

Exceptional service in the national interest

Using Data-Driven Uncertainty Quantification to Support Decision Making

Matt Peterson

Joint work with:
Charlie Vollmer, David Stracuzzi,
and Max Chen

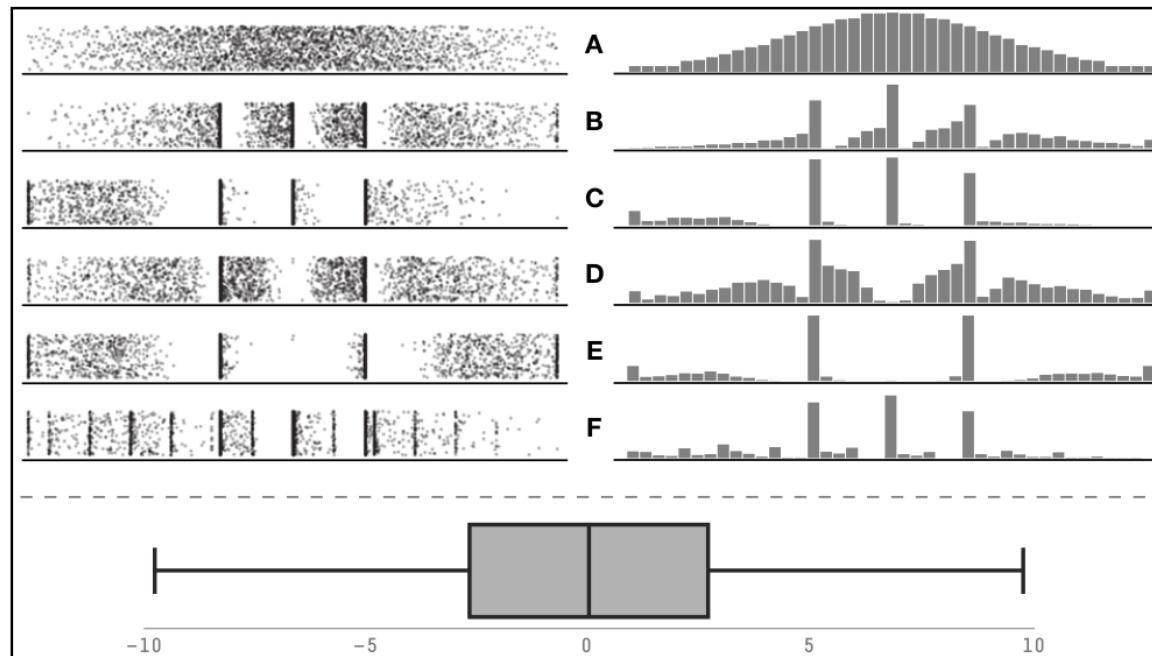
POC: Matt Peterson
mgpeter@sandia.gov

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

UQ for Decision Making

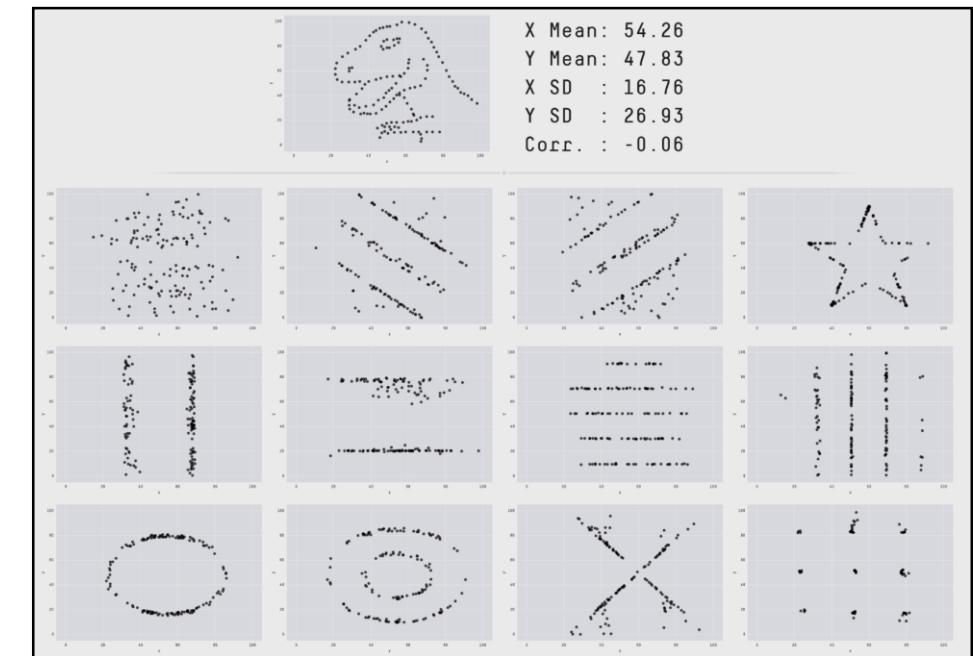
Problem

- Analysts have to make crucial decisions from large datasets
 - Sometimes in real time



Solution

- Simplify the data into a quick and easy way for human understanding
 - Usually done through means, stand deviations, quartiles, etc.



