation

The objective of parameter estimation (PE) is to find the most likely component parameters that
are typically known with varying levels of accuracy [15], [17], [18]. The parameter estimation
problem is closely related to topology estimation, which has the goal of identifying the most
likely system topology. Because the number of possible topologies and parameter value
combinations can be very large, parameter and topology estimation should not be seen as an
optional process to obtain a good initial system modeling [18], but rather as a necessary step to
calibrate and verify the accuracy of existing utility models. It is not advisable to attempt to
estimate parameters using a tolerance accuracy smaller than the average measurement error. The
estimated parameter errors are proportional to the average measurement error, and in the worst
case, the presence of measurement noise can result in replacing rather accurate original
parameter values by less accurate estimated values [17].

Line and transformer parameters can be assumed to be time invariant and can be estimated off-
line, whereas load tap changing transformer tap positions change over time and require online PE
[17], [19]. The local measurement redundancy and robustness of offline parameter estimation is
increased by utilizing historical databases of measurement data that can be selected free of gross
and topological errors [17], [19]. Additionally, offline PE requires no modifications to the
existing online algorithms [17].

1.2.1. Transmission System Parameter Estimation

Before describing distribution system parameter estimation, let us briefly review methods for
transmission system parameter estimation, which have been studied since the 1970s. These
algorithms are typically integrated with the state estimation algorithm and are based either on
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residual sensitivity analysis or augmented state vectors [15], [19]. In the former type, PE is
performed after state estimation by utilizing linear sensitivities between the parameter errors and
measurement residuals. In the latter, the typical state vector is augmented with additional
variables that represent suspicious parameters. The augmented state vector methods apply either
normal equations or Kalman filter theory. The augmented state vector methods have surpassed
the residual methods, which however, are important for identifying suspicious parameters [17],
[19] .

Parameter and measurement gross errors are often harder to identify in state estimation than
topology errors and thus, may go unnoticed for longer periods of time [15], [17], [19]. Topology
errors cause several normalized residuals to violate a specified threshold in state estimation
algorithm. These residuals correspond to measurements close to the topology error. Similar
phenomena is observed with gross measurement errors because of the so-called "smearing
effect" that can make it challenging to distinguish between topology errors and gross
measurement errors [20]. Since erroneous network parameters have a relatively local impact on
the state estimation results, parameter estimation can be performed in a local manner. Accurate
measurements typically help in identifying parameter errors [17].

1.2.2. Distribution System Parameter Estimation

Compared to the well-established transmission system parameter estimation, distribution system
parameter estimation (DSPE) is subject to a number of different challenges. First, multi-phase
asymmetric, radial distribution systems with unbalanced loads, low X/R-ratios, and various
connections of transformers and loads make distribution system models complicated and
different from transmission system models [21]. Second, most utilities do not have existing
distribution system state estimators and thus, most conventional transmission system parameter
estimation approaches that are integrated in the state estimator are not directly applicable.
Finally, the low number and quality of measurements in distribution systems results in a low
measurement redundancy or even the lack of observability in certain circuit sections. For these
reasons, DSPE has been studied less than transmission system parameter estimation but is
becoming more possible to implement using advanced metering infrastructure (AMI) and other
modern distribution system measurement sources [22]—[28]. However, compared to transmission
system parameter estimation, DSPE algorithm needs to operate without existing state estimator
and manage complicated distribution system models and the lower redundancy, reliability,
accuracy, and granularity of the modern distribution system measurements.

There has been some previous work on DSPE. A linear optimization-based method for topology
error detection, parameter estimation, and theft identification has been proposed in [29]. The
authors did not estimate the reactances or leveraged the reactive power measurements. Topology
error detection regarding smart meter placement in GIS system is introduced in [16]. In [30], the
author presents a method for meter phase identification and meter-to-transformer mapping by
applying a voltage drop equation and linear regression with AMI energy and voltage
measurements. In [31], the authors assume a known radial network topology and derive a
quadratic equation between the smart meter measurements and upstream bus voltage. Then,
utilizing this equation, the authors estimated branch parameters using a gradient-based approach
with the objective of minimizing the variance of voltage estimates from various smart meters.
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The approach makes no simplifications to the AC power flow equations but results in an
optimization problem with quadratic equality constraints that is computationally much more
intensive to solve than linearized approaches.

This report builds on the approach presented in [30] but presents more detailed analysis and a
number of refinements to increase the performance of the method proposed in [30]. This report
focuses on impedance parameter estimation of radial secondary circuits with known topologies.
In future work, the method will be expanded for estimating impedance parameters of radial
circuits with unknown topologies.

1.3. The Structure of This Report

Following Chapter 1, which provides the background and motivation for distribution system
secondary circuit parameter estimation, Chapter 2 presents a 2-bus test case and a 3-phase 66-
node test circuit that are used throughout this report to test and compare algorithms and methods.
Chapter 3 first presents two heuristic methods to estimate series impedance parameters and,
motivated by the disadvantages of these methods, proposes an alternative linear regression
parameter estimation method. The chapter also introduces three alternative estimators and
presents the method that was chosen for this report. Chapter 4 expands the single branch
parameter estimation to estimation of all the parameters in a radial secondary circuit. The chapter
begins by discussing the problem formulation, assumptions, and principle after which two
alternative approaches are presented and compared to estimate the parameters of a secondary
circuit subsection with N parallel branches. Chapter 5 provides a detailed comparison of
alternative linear regression models and their performance for both tests circuits without and
with measurement error. The chapter also presents the method that was chosen for this report.
Chapter 6 discusses the implementation of the distribution system secondary circuit algorithm in
a practical utility setting. Chapter 7 includes the parameter estimation results for the 3-phase 66-
node test circuit with the chosen parameter estimation method with practical levels of
measurement error. Chapter 8 extends the proposed parameter estimation method to handle cases
where some meters do not report voltage measurements. Finally, Chapter 9 concludes the report.
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2. TEST CIRCUITS FOR PARAMETER ESTIMATION

This chapter introduces the circuits that are used throughout the rest of the paper to illustrate
parameter estimation methods. A two-bus test circuit and a larger 66-node 3-phase test circuit
were generated to develop, test, and compare different parameter estimation methods. While the
ultimate parameter estimation objective is to improve the voltage (drop) simulation accuracy in a
given utility feeder model, in these test circuits it was possible to measure the parameter
estimation accuracy directly as the relative percentage error of the estimated parameters with
respect to the known parameters with: (Parest — Parorig)/Parorig x 100%. Finally, the real
distribution system on Georgia Tech campus is introduced and is used later to demonstrate
parameter estimation for an actual system with unknown parameters.

2.1.1. Two-bus Test Circuit

A simple two-bus test circuit was generated to demonstrate the behavior of the different
parameter estimation algorithms at a conceptual level. The circuit consists of a single load that is
connected to the fixed voltage sources at the upstream bus over a service transformer and a
service line. The circuit is shown in Figure 4.

Voltage Transformer &

Source Service Line 
Load

(3c1), fixed P2,02)(3,13. 240V L-L) Z=R+jX

V1 V2

Figure 4. Simple two-bus test circuit

2.1.2. 66-Node Three Phase Test Circuit

A three-phase balanced test circuit model was implemented with a single backbone feeder and
ten secondary circuits with different topologies. In each of the topologies, there is a single
MV/LV transformer with arbitrarily (but realistically) selected parameters. Each load is
connected to a point in the secondary system over a service line as listed in Table 1.

Table 1. Secondary circuits of the 66-node three-phase test circuit
Secondary Circuit Number
(Order from the Substation)

Load Connections

1 5 loads connected to the transformer
2 1 large load connected to a pedestal
3 5 loads connected in series on a service line (without separate service drops)
4 5 loads connected to a pedestal
5 2 loads connected to the transformer and 2 loads connected to a pedestal
6 2 separate pedestals each with two loads
7 2 pedestals in series each with 2 loads
8 2 pedestals in series: first with one load, second with 3 loads
9 1 pedestal with two loads
10 1 load connected to the transformer, 1 pedestal with 1 load
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An example of the circuit line plot and voltage profile with given load active and reactive power
values are given in Figure 5 and Figure 6, respectively.
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Figure 5. Topology of the 66-node three-phase test circuit (secondary circuit numbers in red)
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Figure 6. Voltage profile of the 66-node three-phase test circuit

In order to create the profile for each load in this test circuit, a year of 36 distinct residential
active power hourly measurement profiles were acquired from Pecan Street Inc. [32]. The total
building consumptions (table Use, [32]) in year 2014 are utilized. First, each circuit load was
assigned a peak kW and kVAr depending on the number of loads in the given secondary circuit
and the service transformer kVA rating. Then, each circuit load was randomly assigned one of
the Pecan Street load profiles. The load profiles were scaled to selected average load kW. All
values exceeding a selected peak load kW were set randomly to 60-100% of the load kW and all
negative or zero load values were set to random values 5-15% of load kW. Then, reactive power
consumption profiles were created based on the active power profiles utilizing a different
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random power factor in the range of 0.9-1.0 for each measurement. The active power, reactive
power, and power factor profiles over the first week of data are visualized in Figure 7.
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The load voltage "measurements" were acquired by solving the time series power flow
simulation with the loads varying according to their real and reactive power profiles. The
resulting voltage "measurements" for the first week in 2014 are shown in Figure 8.
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Figure 8. First week of the voltages

2.1.3. Georgia Tech Distribution System Feeder

The distribution system parameter estimation is also demonstrated on one of the feeders of the
Georgia Tech campus electricity distribution system. Georgia Tech system is a perfect case study
for distribution system parameter estimation since it is well-balanced 3-phase system that has an

21



extensive AMI including a 15-min historical measurement database with several years of
measurements [33], [34]. The 19.8 kV feeder shown in Figure 9 is an underground system that is
approximately slightly over 3.5 km long and has a peak load of 0.90 MW. In the base case,
standard manufacturer parameters were used for the service transformers, and the unknown
secondary cable lengths were assumed to be 100 feet long. The feeder circuit line plot and
voltage profile with the base case parameters are shown in Figure 9.
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3. BRANCH SERIES IMPEDANCE PARAMETER ESTIMATION

This chapter begins by presenting two simple, flexible heuristic approaches to estimate line and
transformer series impedance parameters. Motivated by the disadvantages of the heuristic
approaches and the challenges of distribution parameter estimation, the rest of the chapter
discusses an approach for estimating line and transformer series impedances based on linearized
voltage drop approximation and linear regression. Alternative linear regression estimators are
also discussed.

