SAND2017-6611C

Sandia

Exceptional service in the national interest @ National
| Laboratories

Using Data-Driven Uncertainty
Quantification to Support Decision Making

Matt Peterson

Joint work with:

Charlie Vollmer, David Stracuzzi,
POC: Matt Peterson and Max Chen
mgpeter@sandia.gov

— Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia,
B % U.S. DEPARTMENT OF Y/ W A D(}@i .. . N A . o . .

G : Y v X LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
B National Nuclear Security Administration Undel’ Contl’act DE_NA0003525




UQ for Decision Making (i) Mo

Problem Solution

= Analysts have to make crucial = Simplify the data into a quick and
decisions from large datasets easy way for human understanding

" Sometimes in real time *  Usually done through means, stand
deviations, quartiles, etc.
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Example: Seismic Onset Detection (i) B

~— Raw Seismic Data

Given 1 V ~
=  Waveform data containing both

noise and seismic signals ﬂﬁ A J " f \ ],

|

Produce N N | H
= Signal onset/arrival time | H {‘ | L
= Precision is critical to downstream

processing

Note:
Ground truth does not exist
or is hard/expensive to get




Impact on Downstream Analyses

= Several analyses depend on onset time:
= Location (hypocenter)
= Event type (natural or man-made) & size
=  Subsurface tomography
= Earth model

= Rely more on current data, less on historical
data and modeling assumptions

= Relative reliability of data points and sensors

= Possibly improve ability to sense smaller, less
obvious signals
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Analysis Approach () e
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Model
= Mj, for the noise left of k, is Gaussian: Y;,~N (0, 0,%)

= M,, for the signal right of k, is ARMA(p,q): x; = c + & + Zle Qixe_i + Z?zl 0;6_;

—  Raw Seismic Data |
Basic Approach |
= Model the noise (M1) and the signal : 1 N
plus noise (M2) separately \ |
=  Optimize model parameters 6, ¢ H [
via maximum likelihood I h u
= Akaike information criterion (AIC) ' i U u
to select transition point k :
= Point at which two models meet l—) | <
is the “best guess” signal onset M, | M,
K -




Log-Likelihood (i) .

= M, for the noise left of k, is Gaussian: Y,~N (0, 62)

= M,, for the signal right of k, is ARMA(p,q): x; = c + & + Zle QixXe_; + Z?zl 0;6_;

l(M) == l(M]_lYl, ...,Yk) + l(M2|Yk+1, ey YT)

—k-p 1
ln(o-sz) — 2 2 Etz

k
k k 1 T—k—p T
2ln(Zn) 2ln(a ) Za%tilyt > n(2m)

where,
p q
g=Yr—c—) Y- z 0je—j
=1 ]:1

l

fort=p+1,p+2,..,T




Uncertainty Analysis ()

Laboratories

Parametric Bootstrap

= Use AlCto select p,q for M; & M,

= Fit model parameters for each, optimizing k
= Sample M; & M, to create new waveforms
= Fit new models to each sample and record k

= Compute the sampling distribution of the

estimate k
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Results: Analyst vs Automated ()
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data
Analyst Mod
Automated Mod
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Results: Analyst vs Automated

= data data data
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Results: Analyst vs Automated ()

u 15 WaVEformS I difference mean
= 10-18 analyst picks
= 1,000 automated picks

= The difference in the
means is much more
spread out

= The difference in the
modes are tightly
packed
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Impact on Decision Making (Fi) S

= UQ provides added information —— data; .
O e Analyst Mode | *
= Statistical evidence for the analysts — P == Automated Mode|
: 1
that picked early ' YA VA N

= Alternate (statistical) hypotheses

= Analysts
= Modeling approach reduces
assumptions I SN
= Data specific — Automated
= Not predicated on prior calibration
or SNR formulas and cut-offs
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Uncertainty Quantification for Statistical Models (Fh) i
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/ inverse uncertainty quantification problem

solution  _ inference i model-form |, regularization A measurement
\ uncertainty errors uncertainty effects errors /

Key Question: How much do sensor observations really tell us about the world?
« Stats / ML research communities do not typically frame questions this way.
« Most work focuses on building a better statistical model
« “What” the model says emphasized over “how well”
2




Related Issues () e
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= Model form uncertainty is tricky |

= Depends on definition of “best fit”
= By what metric?
=  What are we trying to fit? \)

-~
2\
S
NS
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= Model complexity

= High/Low Filtered Seismic Data
— A.LC. for AR(2)

= Sampling T NE st
= Computational complexity P'
N
= UQdoes not answer these questions, %lltllﬂiv{“uﬂ'll'll / |
but it might provide some insight N ‘ |
= A metric that measures something

different from Acc, Prec, Recall, ROC

=~ Raw Seismic Data
— A.LC. for ARMA(2,2)
= A.|.C. for AR(4) 13




Future Work (i) .
Method 1: Parametric Bootstrap
= Combine Distributions from multiple sensors = Use AIC to select p,q for M & M,

for downstream analysis , o
= Fit model parameters for each, optimizing k

= Such as origin location

= Sample M; & M,to create new waveforms
= Fit new models to each sample and record k

= Compute the sampling distribution of the
estimate k

Method 2: Model Sampling

= M;=ARMA(p,,q;); M3=ARMA(p,,q,)

* {p, q, P, q,} determines k and a likelihood
= Sample from{p, g, p, qg,,k}and fit the data

= Use likelihoods and the prior distributions on
{p., 9., P, q,,k}to construct a posterior
distribution for k

Not clear that these produce similar distributions




Summary () e
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= Uncertainty analysis does not “build a better model”
It indicates how well a given model captures the data

= Research is to bridge the theory — application gap
=  Work in space of available data
=  Automatic model selection and calibration

=  Propagating uncertainty through layers of analysis

= Use UQ to determine if the model is doing what analyst expects
(given lack of ground truth)

= |mportant questions
= What’s the relationship between uncertainties generated by
= Measurement errors & data sampling (bootstrap)
= Model selection and induction processes (model sampling)
= Inference (MCMC)
= ..and how do we combine them? Or should we?

= What issues arise when we propagate uncertainties from one
statistical inverse problem to another? 15
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Questions

POC: Matt Peterson

mgpeter@sandia.gov
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