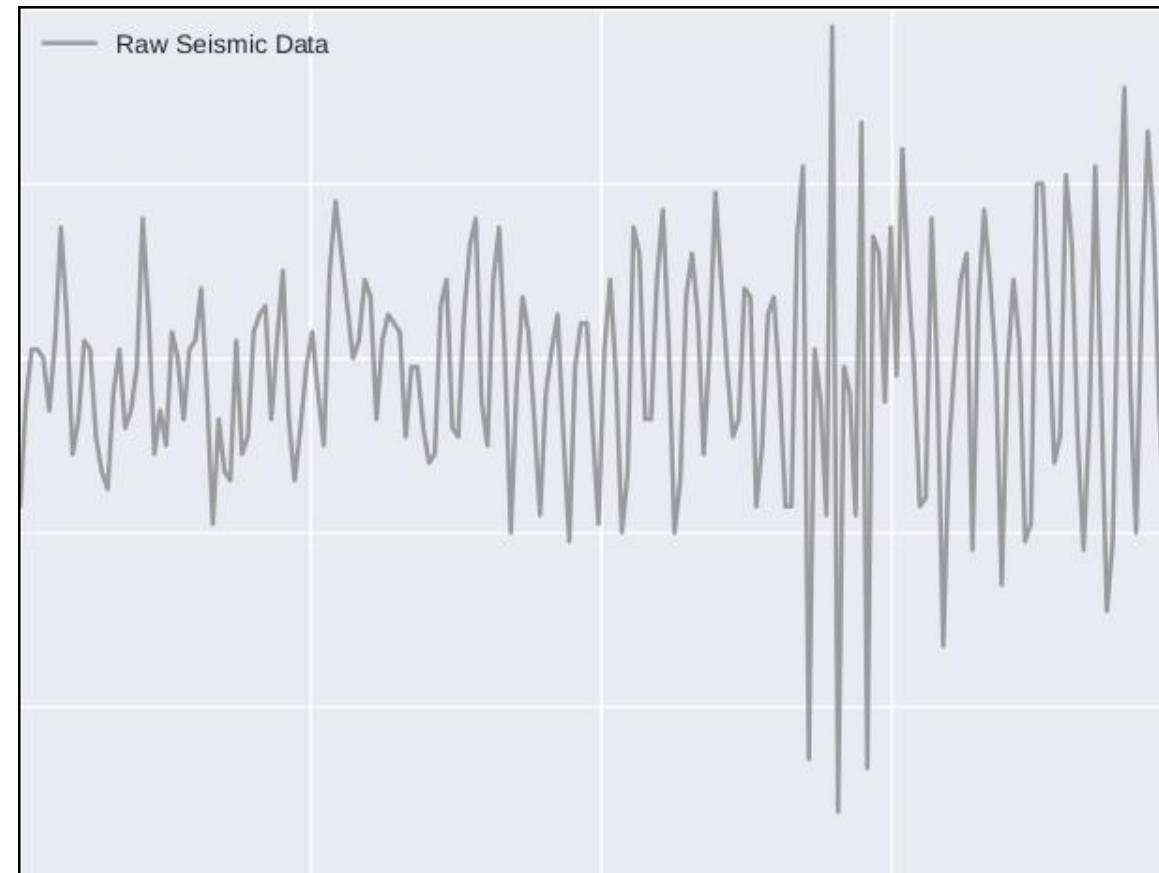
Example: Seismic Onset Detection

Given

- Waveform data containing both noise and seismic signals

Produce

- Signal onset/arrival time
- Precision is critical to downstream processing

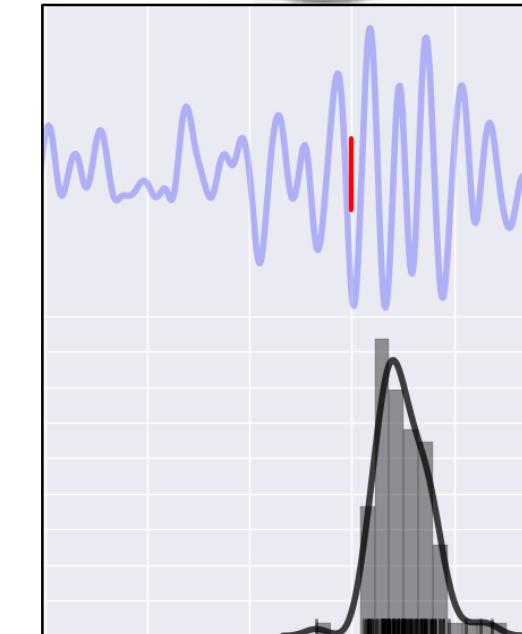


Note:

***Ground truth does not exist
or is hard/expensive to get***

Impact on Downstream Analyses

- Several analyses depend on onset time:
 - Location (hypocenter)
 - Event type (natural or man-made) & size
 - Subsurface tomography
 - Earth model
- Rely more on current data, less on historical data and modeling assumptions
 - Relative reliability of data points and sensors
 - Possibly improve ability to sense smaller, less obvious signals