3.1. Heuristic Parameter Estimation Approaches

Heuristic parameter estimation approaches do not leverage any parameter estimation problem
structure to search for the best parameter estimates. Such non-model based approaches are very
simple and flexible to implement, but they tend to be computationally highly demanding since
they perform some sort of exhaustive search over the solution space. Two simple heuristic
parameter estimation methods, brute force and particle swarm optimization, were implemented
and tested on the two-bus test circuit shown in Figure 4.

3.1.1. Brute Force

The brute force algorithm goes through all possible user-set (realistic) parameter (R and X)
combinations, and for each parameter combination, it performs a time series power flow analysis
to simulate the circuit voltages for that set of parameters. The objective is to find the parameter
combination with the smallest mean absolute error of the simulated voltages compared with the
measured voltages. The brute force approach requires running a large number of time series
power flows, which is computationally very expensive. Moreover, due to the curse of
dimensionality, the computational requirements grow exponentially with the number of
parameters to be estimated. For example, if a sparse grid of ten R and X values is evaluated, this
approach would require evaluating one million (106) time series power flows for a simple circuit
with three branches and six parameters. If one of the time series power flows was executed every
second, it would take over 11 days to evaluate all the combinations. Clearly, the brute force
approach is only useful for validating more sophisticated methods in example networks with one
to four parameters.

The brute force algorithm was tested by estimating the three-phase test circuit secondary circuit
number 2 parameters using one week of 1-hour load data (168 data points). A linearly spaced
grid of 100 x 100 R and X combinations were evaluated with R E [0.1,5] and X E [1,10]. The
algorithm executed the resulting 10,000 time series power flows over the 168 time instances in
290 seconds (4 min, 50s) and returned the parameters REst = 0.9919%, XESt = 5.727%.
Compared to the original parameters Rorig = 1% and Xorig = 5.7%, the parameter estimation
errors were for Re„ = —0.81% and X e„ = 0.47%. The mean absolute load voltage simulation
error with the optimal parameters over the time period was MAEOpt = 0.000598 V. If no model
or measurement error was present, an arbitrary parameter estimation accuracy could be reached
by further refining the grid. The mean absolute voltage simulation error dependency on the
parameters is visualized in Figure 10. As expected, the voltage simulation error seems to be a
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relatively smooth convex function (with an optimal value) with respect to the transformer
parameters. However, the objective function is quite flat around the optimum solution, which
makes it harder to find the optimal solution.
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Figure 11 shows the small difference between the measured voltages and the voltages simulated
with the estimated parameters.
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Figure 11. Load voltage simulation accuracy with brute force estimated parameters

3.1.2. Particle Swarm Optimization

Compared to the brute force approach, particle swarm optimization (PSO) is a more intelligent
meta-heuristic approach that can be used to find good solutions for nonlinear (mixed-integer)
optimization problems [35]—[38]. PSO searches for good solutions by iteratively trying to
improve a candidate (i.e. particle) solution with respect to a given measure of quality that is
called the particle fitness. Typically, a particle movement is calculated based on the particle best
solution, the best solution of all particles, and the current particle movement velocity. PSO is
very simple to implement since it does not require knowing any problem-specific structure apart
from a way of evaluating the fitness of a given particle solution. On the other hand, since PSO
does not leverage problem-specific structure, it is also unable to provide guarantees of
converging, even to a locally optimal solution. Moreover, contrary to convex optimization
methods, PSO does not tell anything about the quality of the returned best solution compared to
the theoretically best solution (i.e., no lower/upper bounds are returned).
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A PSO algorithm was implemented to search for the series impedance values for a selected
transformer to minimize the mean absolute difference between the measured voltages and the
simulated voltages of a selected load. The voltages are simulated with OpenDSS. The parameters
estimated in OpenDSS are the winding resistances R1 and R2, and the high-to-low inter-winding
reactance Xhl. The algorithm was tested by estimating the transformer parameters of the 3-phase
test circuit secondary circuit number 2. In 60 seconds and 100 PSO iterations, the globally best
particle solution was: R1 = 0.1%, R2 = 0.901917% (R1 + R2 = 1.01917%), and Xhl =
5.68623%. Compared to the original parameters Rorig = 1% and Xorig = 5.7%, the parameter
estimation errors were for Re„ = 0.0192% and X e„ = —0.0024%. PSO estimated the total
transformer winding resistance R1 + R2 with a good accuracy but was unable to divide the
resistance properly to the winding resistances R1 and R2. This applies in general that it is
impossible to distinguish parameters of series branches from each other since series branches
have the same impact on the voltage drop. Therefore, all series parameters must be estimated
jointly and manually divided to the respective components by applying some engineering
judgment.

Figure 12 illustrates the quick convergence of the PSO algorithm close to the final estimated
parameters. Typically, PSO is executed repeatedly several times with different initial particle
locations to achieve better exploration of the solution space [35].
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Figure 12. Particle swarm optimization progress over the iterations

Figure 13 shows the small difference between the measured voltages and the voltages simulated
with the estimated parameters.
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Figure 13. Load voltage simulation accuracy with PSO estimated parameters
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3.2. Linearized Voltage Drop Parameter Estimation Approach

Motivated by the disadvantages of non-model based parameter estimation approaches underlined
above, this section presents a model-based method to estimate all the distribution system
secondary circuit positive sequence series impedance parameters. As introduced in section 1.2,
the absence of distribution system state estimator (DSSE), as well as the poor time
synchronization, low accuracy, low granularity, and low measurement redundancy of distribution
system measurements, makes it challenging to directly apply the conventional transmission
system parameter estimation approaches. To overcome these limitations and challenges, a
different parameter estimation approach is presented.

The proposed parameter estimation approach leverages the well-known (see e.g. [39]—[41])
linear approximation of voltage drop magnitude over a series impedance

Vdrop = MI — 11/2 1 c=1 (RP + XQ)/V2 = RIR + XIx (1)

where R and X are the (positive sequence) series resistance and reactance between bus 1 and bus
2 as shown in Figure 14. The current resistive and reactive components are given with /R = P/V2
and lx = Q/V2. In case actual values are used, all the values must be referred to the same voltage
level. In 3-phase systems, line-line voltages and 3-phase powers are used.

1 >
V1 R,X V2 P,Q

Figure 14. Linearized voltage drop over a series impedance

The goal of the parameter estimation problem is to find the parameters R and X (shown in red in
Figure 14) that provide the best fit of the available measurement samples of V1, V2, P, and Q
(shown in blue in Figure 14) to one of the linear models

V' = (V1 — V2)V2 = RP + XQ + c (2)

or

AV = Vl — V2 = RIR + XIx + E. (3)

where the bold letters indicate vectors of K measurement samples, i.e.,
V, V1, V2, P,Q,AV,IR, ix E IRK, and c E le represents the joint measurement and model error.
In this report, (3) will be preferred over (2) since (3) does not involve multiplying by V2, which
itself is an estimate when estimating R and X of the upstream components in the hierarchical
radial circuit parameter estimation discussed in sub section 4. It is desirable to avoid dividing by
the estimated values of V2 since this would cause any errors to propagate in a multiplicative
manner as opposed to additive.
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By denoting y = AV = V1 — V 2, X = [I R I ){], and 13 = [R X[T , (3) becomes the linear
equation

y = .X13 + E. (4)

An estimate of the parameters # can be found by utilizing statistical estimation techniques. The

estimated parameter vector 13 will strongly depend on the defined loss function. If Lp -norm loss

is used, # can be found by solving the optimization problem

# = miry lly — x1311, (5)

Typically, either L2 or L1 are used yielding two different estimators each with different
advantages and disadvantages. Next, three typical approaches (ordinary least squares, linearly
constrained least squares, and least absolute value) are introduced for solving (5).

3.2.1. Ordinary Least Squares Estimator

Solving (5) using p=2 (i.e. L 2-norm) yields the (convex) quadratic programming problem

# = min Ily — x/3112.

Since square preserves convexity, the solution to (6) can be equally obtained by solving

/3 = minfl llY xflfi = Eit..1(Yt xtP)2 = 
Inflrxrxfl.

(6)

(7)

Problem (7) (without any constraints) is a linear regression problem that, assuming X has full
column rank, has the closed-form solution dubbed as the ordinary least squares estimator (OLS)

= [R )-e]
T = (XT X)-1XT y. (8)

The linear regression problem (7) can be solved with any open source or commercial linear
regression package. Next to the parameter estimates, these packages typically provide the user
with various quantities such as parameter confidence intervals. Under a handful of conditions,
the OLS has very attractive properties. First, OLS is a consistent estimator, i.e., as the sample
size grows, the estimated parameters approach the true parameters. OLS is also unbiased (i.e.
lE[x] = x) and has the minimum variance among all unbiased estimators (minimum variance
unbiased estimator, MVUE) [42]. Under the further assumption of independent, normally
distributed errors, OLS is equal to the maximum likelihood estimator [42]. One of the
disadvantages of OLS is that the results tend to be sensitive to outliers, which is why an effective
outlier detection and removal is essential.

3.2.2. Linearly Constrained Least Squares Estimator

If problem (7) is solved subject to linear constraints such as parameter bounds, it becomes a
quadratic programming problem

min flTxTxii

s.t. C d.

A large variety of open-source and commercial solvers exist for solving the problem.

