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UQ for Decision Making
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Problem

 Analysts have to make crucial 
decisions from large datasets
 Sometimes in real time

Solution

 Simplify the data into a quick and 
easy way for human understanding
 Usually done through means, stand 

deviations, quartiles, etc.



Example: Seismic Onset Detection

Given

 Waveform data containing both
noise and seismic signals

Produce

 Signal onset/arrival time

 Precision is critical to downstream 
processing
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Note:
Ground truth does not exist
or is hard/expensive to get



Impact on Downstream Analyses
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 Several analyses depend on onset time:
 Location (hypocenter)

 Event type (natural or man-made) & size

 Subsurface tomography

 Earth model

 Rely more on current data, less on historical
data and modeling assumptions

 Relative reliability of data points and sensors

 Possibly improve ability to sense smaller, less 
obvious signals



Analysis Approach

Model

 ℳ1, for the noise left of k, is Gaussian: 𝑌𝑡~𝑁(0, 𝜎𝑛
2)

 ℳ2, for the signal right of k, is ARMA(p,q):  𝑥𝑡 = 𝑐 + 𝜀𝑡 +  𝑖=1
𝑝
𝜙𝑖𝑥𝑡−𝑖 +  𝑖=1

𝑞
𝜃𝑖𝜀𝑡−𝑖

Basic Approach

 Model the noise (M1) and the signal
plus noise (M2) separately

 Optimize model parameters 𝜃, 𝜙
via maximum likelihood

 Akaike information criterion (AIC) 
to select transition point k

 Point at which two models meet
is the “best guess” signal onset
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Log-Likelihood
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where,

𝜀𝑡 = 𝑌𝑡 − 𝑐 − 
𝑖=1

𝑝

𝜙𝑖𝑌𝑡−𝑖 − 
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for 𝑡 = 𝑝 + 1, 𝑝 + 2,… , 𝑇

 ℳ1, for the noise left of k, is Gaussian: 𝑌𝑡~𝑁(0, 𝜎𝑛
2)

 ℳ2, for the signal right of k, is ARMA(p,q):  𝑥𝑡 = 𝑐 + 𝜀𝑡 +  𝑖=1
𝑝
𝜙𝑖𝑥𝑡−𝑖 +  𝑖=1

𝑞
𝜃𝑖𝜀𝑡−𝑖



Uncertainty Analysis
Parametric Bootstrap

 Use AIC to select p,q for ℳ1 & ℳ2

 Fit model parameters for each, optimizing k

 Sample ℳ1 & ℳ2 to create new waveforms

 Fit new models to each sample and record k

 Compute the sampling distribution of the 
estimate k
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Results: Analyst vs Automated
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Results: Analyst vs Automated
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Results: Analyst vs Automated
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 15 waveforms
 10-18 analyst picks

 1,000 automated picks

 The difference in the 
means is much more 
spread out
 The difference in the 

modes are tightly 
packed



Impact on Decision Making

 UQ provides added information
 Statistical evidence for the analysts 

that picked early

 Alternate (statistical) hypotheses

 Modeling approach reduces 
assumptions
 Data specific

 Not predicated on prior calibration 
or SNR formulas and cut-offs
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input

regularization

Uncertainty Quantification for Statistical Models

approximate
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indirect
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classic machine learning problem

solution
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errors

model-form

uncertainty

measurement

errors
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inverse uncertainty quantification problem

Key Question:  How much do sensor observations really tell us about the world?

• Stats / ML research communities do not typically frame questions this way.

• Most work focuses on building a better statistical model

• “What” the model says emphasized over “how well”
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Related Issues

 Model form uncertainty is tricky

 Depends on definition of “best fit”
 By what metric?

 What are we trying to fit?

 Model complexity

 Sampling

 Computational complexity

 UQ does not answer these questions, 
but it might provide some insight
 A metric that measures something 

different from Acc, Prec, Recall, ROC
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Future Work
 Combine Distributions from multiple sensors 

for downstream analysis
 Such as origin location

Method 1: Parametric Bootstrap

 Use AIC to select p,q for ℳ1 & ℳ2

 Fit model parameters for each, optimizing k

 Sample ℳ1 & ℳ2to create new waveforms

 Fit new models to each sample and record k

 Compute the sampling distribution of the 
estimate k

Method 2: Model Sampling

 ℳ1=ARMA(p1,q1); ℳ2=ARMA(p2,q2)

 {p1, q1, p2, q2} determines k and a likelihood

 Sample from {p1, q1, p2, q2 ,k} and fit the data

 Use likelihoods and the prior distributions on 
{p1, q1, p2, q2 ,k} to construct a posterior 
distribution for k

Not clear that these produce similar distributions



Summary
 Uncertainty analysis does not “build a better model”

It indicates how well a given model captures the data

 Research is to bridge the theory – application gap

 Work in space of available data

 Automatic model selection and calibration

 Propagating uncertainty through layers of analysis

 Use UQ to determine if the model is doing what analyst expects 
(given lack of ground truth)

 Important questions

 What’s the relationship between uncertainties generated by 

 Measurement errors & data sampling (bootstrap)

 Model selection and induction processes (model sampling)

 Inference (MCMC)

 …and how do we combine them?   Or should we?

 What issues arise when we propagate uncertainties from one 
statistical inverse problem to another? 15



Questions
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