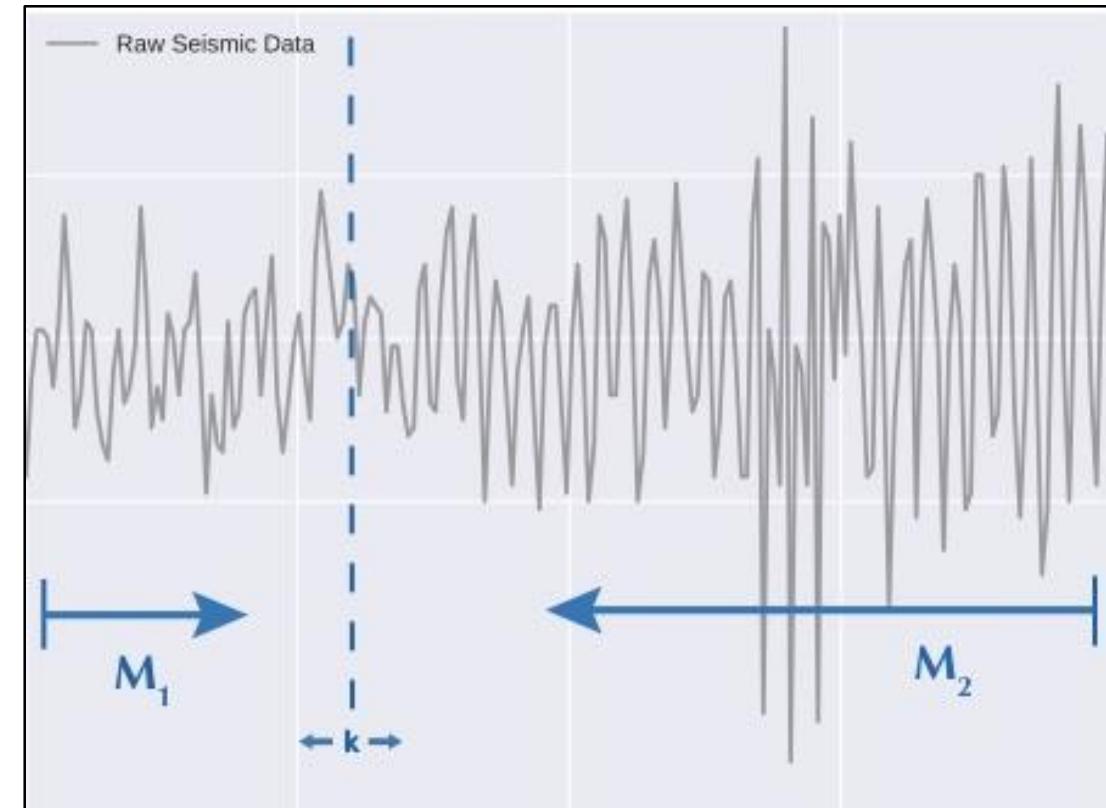
Analysis Approach

Model

- \mathcal{M}_1 , for the *noise* left of k , is Gaussian: $Y_t \sim N(0, \sigma_n^2)$
- \mathcal{M}_2 , for the *signal* right of k , is ARMA(p, q): $x_t = c + \varepsilon_t + \sum_{i=1}^p \phi_i x_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i}$

Basic Approach

- Model the noise (M_1) and the signal plus noise (M_2) separately
- Optimize model parameters θ, ϕ via maximum likelihood
- Akaike information criterion (AIC) to select transition point k
- Point at which two models meet is the “best guess” signal onset



Log-Likelihood

- \mathcal{M}_1 , for the *noise* left of k , is Gaussian: $Y_t \sim N(0, \sigma_n^2)$
- \mathcal{M}_2 , for the *signal* right of k , is ARMA(p, q): $x_t = c + \varepsilon_t + \sum_{i=1}^p \phi_i x_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i}$

$$\begin{aligned} l(\mathcal{M}) &= l(\mathcal{M}_1|Y_1, \dots, Y_k) + l(\mathcal{M}_2|Y_{k+1}, \dots, Y_T) \\ &= -\frac{k}{2} \ln(2\pi) - \frac{k}{2} \ln(\sigma^2) - \frac{1}{2\sigma_n^2} \sum_{t=1}^k y_t^2 - \frac{T-k-p}{2} \ln(2\pi) - \frac{T-k-p}{2} \ln(\sigma_s^2) - \frac{1}{2\sigma_s^2} \sum_{t=k+p+1}^T \varepsilon_t^2 \end{aligned}$$

where,

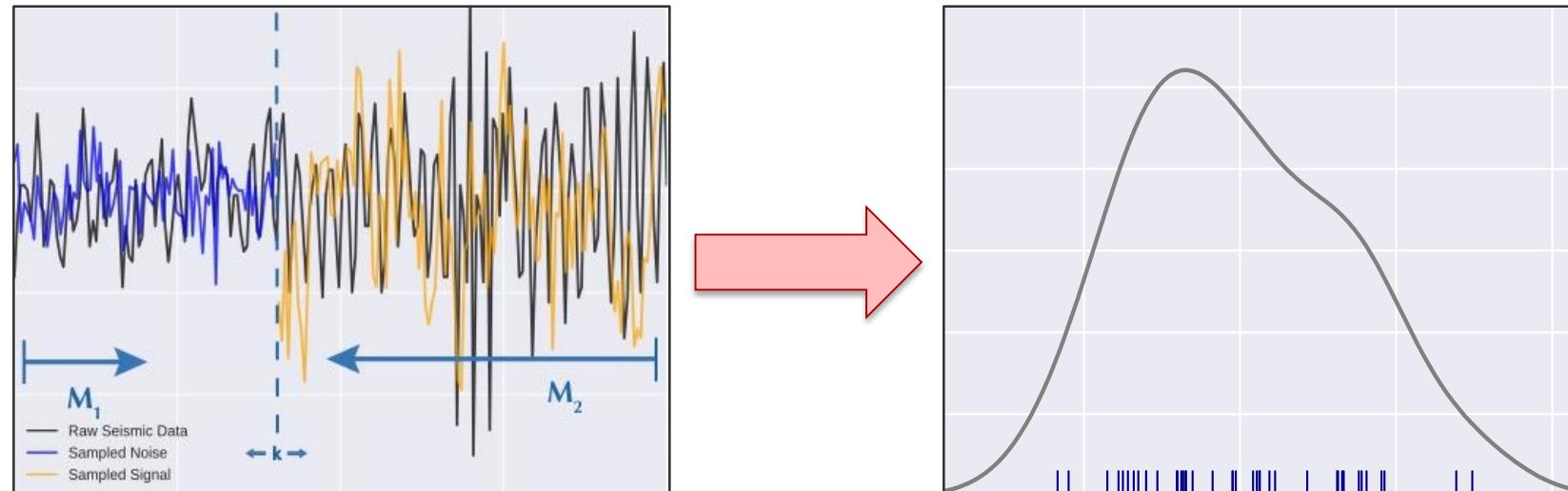
$$\varepsilon_t = Y_t - c - \sum_{i=1}^p \phi_i Y_{t-i} - \sum_{j=1}^q \theta_j \varepsilon_{t-j}$$