(9)
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3.2.3. Least Absolute Value Estimator

Motivated by the OLS sensitivity to outliers, sometimes (5) is solved using L1-norm yielding the
least absolute value estimator (LAV). LAV is found by solving the linear programming problem
(LP)

# = miry llY — xi3111 = nr Elt..ilYt — xfil. (10)

While LAV is much less sensitive to outliers than OLS, (10) has no closed-form solution and
instead it must be solved with an LP solver.

3.3. Selected Branch Parameter Estimation Approach

Motivated by the disadvantages of the heuristic parameter estimation approaches underlined
above, this report will utilize the linearized voltage drop approach. Each of the three estimators
has unique advantages and disadvantages. Even though OLS is sensitive to outliers, there are
several ways of detecting and removing measurement outliers before including them as inputs to
the regression solution. Since OLS has a closed form solution, it is computationally more
attractive than the least absolute value estimator and thus, attractive for parameter estimation
with large data sets. Contrary to the OLS estimator, the linearly constrained least squares
estimator allows setting bounds on the parameters. However, it was observed in the Georgia
Tech distribution feeder that the parameter bounds may not be particularly useful. Parameter
solutions at the boundary mean that the optimal parameters would be beyond the boundary. This
typically happens if there is something wrong with the regression problem formulation or the
measurement data. Thus, manual inspection and correction will be required in any case. For
these reasons, the remainder of this report focuses on parameter estimation with the OLS
estimator.
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4. RADIAL SECONDARY CIRCUIT PARAMETER ESTIMATION

This chapter generalizes the method to estimate series impedance pararneters of an individual
branch discussed in chapter 3 to estimation of the series impedance parameters of entire radial
secondary circuit. The method, which builds upon the method shown in [30], is illustrated in
Figure 15. The objective of the method is to find the most likely values of resistance (R) and
reactance (X) parameters shown in red in the figure. The method assumes that historical voltage
(V), active power (P), and reactive power (Q) measurements shown in blue in the figure are
available at all the leaf nodes of the secondary circuit tree. To estimate the service transformer
parameters, the method requires measured or simulated service transformer medium voltage
values at the tree root node.

Primary

System

Service

Transformer
R,X

 I 
R,X

 I 
R,X

1
1

V R,X

Figure 15. Secondary circuit tree for parameter estimation

The proposed method relies on the following assumptions:
1. Known circuit topology
2. Fully radial circuit topology (i.e. a tree)
3. Each of the leaf nodes (buses) of the tree has a smart meter or PV micro inverter

measuring the voltage and either the active and reactive power or the current and the
power factor.

4. Balanced three-phase or a single-phase circuit

If the circuit topology is unknown, it can be estimated following the approach discussed in [30].
In this report the topologies are assumed to be known, and the unknown topology case is
addressed in future work. The second and the third assumptions are valid in most secondary
circuits [39]. The fourth assumption is often invalid since in practice many distribution system
secondary circuits are split-phase, i.e., a single-phase where a center-tapped transformer connects
to a triplex cable with both 120V and 240V service to the loads. Although it is possible to model
the split-phase secondary circuits in detail [43], parameter estimation is limited by the available
measurement data, which typically consists of the customer total power and/or current as well as
voltage measurement across the 120V (or the 240V) connection. As long as the power, current
and voltage measurements for both the 120V and 240V loads are not included in the MDMS, it
may be desirable to model split-phase secondary circuits with single-phase transformers, lines,
and loads. Using this modeling approach, typical measurement meter data can be readily utilized
to estimate the secondary circuit transformer and line parameters utilizing the approach
introduced below. The method applies for both three-phase and single-phase circuits.
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4.1. Principle

The proposed parameter estimation method operates hierarchically proceeding from the leaf
nodes (customer buses) of the secondary circuit tree towards the tree root node (upstream bus).
Figure 16 illustrates the estimated parameters in red and the available measurements in blue. At a
given iteration, the algorithm estimates the parallel branch impedances R1, X1, ... , RN, XN of a
subsection of the secondary circuit shown in Figure 16. First, the algorithm searches for a new
"Upstream Bus" whose immediate downstream bus voltages and downstream branch currents (in
blue Figure 16) are known (measured or estimated at previous iterations) but whose downstream
branch impedances (in red in Figure 16) have not been estimated yet. Once a suitable bus and the
corresponding downstream branches have been identified, the algorithm first estimates the
branch impedance parameters using the available downstream bus measurements and then,
estimates the upstream bus voltages using the measurements and the estimated branch
parameters. These steps are explained in detail in the following subsections.

Upstream Bus

Vo

Branch 1

R1,X1

Branch N

RN,XN
Figure 16. Radial circuit parameter estimation

V1,1R1,1)(1

VN,IRN,IxN

4.2. Estimating Series Impedance of N Parallel Branches

There are several ways to estimate the parallel branch impedances R1, X1, ... , RN, XN. In this
report, two approaches are compared. The first approach estimates the parameters from a single
regression problem. The second approach estimates parameters for each branch pair and merges
the estimated parameters. Next, the approaches are introduced and compared.

4.2.1. Simultaneous Parallel Branch Estimation

All the parameters of the parallel branches can be estimated simultaneously by formulating a
single regression problem as follows. Using the linearized voltage drop approximation (1), each
of the N branches provides an approximate estimate of the upstream bus voltage lic,

1
170 = Vl + RlIm. + XlIxl + El
V0 = V2 + R2IR2 + X2Ix2 + E2

V0 = VN + RNIRN + XNIXN + EN

30



By using M synchronous measurement samples yi, I Ri, 'xi E lel, i E (1, ..., N), the parameters
can be estimated with one of the approaches introduced in section 3.2. with the linear regression
problem

y = X13 + e,

where E E lie is the error vector, fi E Rav1+2N) is the parameter vector given by
T

11 = [I70,1, ••• , VO,My RI, Xl., ... , RN,XN] ,

and the response vector y E RivIN is given by
T

Y = [V1,1, ••• , 17:1„1 t 1 p •• • ,VN,1, ... ,VN,A4] .

Finally, the design matrix X EE R(MN)X(M+2N)is given by

I [—IR,1 —4,1] ••• 0

X = i , (15)
I 0 • • • [—I R,N —1 X,N1

where I E R114><I4 are identity matrices, I R,i, I x,i E Rmxl, i G(1, ..., N) are the branch current
measurements, and the zero submatrices have suitable sizes. This formulation has (M + 2N)
unknowns and MN equations. In practice, M >> N and thus, there are many more equations than
unknowns.

4.2.2. Pairwise Parallel Branch Estimation

Alternatively to the simultaneous parameter estimation shown above, the parallel branch
parameters can be estimated by formulating multiple smaller regression problems and merging
the resulting parameter estimates. A pairwise branch parameter estimation was considered here
by formulating a regression problem for each branch pair of the N branches. This results in
multiple estimates of each parameter that can be merged in several ways. In this report, the
parameter estimates were simply averaged since this approach was observed to perform better
than alternative approaches such as selection of best parameters based on the regression problem
R-squared values. In general, there is no single metric that describes the quality of a regression
model.

4.2.3. Comparison

The two approaches for estimating parallel branch impedances were utilized to estimate the 3-
phase test circuit parameters without and with 1% P, 1% Q, and 0.2% V measurement error,
shown in Figure 17 and Figure 18 respectively. There is no considerable trend between the two
approaches between the two cases. Some parameters are estimated better with one of the
approaches while others are estimated better with the other.

The pair-wise approach requires solving multiple smaller regression problems for the N parallel
branches instead of a single larger regression model. For the pair-wise approach, the number of
required regression models is given by the number of combinations of two branches from the N

branches, i.e., 
2 
r) (or "N choose 2"). The resulting number of regression models are 1, 3, 6, 10,
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15, etc. for 2, 3, 4, 5, 6, etc. parallel branches, respectively. Since secondary circuits seldom have
several parallel branches, the number of required regression problems remains small. Thus, the
pairwise approach can be computationally more attractive with small number of parallel
branches since it does not require building the design matrix in (15) that can be very large with
large sample sizes. On the other hand, at large parallel branch numbers, the single regression
problem formulation discussed in section 4.2.1 can become computationally preferable.

Since there is no clear difference in accuracy between the two methods and since the test circuits
used in this report does not have large numbers of parallel branches, the remainder of this report
utilizes the pairwise parallel branch estimation approach.
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4.3. Estimating Upstream Voltages

Once the parallel branch impedances R1, X1, , RN, XN have been estimated with the method
shown above, the upstream bus voltages Vo can be estimated as an average of the individual
branch voltage estimates

1117i + + + fixi)11 (16)

i=1

where Vi is bus i measurement vector, 11'11 refers to taking the magnitude of the complex
number. It should be noted that even though each upstream node voltage is calculated with the
full voltage drop equation (16), the voltage parameters are estimated using the linearized voltage
approximation.

4.4. Hierarchical Estimation vs. Entire Circuit Estimation

It is worth noting that the linear voltage drop approximation requires performing the parameter
estimation in the hierarchical fashion shown above. It is possible to formulate a large linear
regression problem for estimating all the branch impedances at once but unfortunately, the
resulting design matrix X is perfectly collinear and has no unique solution. The reason for this is
that all upstream branch predictors are linear combinations of the downstream predictors. The
regression problem can still be solved, but it is unclear how to set sufficient additional conditions
to get a unique solution that would provide the branch parameter estimates. Alternatively, the
predictor linear dependency could be avoided by utilizing a nonlinear relationship between the
voltage drop and the downstream predictors (such as the AC power flow). However, the resulting
problem would not be linear with respect to the parameters, and iterative nonlinear optimization
algorithms would be needed.

4.5. Data Selection for Parameter Estimation

Since the parameter estimation algorithm is run off-line with historical data, it is possible to
selectively pick a subset of the available measurement samples. Many bad data types can be
detected with conventional approaches such as checking for unrealistically high or low values
based on historical data [44]. Typical distribution system secondary circuits have 5-15 customers
(meters) and thus, when any of the necessary meters has missing or bad data, all measurement
time stamps should be ignored. In statistical literature this is referred to as row-wise deletion.

The linear regression based branch parameter estimation presented above utilizes the voltage
drop magnitude approximation (1) that is well-known to be quite accurate for typical P, Q, R,
and X values [41]. The largest error occurs under heavy load (current) and leading power factor
[41]. The relative linearization error with respect to P and Q for a line with an X/R=1 is shown in
Figure 19. With typical P and Q combinations, the error is below 1-2%, but it can be
significantly higher with either 1) large positive P and small negative Q or 2) large negative P
and small positive Q. While Case 1 is very untypical in distribution secondary systems where
most loads are inductive, Case 2 can occur in secondary systems when a large injection from
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distributed generation at unity power factor leads to reverse active power flow while the
inductive loads consume VArs.

The relative linearization error with respect to R and X for a 50kVA load at power factors
(PF) = {0.9,0.95,0.98,1.0} are shown in Figure 20. Typical distribution system secondary
circuit X/R ratio is in the range of 1 to 2, resulting in a linearization error below 2%. However,
for circuits with high X/R ratio, the accuracy can be considerably worse.

Provided that sufficient data is available, the figures suggest that the following data be filtered
before parameter estimation: 1) Measurement samples that have both high P demand and
(PF) 0.95 and 2) Measurement samples that have both high P generation (reverse power flow)
and Q consumption. Filtering data has the disadvantage of reducing the number of available
measurement samples, which can reduce the parameter estimation accuracy. Therefore, the
filtering should only be considered for samples that have a considerable negative impact on the
estimation accuracy. Whether the sample filtering is advantageous or not may depend on the
characteristics of the load data at hand. The next chapter presents and compares alternative linear
regression models that can be used to partially compensate the error in the linearized voltage
drop equation and to handle error in practical measurement data sets.
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5. LINEAR REGRESSION MODEL SELECTION

Chapter 4 introduces a linear regression approach for estimating series impedance parameters R
and X of all branches of a radial secondary circuit. The method presented so far utilizes the linear
voltage drop approximation (3), which is an obvious candidate for building a parameter
estimation linear regression model. However, linear regression allows models with higher order
terms, cross-couplings, or any other functions of the predictor variables IR and Ix. Unlike R and
X in (3), the coefficients of other terms do not have a direct physical meaning, but including
them in the regression models may better capture the intrinsic nonlinear relationship between the
response variables AV = Vi. — V2 and the predictor variables IR and Ix thus, leading to better
estimates for R and X.

To add additional terms to the radial secondary circuit parameter estimation method discussed in
chapter 4, the design matrix X and the parameter vector ß need to be modified accordingly. The
response variable y is not changed by adding predictor terms. For example, if the second order
current terms are added to the parallel branch regression problem in section 4.2, the measurement
design matrix becomes

X = [—(N — 1)I R1, —(N — 1)41, I R2, I x2, ... , I RN, I xN,

— (IV — 1)IL, —(N — 1)41, IL, Ii2, ... , li?N, liN1

and the parameter vector becomes

/3 = [R1, X1, ... , RN, XN, 13Rsq,1113Xsq,l, ••• , flRsq,N, f3Xsq,d, (18)

where parameters Ar-Rsq,1,13Xstbli ... I 13RschNI f3Xsq,N do not have a direct physical meaning. The

response vector y remains unchanged. Sections 5.1 and 5.2 compare the performance of different
regression models on the two-bus test case from Figure 4 and the 66-node test case from Figure
5. Finally, Section 5.3 presents an adaptive approach that utilizes two different regression
models.

5.1. Linear Regression Model Selection on the Two-Bus Test Case

5.1.1. Regression Model Comparison

(17)

To compare the parameter estimation accuracy with different regression models, the (known)
parameters of a two-bus test circuit (Figure 4) were estimated with a set of 168 samples of real
residential AMI active power measurements and randomly generated power factors. The relative
errors of the estimated parameter, Rerr =(Rest — R true)/Rtrue x 100% and Xerr =

(Xest — Xtrue)/Xtrue x 100%, are listed in Table 2.

The results indicate that regression models that only utilize the first order terms of IR and Ix
(models 9 and 10 shown in orange) are not the best ones. Instead, the parameter estimation error
can be reduced over 8% by adding the second order terms of both of the predictor variables
(models 1 and 2 shown in blue). Adding the intercept term (in table the absence of "-1") or the
power factor term (in table "(PF)") to a given model lead to no considerable improvement. The
best performance is obtained with regression model AV—IR + ix + iii + 6, which includes the
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first and second order terms of IR and /x as well as the intercept term as predictors and has
AV = V1 - V2 as the response variable. The model does not include the power factor term.

Table 2. Estimated parameter errors with different linear regression models
Model
Rank

Regression Model Rerr

[%1
Xerr

[%1
lRerrl +1Xerrl

[%1
1 AV-IR + Ix + Ili + II 0.42 -0.07 0.49
2 AV-IR + Ix + Ili + q - 1 0.43 -0.07 0.50

3 AV-/R + lx + Iii + q + (PF) - 1 0.49 -0.07 0.56
4 AV-1R + Ix + Ili + II + (PF) 1.01 -0.39 1.40
5 AV-1R + Ix + Ili -1 1.04 -0.41 1.44

6 AV-IR + Ix + q 1.06 M.41 1.47
7 AV-IR + Ix + Ili + (PF)- 1 1.21 -0.41 1.62

8 AV-IR + Ix + Ili + (PF) 1.59 -0.71 2.29

9 I AV-IR + Ix - 1 8.35 -0.44 8.79
10 AV-/R + 1x I 13.62 -0.42 14.04

11 AV-IR + Ix + (PF) - 1 14.06 -0.66 14.72
12 AV-IR + Ix + 11 13.52 -1.27 14.79

13 AV-IR + Ix + (PF) 14.11 M.69 14.80
14 AV-IR + 4 + q + (PF) - 1 13.89 -1.57 15.46
15 AV-IR + Ix + q - 1 11.17 -4.53 15.70

16 AV-IR + /x + q + (PF) 15.07 -2.63 17.70

5.1.2. Parameter Error Dependency on R and X

As shown in subsection 4.5, the true circuit branch series impedance has a significant impact on
the linearized voltage drop approximation accuracy. The impact of the linear voltage drop
equation accuracy on the parameter estimation accuracy was studied by estimating the series
impedance parameters of the two-bus circuit (Figure 4) with different series impedance
parameters R and X. The parameters were estimated with regression models AV-IR + Ix - 1
(model rank 1 in Table 2) and AV-IR + Ix + Iii + Il - 1 (model rank 2 in Table 2) using one
week (168 samples) of measurement data of the 3-phase test feeder secondary circuit number 2
load (Figure 5). For each R and X pair, first the load voltages were simulated and then, based on
the simulated load voltages and P and Q values, the branch parameters were estimated and
compared to the true parameters.

The parameter estimation errors and the average simulated load voltages are summarized for
regression model AV-IR + Ix - 1 in Figure 21. The R estimation errors are higher with lower
X/R-ratios, and the X estimation errors are higher with very high X/R-ratios or a band of
intermediate X/R-ratios. Typically, distribution transformer series impedance Z is between 1.5 %
and 6 % and X/R-ratios between 1.5 and 5. Thus, service transformer R and X estimation errors
below 2 % are expected. Since secondary circuit line series impedances and X/R ratios are
considerably smaller, somewhat higher relative estimation error may occur. However, due to the
smaller absolute impedance of lines, the resulting absolute impedance error is not expected to be
higher.
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Figure 21. Relative parameter estimation errors with regression model AV-IR + Ix - 1, white areas
have error 51%, error magnitudes ?IVA are set to 10%.

Figure 22 shows the results for the regression model AV-IR + Ix + IR + IX - 1. The model is
clearly superior to model AV-IR + Ix - 1, especially at higher branch impedances.
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error magnitudes ?5% are set to 5%.

5.1.3. Parameter Error Dependency on Reverse Powerflow from PV

As shown in subsection 4.5, reverse power flow can significantly deteriorate the linearized
voltage drop accuracy. To see how reverse power flows influence the parameter estimation
accuracy, the branch series impedance parameters of the two-bus circuit (Figure 4) were
estimated with load power factor values (PF) = [0.8,1.0] and PV penetration levels

EPV/ELoad = [0,200] % based on energy. The PV generation values shown in Figure 23 were
scaled so that PV generated weekly energy was equal to a given fraction (PV penetration) of the
weekly load consumption.
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Figure 23. PV generation profile for the test data week before scaling

Figure 24 and Figure 25 display the parameter estimation accuracies for model AV-IR + Ix - 1
and for model AV-IR + Ix + IR + IX - 1, respectively. Once again, model AV-/R + IX + IR +
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1 clearly outperforms model AV—IR + Ix — 1. Figure 25 indicates that model AV—IR +
Ix + IR +11- 1 R estimation errors are slightly higher at high PV penetration levels and low
power factor values while the X estimation error are very accurate independent of the PV
penetration and the power factor.
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Figure 24. Relative parameter estimation errors with regression model AV—IR + /x — 1 for a range
of load power factor and PV penetration
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Figure 25. Relative parameter estimation errors with regression model AV—IR + /x + I2R + 0 — 1 for
a range of load power factor and PV penetration
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5.2. Regression Model Selection on the 66-Node Test Circuit

5.2.1. Regression Model Comparison without Measurement Error

The accuracy of the hierarchical radial circuit parameter estimation accuracy presented in section
4 was analyzed by estimating all the secondary circuit parameters in the 66-node circuit and
calculating the average absolute error of the estimated R and X parameters.
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Table 3 compares the errors of the parameters estimated with different regression models using
8759 measurement samples (one year). The meters are assumed to be perfectly accurate and able
to record voltage and current without any measurement error. The results are listed in the order
from the simplest regression model to the most complicated. The best results (in terms of the
absolute average IR,„ I +14,0 are obtained with regression model AV-IR + Ix + IR xIx +I,I+
q- 1 (linear, quadratic and cross-coupling terms of the current components but no intercept or
power factor terms). In all cases, regression models with intercept performed slightly worse than
the respective models without the intercept.