for $t = p+1, p+2, \dots, T$

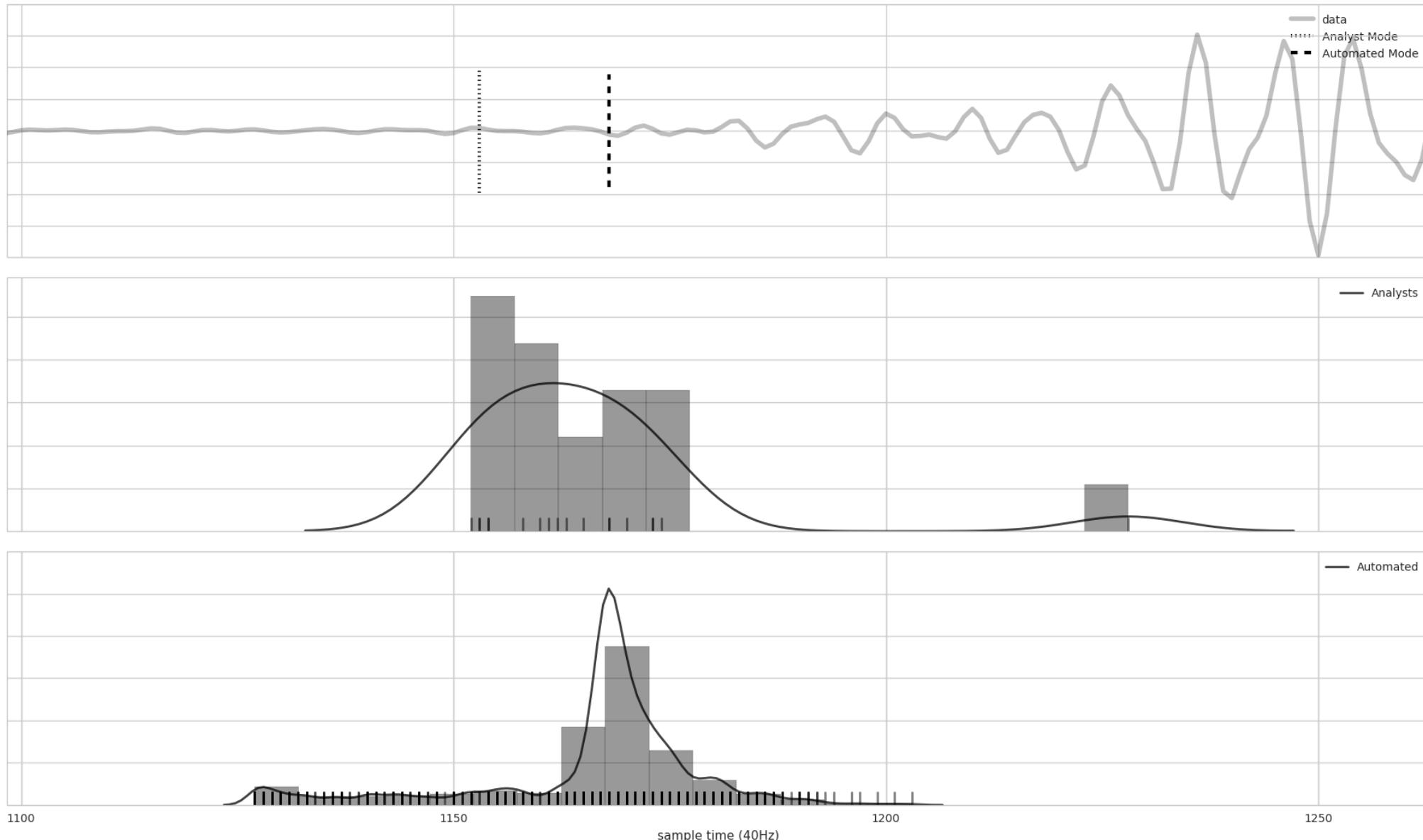
Uncertainty Analysis

Parametric Bootstrap

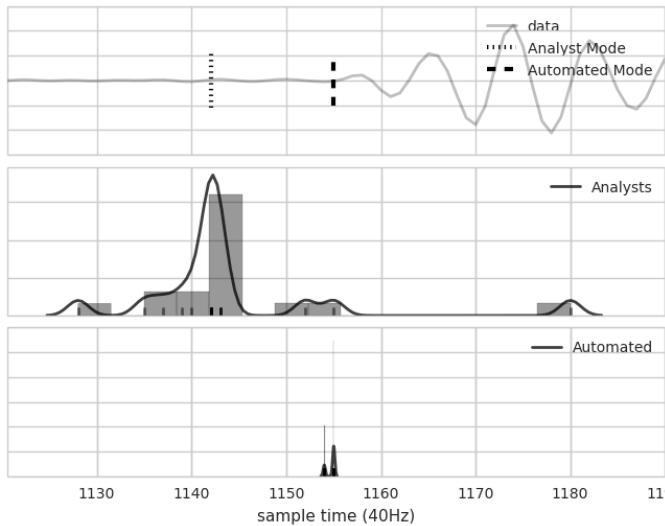
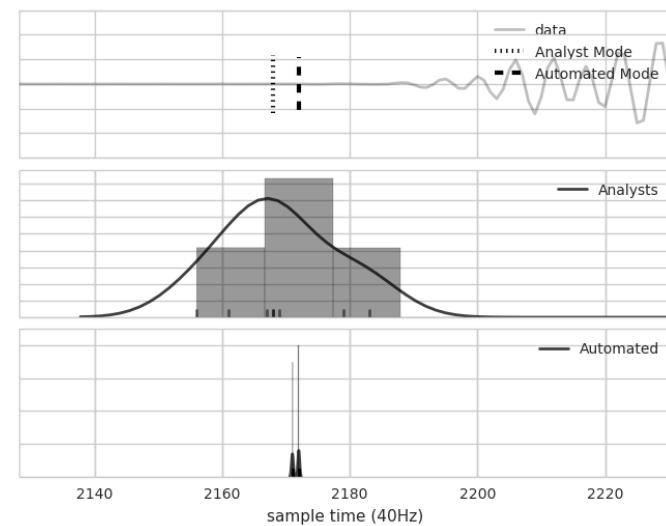
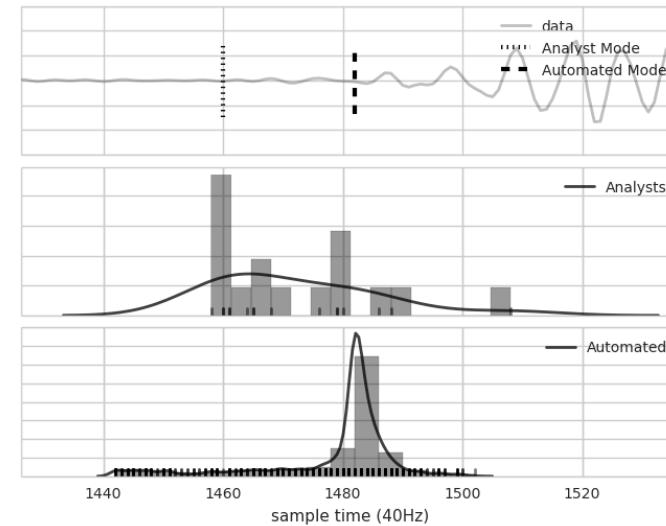
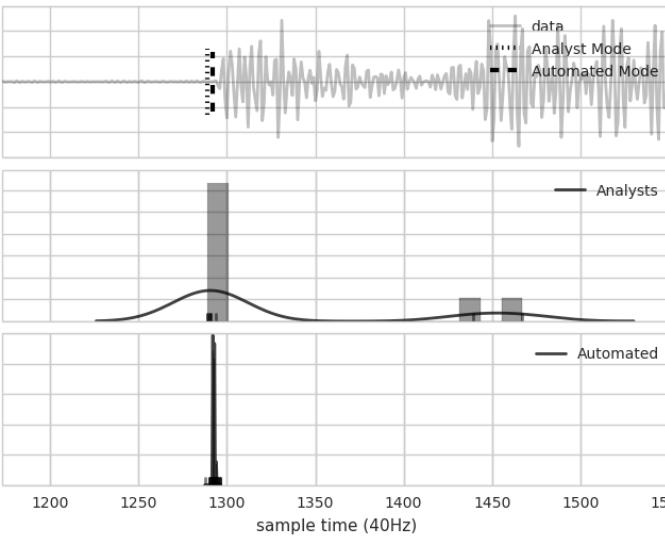
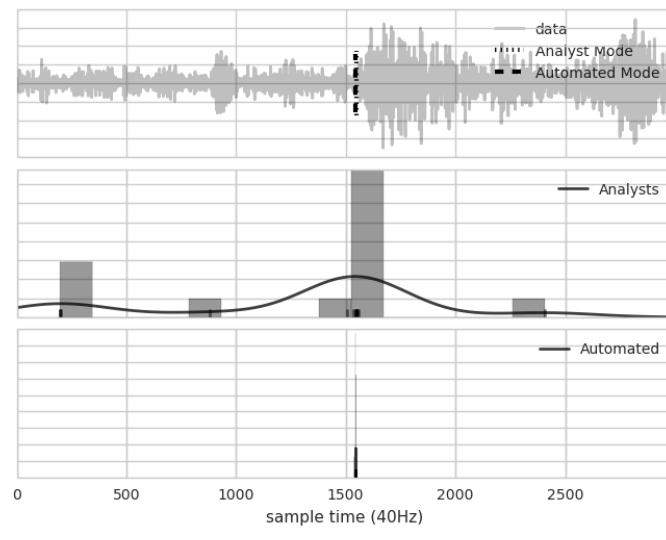