Table 3. Relative parameter estimation errors for different linear regression models without
measurement error

Included Predictor Variables
(All Models Include IR and Ix)

Avg. Abs. R e„ IcY01 Avg. Abs. X „, IN Avg.
Abs.

lRerrl +
IXerrl
ryd

Max.
Rerr

1%1

Max.

Xer

1%r1

Model
Order
(Best to
Worst)

Inter-
cept

IR xix A 11 (PF) Lines Trafos All Lines Trafos All

0.517 7.833 2.010 0.349 1.471 0.578 2.588 18.548 2.671 11

X 0.588 12.712 3.063 0.349 1.553 0.594 3.657 29.941 2.739 12

X 0.151 1.502 0.426 0.350 1.593 0.604 1.030 2.328 2.781 8

X X 0.169 1.584 0.458 0.350 1.592 0.604 1.062 3.969 2.781 9

X X 0.088 0.522 0.176 0.213 0.603 0.293 0.469 0.839 1.283 5

X X X 0.106 0.861 0.260 0.213 0.607 0.294 0.554 2.516 1.283 6

X X X 0.035 0.165 0.062 0.026 0.137 0.049 0.111 0.570 0.408 i

X X X X 0.056 0.618 0.171 0.026 0.144 0.050 0.221 1.994 0.413 2

X X X 0.184 0.900 0.330 0.476 0.553 0.492 0.822 2.654 1.948 7

X X X X 0.209 1.755 0.524 0.508 1.867 0.785 1.310 4.177 3.313 10

X X X X 0.066 0.657 0.187 0.060 0.168 0.082 0.269 2.168 0.411 3

X X X X X 0.074 0.980 0.259 0.085 0.483 0.167 0.425 2.965 1.021 4

The errors of parameters R and X estimated with regression model AV-IR + Ix - 1 and
AV-IR + Ix +iR x Ix + Ili + 11- 1 are shown in Figure 26 and Figure 27, respectively. Each
bar represents a low-voltage branch in the 66-node test circuit. Branch names that start with L
are lines, and branch names that start with T include service transformers. The errors of the
estimated impedance magnitude and X/R-ratio for model AV-IR + Ix - 1 and AV-IR + Ix +
IR x Ix + Ili + q - 1 are shown in Figure 28 and Figure 29, respectively. Without measurement
error, regression model AV-IR + lx +IR xIx +1,i +11- 1 estimates all the parameters with a
very high accuracy. Regression model AV-IR + Ix - 1 estimates the line parameters with a
relatively good accuracy but does poorly especially in estimating the service transformer
resistances and X/R-ratios. The transformer R parameters are clearly over-estimated while the
transformer X parameters are clearly under-estimated. An explanation for this is the linearized
voltage drop approximation illustrated in Figure 20, where the higher the X/R-ratios and the
impedance magnitudes are, the more the linearized voltage drop equation underestimates the
voltage drop. As a result, the transformer resistances will be over-estimated and the reactances
under-estimated in the linear regression parameter estimation. This is the direction where the
voltage drop approximation error reduces the fastest.
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5.2.2. Regression Model Comparison with Measurement Error

While the previous section assumes that all voltages and currents are perfectly known, generally
any meter has some measurement noise that introduces error. Next, the regression model
parameter estimation errors were analyzed with 1% P, 1% Q, and 0.2% V random uniform
measurement error. The 0.2% voltage error correspond to the ANSI .2 accuracy class meters
[45]. The 1% active and reactive power measurement error level is at or above ANSI .2 and .5
accuracy class meters [45]. This measurement error does not include calibration problems or
large bias, and instead is only focused on the stochastic noise common to measurement devices.
Table 4 lists the results for all secondary circuit branch R and X parameters estimated with 8759
measurement samples (one year). With measurement error, simpler models perform better than
complicated ones. The best overall parameter estimates are obtained with the simplest model
AV-IR + Ix -1. Line parameters are estimated best with AV-IR + Ix -1 while transformer
resistances are estimated best with model AV-IR + Ix + Ili - 1.

Table 4. Relative parameter estimation errors for different linear regression models with 1% P, 1%
Q, and 0.2% V measurement error

Included Predictor Variables
(All Models Include IR and Ix)

Avg. Abs. R err IN Avg. Abs. X„r [%1 Avg.
Abs.

Werrl +
1Xerrl
1%1

Max.
Rm.

1%1

Max.

Xerr

IN

Model
Order
(Best to
Worst)

Inter-
cept

IR x Ix d d (PF) Lines Trafos All Lines Trafos All

2.83 7.38 3.76 3.50 1.51 3.10 6.86 15.30 13.18 1
X 3.08 12.18 4.94 3.48 1.57 3.09 8.03 26.09 13.20 3

X 5.44 1.18 4.57 3.49 1.60 3.10 7.68 32.61 13.18 2

X X 14.14 6.42 12.56 3.52 1.60 3.13 15.69 86.10 13.14 4

X X 10.40 2.76 8.84 15.80 2.02 12.98 21.82 54.00 43.07 5

X X X 16.27 7.95 14.57 15.85 2.01 13.02 27.59 108.13 43.57 8

X X X 10.13 3.85 8.85 20.16 4.01 16.87 25.72 47.77 54.19 6

X X X X 17.19 8.52 15.42 20.23 4.08 16.93 32.35 101.94 54.30 9

X X X 16.25 8.24 14.62 14.80 1.96 12.18 26.79 116.15 60.25 7

X X X X 18.35 9.93 16.63 23.31 5.34 19.64 36.27 118.64 66.16 10

X X X X 19.68 9.67 17.64 27.54 4.54 22.85 40.48 96.29 85.72 11

X X X X X 32.84 21.02 30.42 65.05 17.91 55.43 85.86 187.20 225.31 12

The errors of the R and X parameters that are estimated with the regression models AV-/R +
Ix + Ili + 6 + IR x Ix - 1 (best without measurement error) and AV-IR + Ix - 1 (best with
measurement error) are shown in Figure 30 and Figure 31, respectively. With measurement error,
model AV-IR + Ix + Iii + 11 + IR X Ix -1 estimates some parameters with considerably higher
error than the model AV-IR + ix - 1. This is likely caused by the measurement errors that can
be large for the squared and cross-coupling terms. Model AV-IR + Ix - 1 estimates most of the
line R and X parameters and the transformer X parameters with an acceptable accuracy but does
worse in estimating the transformer (branch names that start with a T) resistances.

The errors of the impedance magnitude and X/R-ratio parameters that are estimated with the
regression models AV-IR + Ix - 1 and AV-/R + IX + Ili + Il + IR x ix - 1 are shown in Figure
32 and Figure 33, respectively. Excluding the parameters L3-4 and L9-2, AV-IR + Ix - 1
estimates all the impedance magnitudes with a good accuracy but performs worse in estimating
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the transformer X/R-ratios. AV—IR + IX + IR + IX + IR x Ix — 1 estimates many impedance
magnitudes with considerable error.
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5.3. Adaptive Regression Model Selection

Next, an adaptive regression model selection approach is discussed. Subsection 5.2 results show
that the best overall parameter estimation accuracy in the presence of measurement error is
obtained with model AV-/R + /x - 1. However, other models estimate better service
transformer parameters, because the transformer X/R-ratios and impedance magnitudes are
higher than those of lines, which results in higher errors in the linearized voltage drop
approximation as discussed in Subsection 5.2.1. Based on this insight, this section discusses an
adaptive approach where regression problems consisting solely of line parameters are estimated
with model AV-/R + /x - 1 and regression problems involving transformer parameters are
estimated with a regression model that includes other terms. For this work, the topology is
assumed to be known, so each branch is known as either a line or transformer, and all
connections between branches are known.

The adaptive approach was analyzed by estimating the transformer R and X parameters in the
66-node test case with 8759 measurement samples. Six different regression models for
transformer regression problems were analyzed, and the line parameters were estimated using
model AV-/R + Ix - 1. The results without measurement error are listed in Table 5, and the
results with 1% P, 1% Q and 0.2% V measurement error are listed in Table 6. Similar to section
5.1 and 5.2, complicated models perform better without measurement error and simple models
perform better in the presence of measurement error. The best overall parameter estimates were
obtained with model AV-IR + Ix + /II - 1, i.e., a model that includes the squared current term
a

Table 5. Relative parameter estimation errors of the adaptive approach with different regression
models for regression problems including transformers without measurement Error

Included Predictor Variables
for Regression Problems with
Transformer Parameters

(All Models Include I R and fx)

Avg. Abs. R er, [I) 4] Avg. Abs. X „, r/01 Avg.
Abs.

Werrl +

IXerrl
IN

Max.
Rerr

r/01

Max.

Xerr

[°/4)]

Model
Order
(Best to
Worst)Inter-

ce tp 
fR x ix A d (PF) Lines Trafos All Lines Trafos All

0.517 7.833 2.010 0.349 1.471 0.578 2.588 18.548 2.671 3

X 0.517 1.384 0.694 0.349 1.593 0.603 1.297 2.638 2.782 4

X 0.517 12.371 2.937 0.349 9.506 2.218 5.154 31.464 14.792 6

X X 0.517 0.439 0.501 0.349 0.575 0.395 0.896 2.638 1.218 2

X 0.517 7.903 2.025 0.349 6.657 1.636 3.661 18.615 9.563 5

X X X 0.517 0.186 0.450 0.349 0.100 0.298 0.748 2.638 1.218 1
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Table 6. Relative parameter estimation errors of the with different regression models for
regression problems including transformers with 1% P, 1% Q, and 0.2% V measurement error

Included Predictor Variables
for Regression Problems with
Transformer Parameters

(All Models Include IR and Ix)

Avg. Abs. R„,[%1 Avg. Abs. X„, IN Avg.
Abs.

lRerrl +
IXerrl
IN

Max.

Rerr
[%1

Max.

Xerr
IN

Model
Order
(Best to
Worst)Inter-

cept
IR x Ix d d (PF) Lines Trafos All Lines Trafos All

2.834 7.380 3.761 3.500 1.514 3.095 6.857 15.299 13.178 4

X 2.834 1.009 2.461 3.500 1.603 3.113 5.574 13.667 13.178 1

X 2.834 11.809 4.665 3.500 9.293 4.683 9.348 26.657 15.161 6

X X 2.834 2.878 2.843 3.500 2.108 3.216 6.059 13.667 13.178 2

X 2.834 7.444 3.774 3.500 6.547 4.122 7.897 15.339 13.178 5

X X X 2.834 3.274 2.924 3.500 3.205 3.440 6.364 15.846 13.178 3

Figure 34 and Figure 35 compare the performance of the adaptive approach with (transformer
regression problem) models AV-IR + IX - 1, AV-IR + IX + IR - 1, and AV-/R + /x + IR +
IX - 1 with different P, Q, and V error levels and sample sizes. Model AV-IR + IX - 1 is equal
to the nonadaptive approach with regression model AV-IR + Ix - 1. Model AV-/R + Ix + IR -
1 beats model AV-IR + Ix - 1 as long as sufficiently large sample size is used. As shown in
Figure 35, model AV-IR + IX + IR - 1 outperforms model AV-IR + IX + IR + IX - 1
independent of the error level and sample size. Based on these results, the rest of this report
utilizes the adaptive parameter estimation approach where regression models AV-/R + IX - 1
and AV-IR + IX + IR - 1 are used for regression problems without and with transformer
parameters, respectively.
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(PV Inverters) j

6. IMPLEMENTATION

This chapter discusses the implementation of the distribution system secondary circuit pararneter
estimation.

6.1. Data Flows for Distribution System Parameter Estimation

DSPE has an important role of validating and refining the existing utility feeder models and thus,
preparing them for increased situational awareness and operational tasks in the future smart
distribution systems. It may be beneficial to integrate the offline DSPE closely with the current
distribution system simulator, since DSPE requires moving and managing large quantities of
data, much of which is shared with the current distribution systern model/simulator as shown in
Figure 36.

The current model components, parameters and connectivity will be fetched from GIS. SCADA
will transmit the measurements and device states. AMI/MDMS will provide the load profiles,
and DER the generation profiles, as an input to time series power flows that simulate the service
transformer prirnary voltages. By leveraging the distributed voltage measurements from the AMI
and DER as well, the parameter and topology estimator will calculate the secondary system
component pararneters and pass the refined component parameters and perrnanent connectivity
(in case topology estimation is also performed) to GIS. The Big Data challenge is efficiently
managing these data flows through advanced data analytics, optimized database queries, and
rapid time series analysis.

AMI

SCADA

Device  

Measurements & States *

 >.

 *
P, Q, V, I

Measurements

DER __Hp,

Distribution

System Model

*
Parameter

Estimator

Components,

para meters &

connectivity
GIS

Refined parameters t

& connectivity

Figure 36. Data flows for distribution system secondary circuit parameter estimation

6.2. Algorithm

The high-level secondary circuit parameter estimation algorithm is shown in Figure 37. The
algorithm starts by compiling the existing utility feeder model in the distribution system
simulator for time series power flow analysis. For all analysis in this report, the distribution
system power flow is solved by OpenDSS, and all parameter estimation algorithms are
implemented in MATLAB [46], [47]. The input data required for the time series analysis
includes load active and reactive power (or current and power factor) measurements, substation
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voltage measurements, and PV generation. The output from the time series power flows
solutions is the service transformer MV-side voltages.

Once the time series power flow has finished, the parameter estimation algorithm processes one
secondary circuit at a time, estimating the secondary circuit branch impedances with the
hierarchical approach introduced in section 4. For each secondary circuit the algorithm does the
following. First, the measurement samples are selected following the principles discussed in
section 4.5.Then, at each iteration the algorithm identifies and selects a suitable circuit
subsections with N parallel branches as explained in section 4. Next, the branch parameters are
estimated using one of the two parallel branch estimation approaches discussed in section 4.2,
the ordinary least squares estimator introduced in section 3.2.1., and the adaptive regression
model selection introduced in section 5.3. With small number of parallel branches, either of the
parallel branch parameter estimation approaches can be used while at large number of parallel
branches, the simultaneous parallel branch estimation approach discussed in section 4.2.1
becomes preferable. When the ordinary least squares estimator results in non-physical (negative
or too large) parameters, the linearly constrained least squares estimator introduced in section
3.2.2 can be used instead. The adaptive regression model selection includes the second order
terms of the resistive (real power current) Iii to all the regression problems that include
transformer parameters in order to compensate for the larger error of the linearized voltage drop
equation over these branches. Alternative regression models can be considered depending on the
error level in the available measurements.

A key advantage of the parameter estimation algorithm described is that it does not require any
power flow solutions during the linear regression optimization of the parameters. Validation and
error analysis is done by running another time series power flow simulation with the estimated
parameters and comparing the simulated and measured voltages at the ends of the secondary
system.

The manual verification of the parameter estimation results is very important to avoid any
possibilities of replacing previously accurate impedance parameters with poorer estimates. In the
manual verification step, the user needs to compare the estimated parameter values and how
closely they align with physically expected values. This step is also useful for detecting any data
or topology problems that become evident in the form of physically impossible parameter
estimates or insignificant linear regression p values of some parameters. Insignificant p value of
an estimated parameter (regression coefficient) indicates that we do not have sufficient evidence
to reject the null hypothesis that the parameter is a given value (here zero). In other words, we
are not confident rejecting that the parameter has no role in the regression. In impedance
parameter estimation, this would likely imply that either the regression model is incorrect
(missing measurements, incorrect topology, etc.) or the measurement data is inaccurate due to
gross errors. However, insignificant parameters (regression coefficients) may also be caused by
some of the linear regression assumptions being invalid. For detailed discussion on these
assumptions, the reader is referred to e.g. [48].
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Figure 37. High-level algorithm for distribution system secondary circuit parameter estimation

53





7. RESULTS

7.1. Three-Phase Test Circuit

The hierarchical linear regression parameter estimation algorithm was used to estimate the three-
phase test system secondary circuit parameters. Before estimating the parameters of a secondary
circuit, the algorithm merges all the series branches that have no measurements in between, e.g.,
the service transformer and the service drop of secondary circuit no. 2 (Figure 5). Figure 38
shows the merged secondary circuit tree topologies that the algorithm has processed based on the
OpenDSS circuit model. The node names and the node upstream branch names are shown on the
lower left and upper right sides of the nodes, respectively. The transformer medium voltage and
low voltage side nodes are abbreviated with "HV" and "LV', respectively. The circuits where the
transformer is merged with its downstream branch do not have a node with "LV". Branches that
include a transformer have "T" and branches that include a line have "L" and in their label.

6-1

THV,

TEN(

-L9-0

TFN3

TLV3
3

3-1 THV
3- 3-2
3- 3-3
3- 3-4

4-L4-0
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10

8-3 8-4 iL8-1 dp-1 ik10-1 ak10-0-L10-2
8- 8- 8-1" 9-1" 9-2" 10-1 10-2-

Figure 38. Merged secondary circuit trees with bus names shown in blue and bus upstream
branch names shown in black

7.1.1. Parameter Estimation Accuracy without Measurement Error

Typically, the utilities have abundant AMI measurement data that can be filtered for the offline
parameter estimation. However, in order to keep the parameter estimation algorithm
computationally and data efficient, the necessary number of measurement samples must be
determined. A sufficiently large measurement sample should be selected to achieve the highest
possible accuracy, but at some point adding more samples is expected to have diminishing
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marginal returns. The parameter estimation error dependency on the number of measurement
samples was studied on the 66-node test circuit. Figure 39 shows the relative errors of the
estimated R and X parameters with measurement sample lengths 1-53 weeks when no
measurement error is present. The measurement samples were selected in a random order from
the available set of 53 weeks of load data. Each plot contains 49 lines, one for each R or X
parameter. The average error of all parameters is shown with the red bold line. As the figure
indicates, when no measurement error is present, there is no need to utilize large numbers of
measurement samples. It should also be noted that utilizing a larger number of measurement
samples can also reduce parameter estimation accuracy depending on the characteristics of the
additional samples. Generally, parameter estimation results depend on the characteristics of the
utilized measurement data and measurement error.
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Figure 39. Relative errors of the estimated R and X with different measurement sample sizes
without measurement error

The detailed parameter estimation accuracies without measurement error are shown in Figure 40.
All the parameters are estimated with an error less than 3%. As discussed in chapter 5,
considerably better parameter estimation accuracies without measurement error are achieved
with alternative regression models. However, the proposed adaptive regression model approach
achieves the best performance in the practical setting with noisy measurements.
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7.1.2. Parameter Estimation Accuracy with Power Measurement Error

O

Next, the parameter estimation error dependency on P and Q measurement error and sample size
was studied. Measurement error was added to each active and reactive power measurement
sample i with Pi = (1 + 8)Pi and Qi = (1 + 8)Q1, where the measurement error magnitude was
set to 8 E Uniform(-0.05,0.05). Perfect voltage measurements were assumed.