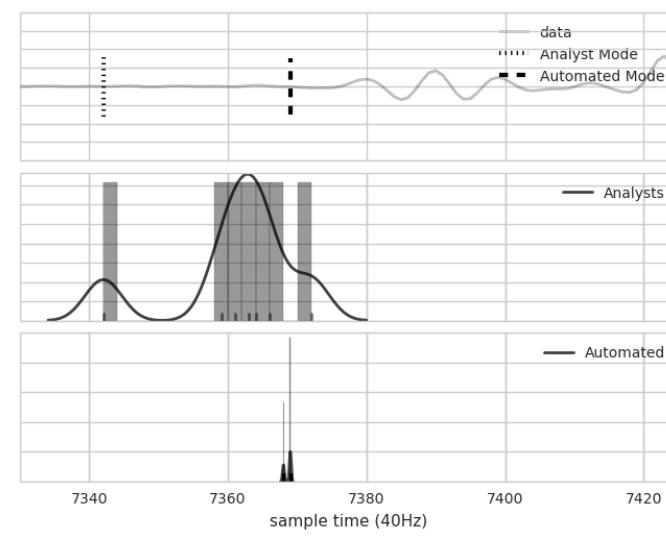
- Use AIC to select p, q for \mathcal{M}_1 & \mathcal{M}_2
- Fit model parameters for each, optimizing k
- Sample \mathcal{M}_1 & \mathcal{M}_2 to create new waveforms
- Fit new models to each sample and record k
- Compute the sampling distribution of the estimate k