Figure 41 shows the average absolute R and X estimation errors of all the 66-node test circuit
parameters with measurement sample lengths from 1 through 50 weeks with different P and Q
measurement error levels and sample sizes. With reasonably small measurement error levels and
sufficient sample sizes, the average parameter estimation errors are well below 1-2%. In the
presence of measurement error, increasing the measurement sample size considerably improves
the accuracy of the estimated parameters up to the sample sizes of around 10 weeks (1680
samples) after which adding further samples has only small if any improvement. The estimation
accuracy does not improve monotonically with the sample size due to the randomness of the load
data and the sample selection. If Figure 41 was repeatedly plotted over a randomly drawn order
of the load data, the average error of the repetitions is expected to reduce monotonically as the
sample size grows.
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Figure 41. Average relative errors of R (left) and X (right) estimated with 1-50 weeks of load data

and 0-5% of P and Q measurement error

7.1.3. Parameter Estimation Accuracy with Voltage Measurement Error

Next, parameter estimation performance was studied in the presence of voltage measurement
error. The same principle was used as with the power measurement error above, but now voltage
measurement error up to 0.5% (e.g. Class 0.5 smart meter) was added to the voltage
measurements. Figure 42 shows the average absolute R and X estimation errors of all the 66-
node test circuit parameters with measurement sample lengths from 1 through 50 weeks with
different voltage measurement error levels and sample sizes. Again the errors of the estimated
parameters reduce (although not monotonically) as the sample size is grown. Clearly, voltage
measurement error has a much larger influence on the parameter estimation accuracy than the
power measurement error. Therefore, it is an imperative to have high quality voltage
measurements.
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It is relevant to point out the reason for the parameter estimation to be very sensitive for the
voltage measurement error. Figure 43 shows the boxplots of load voltage measurement errors at
error level 0.2%, voltage drops over the service lines, and voltage drops over the service
transformer for the entire year of load data (8760 samples). Each boxplot on the top of Figure 43,
represents the load voltage measurement errors. Each boxplot in the bottom of Figure 43
represents the voltage drops over a given branch or transformer. The voltage drops over some
lines are on the same order or smaller than the measurement error. Since the proposed parameter
estimation utilizes the branch voltage drop as the linear regression response variable, it is not
possible to estimate effectively impedance parameters for branches over which the voltage drop
is less or equal than the voltage measurement error level. Therefore, it is imperative to have high
quality voltage measurements.
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Figure 43. Load voltage measurement errors at error level 0.2% (top) compared to voltage drops
over the 240V base secondary circuit transformers and lines (bottom)

7.1.4. Parameter Estimation Accuracy with Power and Voltage Measurement Error

Finally, parameter estimation performance is shown in the presence of both power and voltage
measurement error. Similarly to the previous subsections, measurement error up to 0.5% (e.g.
Class 0.5 smart meter) was added to the P, Q, and V measurements. Figure 42 shows the average
absolute R and X estimation errors of all the 66-node test circuit parameters with measurement
sample lengths from 1 through 50 weeks with different voltage measurement error levels and
sample sizes. Again the errors of the estimated parameters decrease (although not monotonically)
as the sample size is grown. Even at relatively high measurement error levels of 0.5%, the
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average absolute error or the estimated R and X can be brought down to around 6% and 9%,
respectively by utilizing sufficiently large sample sizes. However, adding more samples does not
completely remove the influence of measurement error. Therefore, it is necessary to have high-
quality (especially voltage) measurements in order to accurately estimate the parameters.
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The relative errors of the estimated R and X parameters with 0.2% measurement error level and
8759 measurement samples are shown in Figure 45. Excluding parameters of L3-4 and L9-2, all
the parameters are estimated with a reasonably good accuracy with mean (maximum) relative
error of R and X at 2.05% (8.67%) and 2.73% (9.50%), respectively. The relative errors of the
estimated Z and absolute errors of the estimated X/R-ratios are shown in Figure 46. Again,
excluding parameters of L3-4 and L9-2, the mean (maximum) relative Z and absolute X/R-ratio
errors were 1.10% (3.61%) and 0.08 (0.28), respectively.
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No straightforward reason was found for the low quality of L3-4 and L9-2 parameter estimates.
The voltage drop over branch L3-4 is quite small but not uniquely small in the test circuit.
Branch L9-2 has a relatively high X/R-ratio compared to the other branches in the test circuit.
However, neither of these factors fully explains the considerably poorer quality of the estimated
parameters. Additionally as shown in Figure 47 the two regression problems that contain L3-4
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and L9-2 have very low R-squared values, which indicates a low quality fit. However, there are
other well-estimated parameters with similar R-squared values and thus, R-squared cannot be
directly used to describe the quality of a regression model. Figure 47 also shows that the sum of
squared errors of these two regression problems are not considerably higher and that the
parameter p-values are significant. Finally, as Figure 48 and Figure 49 indicate, the regression
problems that include L3-4 and L9-2 do not have particularly high or low means and/or standard
deviations of the response and/or predictor variables. Potentially, other characteristics in the load
data of L3-4 and L9-2 would explain the lower estimation quality of these parameters. To
conclude, more work is needed to determine the approach to detect and fix parameter estimation
regression problems with low quality.
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Figure 49. Means and standard deviations of the predictor variables I R and Ix

Figure 50 shows the absolute and relative errors of the simulated per-unit voltage drops from the
transformer primary winding to the load buses. The errors are calculated between the voltages
simulated with the true parameters and the voltages simulated with the estimated parameters. In
both cases, the voltages were simulated with the true P and Q values. All the errors are so small
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that in real circuits, they can be hard to distinguish from measurement noise and other modeling
inconsistencies.

It should be noted that since parameter estimation results are data-driven, different results are
obtained with different characteristics of load data and measurement error. As shown in Section
5.3, without measurement error, parameters can be estimated with a very small error especially if
regression models with additional terms are used. The presented parameter estimation approach
is optimized for the practical setting where the measurement error dictates the parameter
estimation accuracy.
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Figure 50. Errors of simulated voltage drops from the service transformer primary to the load
buses when the parameters are estimated with the adaptive approach

7.2. Georgia Tech Feeder

The proposed parameter estimation algorithm was utilized to calibrate the secondary circuit
parameters of one of the Georgia Tech feeders. Since the true parameter values are unknown, the

parameter estimation accuracy was measured with mean bias errors (MBE = 
1 n 

)—n i=i
(V sim—Vmeas) 

Vmeas
of the voltage drops simulated with the basecase parameters and the estimated parameters. The
results are shown in Figure 51. The parameter estimation very effectively reduced the bias of the
voltage drop simulation error.
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Typically distribution system secondary circuits are fed by a single service transformer whose
upstream and downstream bus voltages are rarely measured. In order to estimate the transformer
impedance, voltage estimates of both of the transformer buses are needed. The downstream bus
voltages can be estimated from the secondary circuit measurements with the hierarchical radial
circuit parameter estimation approach shown above. However, the same approach cannot be used
to estimate the transformer upstream bus voltages. Instead, the transformer upstream bus
voltages can be estimated from time series power flow analysis by assuming that the distribution
system primary circuit is well-modeled and any secondary system impedance inaccuracies have
only a small impact on the transformer medium-voltage side voltages.

It is challenging to verify the Georgia Tech primary system model accuracy due to the absence of
measurements between the loads in the secondary circuits and the substation. There is
uncertainty with respect to the primary system underground cable capacitances and in some
cases the exact primary system topology. Moreover, the Georgia Tech AMI historical database
has errors, many of which have already been detected and removed but further undetected
problems are likely to exist [33], [34].

Figure 52 shows the boxplots of the relative voltage simulation errors for all the 10 secondary
circuit loads in the studied Georgia Tech feeder. The larger mean and range of errors are
explained next. Meter 136E_ML1 records instantaneous measurements, which are subject to
considerable variation in a given 15-min measurement time period. Since the other feeder
measurements are 15-min averages, these instantaneous measurements do not synchronize well,
so simulated voltages have more variation. Due to large research equipment in the building,
meter B149E_MH2 has an abnormal load shape that is only at a few kW most of the time and
occasionally jumps quickly up to 200-300kW for a while. Filtering out these jumps from the
parameter estimation improves the estimated parameters and reduces the errors for test data
periods without the jumps. However, voltage simulation errors during these jumps cannot be
eliminated. Building B199E_MH1 has a lot of PV with negative power injections present during
the daytimes. Parameter estimation effectively reduced the means and variations of the other
loads.
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8. HANDLING METERS WITHOUT VOLTAGE MEASUREMENTS

Smart meters and PV microinverters measure both voltages and currents to derive power
measurements from them. Modern smart meters can allow firmware upgrades [49] to be able to
transmit the voltage measurements to the utility database. However, older smart meters may not
have either of these capabilities and thus, in practice some meters may provide only power (or
current) measurements. This chapter presents a modified secondary circuit parameter estimation
approach that can handle some meters that do not transmit voltage measurements. It should be
noted that any meter without voltage measurements reduces the accuracy and observability of the
(secondary circuit) parameter estimation and thus, it is desirable to have high-quality voltage
measurements from all smart meters.

The modified approach presented in this chapter relies on the assumptions listed in chapter 4
except that all leaf nodes without voltage measurements must have current and power factor
measurements. If a meter without voltage measurements has only power measurements, these
power measurements must be converted to current measurements (IR and /x) by utilizing
estimated (e.g. nominal or simulated) voltages. Once this has been done, the algorithm proceeds
as follows to estimate the parameters of each secondary circuit:

1. Remove the upstream branches of leaf nodes without voltage measurements (their
parameters cannot be estimated). Add the currents of such leaf nodes to the currents of
the immediate upstream nodes. Set the list of other branches as the set of active branches.

2. While the set of active branches is not empty
• If the list of active branches has only one branch, select the branch and go to 3.
• If the list of active branches has a branch with both upstream and downstream

voltage measurements, select the branch and go to 3.
• If the list of active branches has a comprehensive (no other branches with the

same upstream node) set of parallel branches that each have downstream voltage
(and current) measurements, select the branches and go to 3.

• If the list of active branches has a set of two or more parallel branches that each
have downstream voltage (and current) measurements, select the branches and go
to 3

• If the list of active branches has a branch with downstream voltage measurements,
select the branch and go to 4.

• If no suitable branch(es) found, return an error.
3. Estimate the parameters of the selected branch(es) either with "single branch model" or

"pairwise parallel branch approach" shown in section 4. Go to 5.
4. Estimate the parameters of the selected branch by forming a regression problem between

the branch downstream node and the closest upstream node with voltage measurements
as shown in section 8.1. Go to 5.

5. Remove the selected branches from the set of active branches, add the currents of each
branch to the currents of the immediate upstream branch and go to 2.
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8.1. Estimating Series Branch Impedances

The regression problem for a set of N series branches can be formulated based on the voltage
drop over the branches:

1711p — VDovvn = (19)

where Vup is the known voltage of the upstream node of the highest branch in the set and VDOWn
is the known voltage of the downstream node of the lowest branch in the set. The current
components of branch i, IRi and in, can be calculated as a sum of the downstream branch
currents of branch i. Consider T synchronous measurement samples Vup, VDOWn, /Ri, /xi E
RT, i E {1, , N} and define the response vector

Y = V UP — V Down, (20)

the measurement (design) matrix

= [41, 41, 42, 42, ••• 4N, Ixisd, (21)

and the parameter vector

= [R1, X1, , RN, XX . (22)

Then, the parameters Ri, Xi, i E {1, , N} can be estimated from

y = + e (23)

with one of the approaches introduced in section 3.2. If the parameters of an upstream branch
i E {1, , N} are known (or estimated previously), branch i can be removed from the regression
problem by doing the following steps.
1) Remove 6,1 i, the vector of voltage drops over branch i, from the response vector (20)

y = VUp — V Down — i.

2) Remove I Ri and /xi, the predictors of branch i, from the design matrix (21)

X = [41, ixl, /R2, /x2, ••• I R(i-1), I X(i-1)) ••• R I X (i+l), I RN, I XN] •

3) Remove Ri and Xi, the coefficients of branch i, from the parameter vector (22)

(24)

(25)

= Xl, ••• , Ri_i, X i_l, Ri+l, X ••• , RN, . (26)

If the parameters of multiple upstream branches are known, steps 1) — 3) are repeated for each
branch with known parameters.

8.2. Results for the 66-Node Test Circuit

First, the operation of the algorithm is illustrated with different meters without voltage
measurements in secondary circuit 6 of the 66-node test circuit (Figure 5). Fivre 53 shows both
the true parameters and the estimated parameters when all loads have voltage measurements.
Figure 54 shows the estimated parameters when load 6-1 has no voltage measurements. In this
case, branch L6-1 parameters are not estimated (and thus, are not show in the figure), branch L6-
2 parameters are estimated with the approach described in section 8.1, and the rest of the
parameters are estimated normally utilizing voltage measurements. Figure 55 shows the
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estimated parameters when loads 6-1 and 6-4 have no voltage measurements. In this case, branch
L6-1 and L6-4 impedances are not estimated (and thus, are not shown in the figure), branch L6-
2, L6-3 impedances are estimated with the approach from section 8.1, and the rest of the
branches are estimated normally. Finally, Figure 56 shows the estimated parameters when loads
6-1, 6-2, and 6-4 have no voltage measurements. In this case, branch L6_1, L6_2, L6_4, and
L6_01 impedances are not estimated (and thus, not show in the figure), branch 6-3 impedance is
estimated with the approach in section 8.1 and the rest of the parameters are estimated normally.

THV

L6-0 e .0300 + j0.0300
6 1, $.0302 + j0.0297

T. 0.0276 + j0.0599
81 + j0.0585

L6
6-

0.0300 + j0.0300
.0302+ j0.0297

L6- 0300+ j0.0300L6- 0.0300+ j0.0300 L6 0300+ j0.0300 L6 0.0300+ j0.0300
6- 0.0301 + j0.0299 6- 0.0301 + j0.0299 6- 0.0301 + j0.0299 6- 0.0301 + j0.0299

Figure 53. Original secondary circuit 6: node name (black bold), node upstream branch name
(bold blue), branch true impedance (blue), and branch estimated impedance (red) , branches

whose parameters are not estimated are not shown

L6-0 (400+ j0.0300
6-0 0.0301 + j0.0297

THV?

T.;• 0.0276 + j0.0599
0282+ j0.0585

L6 0.0300 + j0.0300
6-01 § 0300 + j0.0297

L6 0.0300+ j0.0300 L6 0.0300 + j0.0300 L6 0.0300+ j0.0300
6- 0.0298+ j0.0299 6- 0.0301 + j0.0299 6- 0.0301+ j0.0299

Figure 54. Estimated secondary circuit 6 parameters when load 6-1 has no voltage measurements:
node name (black bold), node upstream branch name (bold blue), branch true impedance (blue),
and branch estimated impedance (red) , branches whose parameters are not estimated are not

shown
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TFN

Tv 0.0276 + j0.0599
• :082 + j0.0585

L6-0 I 1400 + j0.0300
6-0 0.0299 + j0.0297

0.0300 + jO.0300
0.0300 + j0.0297

L6 0.0300 + j0.0300 L6 0.0300 + j0.0300
6- 0.0298 + j0.0299 6- 0.0299 + j0.0299

Figure 55. Estimated secondary circuit 6 parameters when loads 6-1 and 6-4 have no voltage
measurements: node name (black bold), node upstream branch name (bold blue), branch true
impedance (blue), and branch estimated impedance (red), branches whose parameters are not

estimated are not shown

THV

T 0.0276+ j0.0599
TLV • 0.0282+ j0.0585

L6-0 0.0300+ j0.0300
6-1? 0.0300+ j0.0297

L6 0.0300+ j0.0300
6- 0.0299+ j0.0299

Figure 56. Estimated secondary circuit 6 parameters when loads 6-1, 6-2, and 6-4 have no voltage
measurements: node name (black bold), node upstream branch name (bold blue), branch true
impedance (blue), and branch estimated impedance (red) , branches whose parameters are not

estimated are not shown

The modified algorithm was validated on the 66-node test circuit by first removing voltage
measurements from a given number of randomly selected meters in each secondary circuit and
then estimating the parameters. This was repeated for 50 times for each secondary circuit. All the
meters were assumed to have current measurements, i.e., no conversion from powers to currents
with estimated/simulated voltages was necessary. The parameters were estimated with a set of
8760 samples of perfect measurements (no measurement error). Figure 57 and Figure 58 show
the average (over the 50 repetitions) absolute relative errors of the estimated R and X,
respectively. The more meters without voltage measurements a given secondary circuit has, the
higher the errors of the estimated parameters become. In some secondary circuit topologies, the
errors increase more than on others. This is clearly illustrated in Figure 59 and Figure 60 that
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show how much the average (over the 50 repetitions) absolute errors of the estimated R and X
increase as the number of meters with no voltage measurements increases. It is also interesting to
observe that in some cases, e.g., branches "L5 2" and "T3", the average parameter estimation
error decreases when a meter is removed. This could potentially be explained by the particular
load characteristics of the removed meter.
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Figure 57. The average errors of the estimated R parameters over 50 repetitions where at each
repetition a given number of randomly selected meters had no voltage measurements. In white

areas, the parameter was not estimated in any of the repetition.
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Figure 58. The average errors of the estimated X parameters over 50 repetitions where at each
repetition a given number of randomly selected meters had no voltage measurements. In white

areas, the parameter was not estimated in any of the repetition.
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Rerr = (Rest-Ron.g)/Ron.g x 100
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Figure 59. The impact of the number of meters with missing voltage measurements to the R
estimation error (the difference of the results in Figure 57 compared to the case when all the

meters have voltage measurements)
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Figure 60. The impact of the number of meters with missing voltage measurements to the X
estimation error (the difference of the results in Figure 58 to the case when all the meters have

voltage measurements)
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9. CONCLUSION

To analyze and coordinate distribution systerns with rapidly increasing amount of PV, more
accurate distribution system models are required, especially for the distribution system secondary
circuits down to the point of common coupling for distributed PV. There is a growing need for
automated procedures to calibrate the distribution system secondary circuit models that are
typically modeled with a lower level of detail than the well-modeled medium-voltage systems.

This report presents an accurate, flexible, and computationally efficient method to use
measurement data to estimate secondary circuit series impedance parameters in existing utility
feeder models. The parameter estimation method assumes well-rnodeled primary circuit models,
known secondary circuit topology, and AMI active power and reactive power measurements at
all the loads in the secondary circuit. The method also requires AMI voltage measurements at
most of the loads in the secondary circuit but can handle some meters without voltage
measurements. The method is based on the well-known linearized voltage drop approximation
and linear regression. The algorithm accuracy is studied with respect to various circuit
parameters and operation conditions, including a range of circuit impedances, load power factor,
the presence of reverse power flows, power and voltage measurement error, and sample size.

The performance of the developed method is demonstrated on a three-phase test circuit without
and with power and voltage measurement error. The optimal regression model is shown to
depend on the measurement noise and an optimal regression model selection is shown for the
practical case with noisy measurement. The optimal regression model for the ideal case without
measurement error estimates all the branch parameters with relative errors less than 1.5%. In the
presence of 1% active power, 1% reactive power, and 0.2% voltage measurement error, the
proposed optimal approach for noisy measurements estimates all the parameters with an average
relative errors 2.46% and 3.11% for R and X, respectively. The average errors of the voltage
drops over the secondary circuits, simulated with the estimated parameters, are all within 1%
percent error of the actual voltage drops. These high levels of accuracy demonstrate the
efficiency of the proposed methodology in improving secondary circuit models. The pararneter
estimation accuracy is shown to be much more sensitive to voltage measurement errors than
power measurernent errors, underlying the irnportance of having high-quality voltage
measurement data.

The algorithm performance is also dernonstrated on one the Georgia Tech campus distribution
system feeders with AMI data. In this feeder, the algorithm very effectively reduced the bias of
the voltage drop simulation error. Challenges related to real feeder models and AMI data are
discussed.

In the future work, the proposed rnethod is extended to single-phase secondary circuits and
unknown secondary circuit topologies and applied on real utility feeder models.
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