Results: Analyst vs Automated

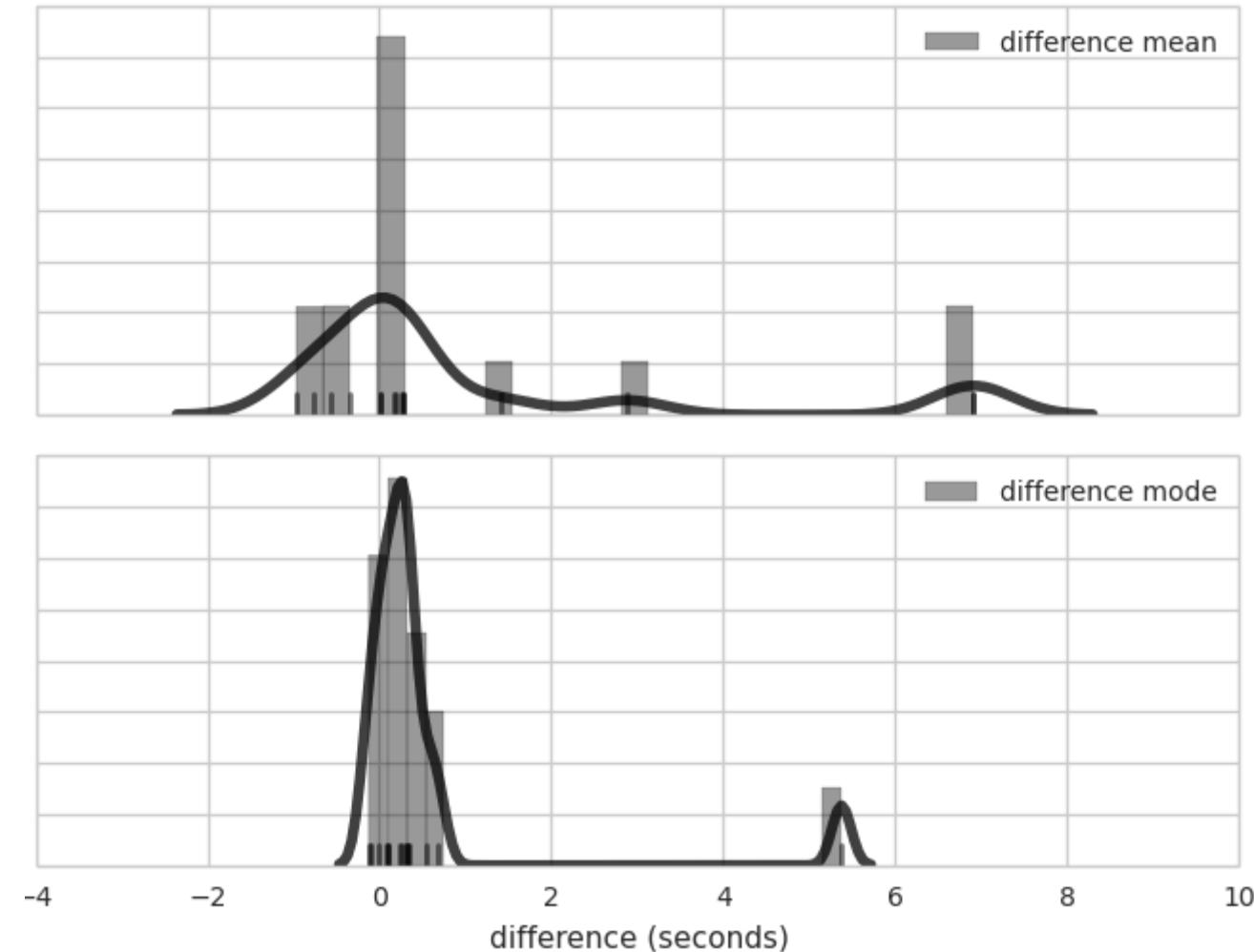


Results: Analyst vs Automated



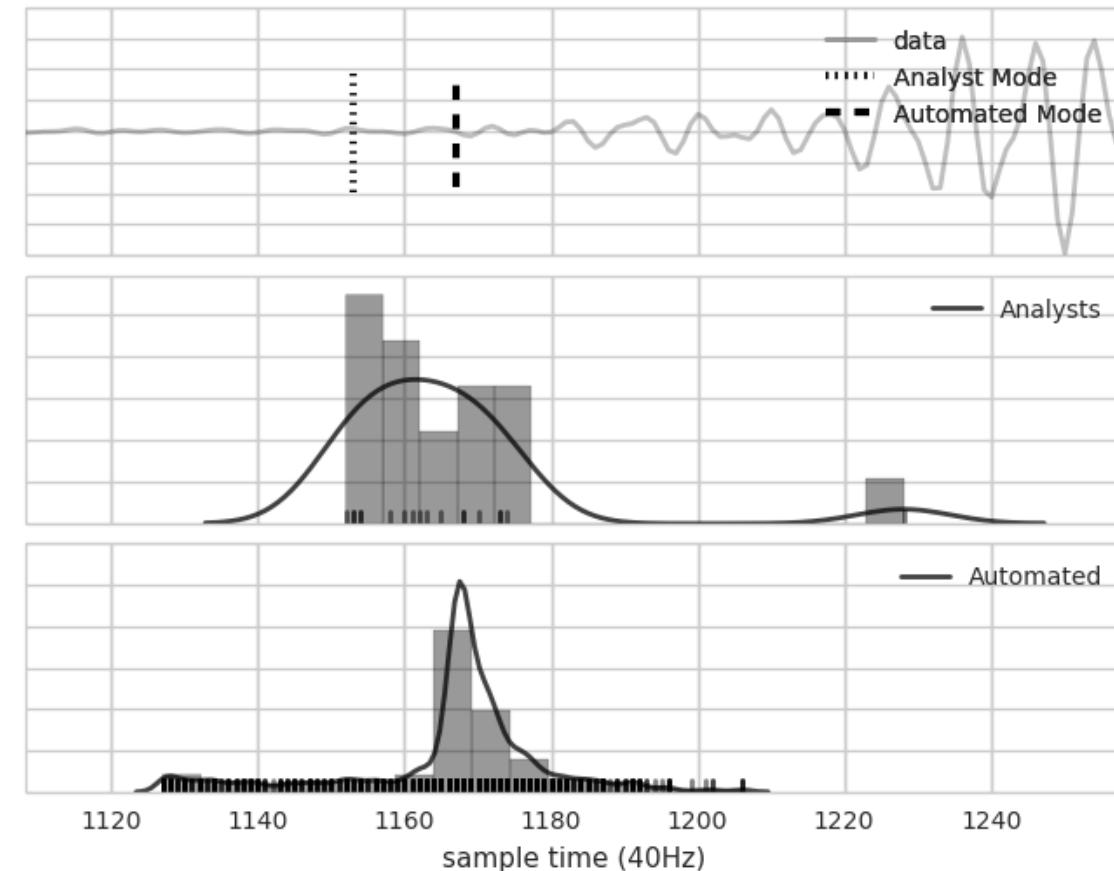
Results: Analyst vs Automated

- 15 waveforms
 - 10-18 analyst picks
 - 1,000 automated picks
- The difference in the means is much more spread out
 - The difference in the modes are tightly packed

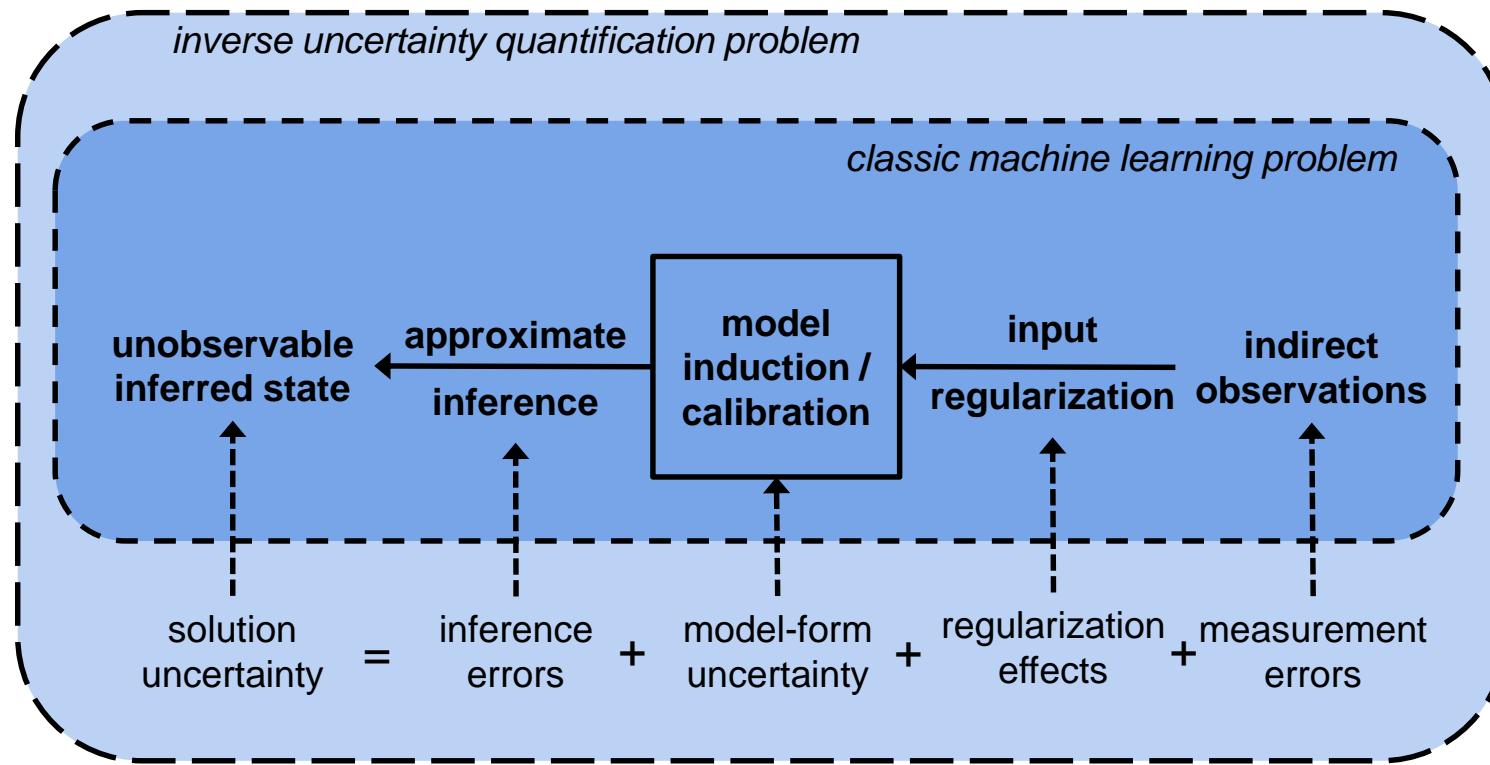


Impact on Decision Making

- UQ provides added information
 - Statistical evidence for the analysts that picked early
 - Alternate (statistical) hypotheses
- Modeling approach reduces assumptions
 - Data specific
 - Not predicated on prior calibration or SNR formulas and cut-offs



Uncertainty Quantification for Statistical Models

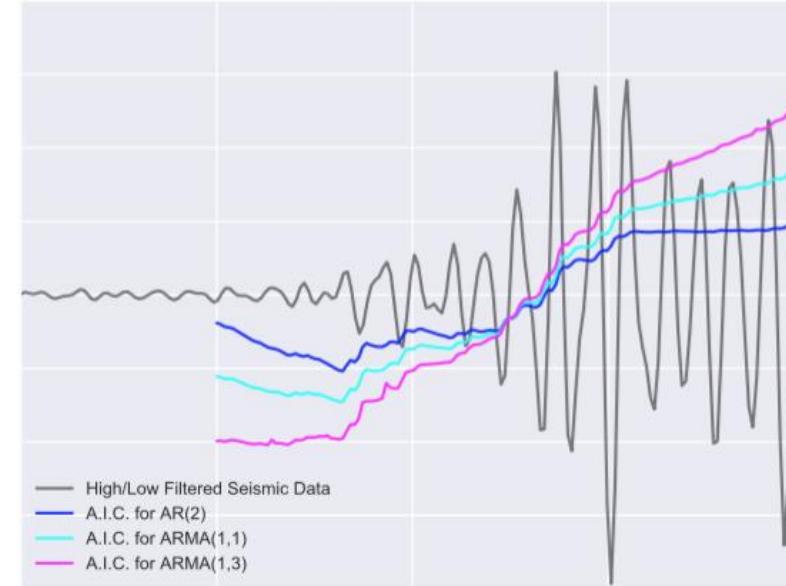
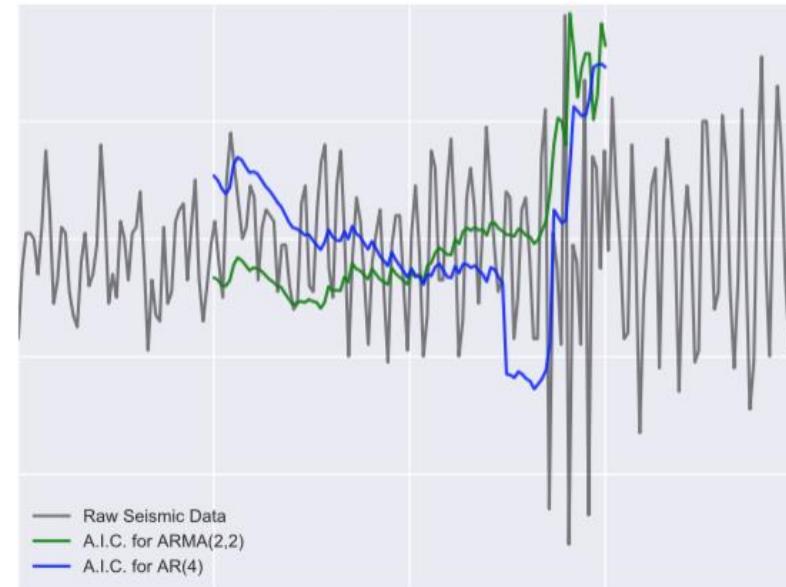


Key Question: How much do sensor observations really tell us about the world?

- *Stats / ML research communities do not typically frame questions this way.*
- *Most work focuses on building a better statistical model*
- *“What” the model says emphasized over “how well”*

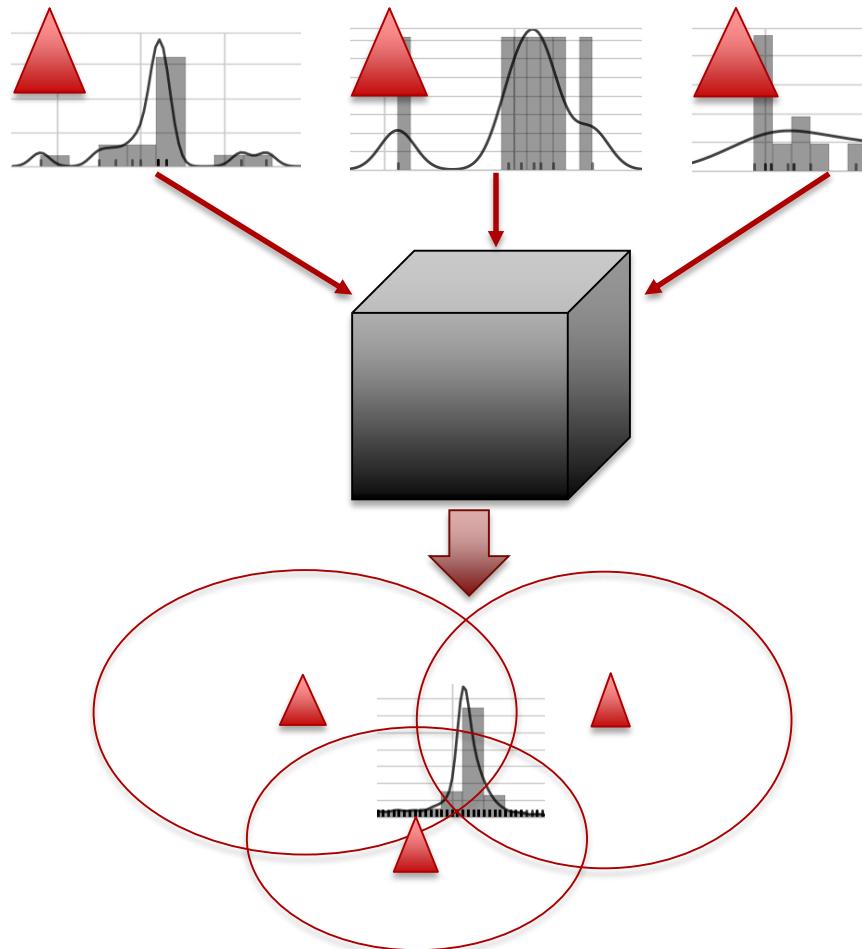
Related Issues

- Model form uncertainty is tricky
- Depends on definition of “best fit”
 - By what metric?
 - What are we trying to fit?
- Model complexity
- Sampling
- Computational complexity
- UQ does not answer these questions, but it might provide some insight
 - A metric that measures something different from Acc, Prec, Recall, ROC



Future Work

- Combine Distributions from multiple sensors for downstream analysis
 - Such as origin location



Method 1: Parametric Bootstrap

- Use AIC to select p, q for \mathcal{M}_1 & \mathcal{M}_2
- Fit model parameters for each, optimizing k
- Sample \mathcal{M}_1 & \mathcal{M}_2 to create new waveforms
- Fit new models to each sample and record k
- Compute the sampling distribution of the estimate k

Method 2: Model Sampling

- $\mathcal{M}_1 = \text{ARMA}(p_1, q_1); \mathcal{M}_2 = \text{ARMA}(p_2, q_2)$
- $\{p_1, q_1, p_2, q_2\}$ determines k and a likelihood
- Sample from $\{p_1, q_1, p_2, q_2, k\}$ and fit the data
- Use likelihoods and the prior distributions on $\{p_1, q_1, p_2, q_2, k\}$ to construct a posterior distribution for k

Not clear that these produce similar distributions

Summary

- *Uncertainty analysis does not “build a better model”*
It indicates how well a given model captures the data
- Research is to bridge the theory – application gap
 - Work in space of available data
 - Automatic model selection and calibration
 - Propagating uncertainty through layers of analysis
 - Use UQ to determine if the model is doing what analyst expects (given lack of ground truth)
- Important questions
 - What’s the relationship between uncertainties generated by
 - Measurement errors & data sampling (bootstrap)
 - Model selection and induction processes (model sampling)
 - Inference (MCMC)
 - ...and how do we combine them? Or should we?
 - What issues arise when we propagate uncertainties from one statistical inverse problem to another?

Coming Soon:
PyPickUQ

Questions

POC: Matt Peterson
mpeter@sandia.gov