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Abstract

We lay the foundation for a benchmarking methodology for assessing current and future
quantum computers. We pose and begin addressing fundamental questions about how to fairly
compare computational devices at vastly different stages of technological maturity. We critically
evaluate and offer our own contributions to current quantum benchmarking efforts, in particular
those involving adiabatic quantum computation and the Adiabatic Quantum Optimizers
produced by D-Wave Systems, Inc. We find that the performance of D-Wave's Adiabatic
Quantum Optimizers scales roughly on par with classical approaches for some hard
combinatorial optimization problems; however, architectural limitations of D-Wave devices
present a significant hurdle in evaluating real-world applications. In addition to identifying and
isolating such limitations, we develop algorithmic tools for circumventing these limitations on
future D-Wave devices, assuming they continue to grow and mature at an exponential rate for the
next several years.
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Figures
Figure 1 D-Wave Two architectural connectivity diagram [10], known as the Chimera graph. Nodes represent

qubits and links between nodes represent a coupler between the corresponding qubits. Missing nodes and links
are an artifact of fabrication defects and vary from physical device to device. Each eight-node cluster is called a
cell or plaquette 24

Figure 2 An example of mapping a problem-domain graph into a Chimera graph [11]. A computational problem,
(a) is captured as solving a QUBO problem on a graph, (b); this QUBO instance is then embedded into a Chimera
graph, (c). Each vertex of the original graph is mapped to a set of connected vertices in the Chimera graph.
Although the original graph has 46 nodes, the embedding uses 81 Chimera graph nodes, which correspond to
qubits. A dense, fully connected graph on N nodes requires —NA2 Chimera nodes when embedded in this fashion.
 25

Figure 3 Histogram of solution quality as relative percentage of optimal (100% corresponds to optimal). The
results are over 55,000 random Ising instances on the Chimera graph with couplers uniformly in { - 1, + 1} and
no linear term 30

Figure 4 D-Wave vs. CPLEX performance on random Chimera instances of QUBO, without a linear term. The
left plot, from McGeoch and Wang [17], depicts the performance of a D-Wave Two and several classical
algorithms, when given only 491ms to execute, on random Chimera QUBO instances with coupler weights
uniformly drawn from { - 1, + 1}. The plot indicates that the D-Wave Two always found an optimal solution
within 491ms while the success rate dropped sharply for all of the classical algorithms, including CPLEX used as
a QUBO solver. The right plot shows our own experiments, using CPLEX v12.4 as an integer-linear-program
solver, performed on a 16-core machine with 3GHz Intel Xeon cores. We generated 100 instances of each size
and measured the average time to find an optimal solution. The green plot corresponds to the random Ising
instances used by Boixo et al. [15], while blue plot corresponds to the random QUBO instances of McGeoch and
Wang [17] as on the left. Our results demonstrate that CPLEX can perform comparably to a D-Wave Two on the
McGeoch-Wang instances. (Note that although QUBO and Ising problems are equivalent by a linear transform
(Section 1.3), the above random variants are not distributed equivalently, hence the empirical difference in
complexity.) 31

Figure 5 A high-level schematic view of our reduction from weighted QUBO instances to unweighted Ising
instances. 33

Figure 6 Performance of Bonato et al.'s maximum cut (equivalent to QUBO and the Ising problem) heuristic on
random grids and Beasley's QUBO instances [23]. 34

Figure 7 Degree distribution. The degree distribution is the histogram of node counts for each possible degree in
the graph. This specific degree distribution shows the common "long-tailed" behavior seen in many real-world
graphs. 36

Figure 8 Two sample Twitter graphs. The graph on the left has approximately 350 vertices and the graph on the
right has approximately 700 vertices. Notice that both have small clusters of connected nodes and long strings of
smaller groups of nodes. 37

Figure 9 Average degree for all our Twitter graphs. Each point displays the number of nodes and the average
degree for that graph. 38

Figure 10 Diameter for all our Twitter graphs. Each point displays the number of nodes and diameter for that
graph. 38

Figure 11 Clustering coefficient for all our Twitter graphs. Each point displays the number of nodes and
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Figure 12 A minor embedding of a fully connected graph on 8 nodes into a subgraph of the Chimera graph [25].
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Figure 13 An alternate drawing of a Chimera graph (compare with Figure 1). Each eight-node cluster is called a
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Figure 14 Two sample randomly generated real-world-like graph minors of the Chimera graph. The graph on
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Figure 15 Percentage of nodes in original Chimera graph retained in real-world-like graph minors. The
utilization remains consistently higher than 55%. 43

Figure 16 Comparison of estimated run-time for D-Wave with both Selbys heuristic (red plot) and exact QUBO
solvers (green plot). Instances are randomly generated Chimera Ising problems with -1 and +1 couplers and
no linear term. The dashed blue line estimates the run-time for the Ames D-Wave Two to find an optimal
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solution once with 99% probability, while the solid blue line estimates the mean run-time for this D-Wave Two
to first find an optimal solution. The left plot is over 20,000 annealing trials for each of the, at most, 100
instances of each size, while the right is over 100,000 trials. The error bars represent standard error over the, at
most, 100 instances of each size 50
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solvers (green plot). Instances correspond to randomly generated maximum independent set instances on the
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are derived from the coupler values (Appendix E.2). The left plot is over 20,000 annealing trials for each of the,
at most, 100 instances of each size, while the right is over 100,000 trials. The error bars represent standard
error over the, at most, 100 instances of each size. 52

Figure 19 Comparison of estimated run-time for D-Wave with Selby's heuristic (red plot) and exact QUBO
solvers (green plot). Instances represent randomly generated affinity independent set instances on the
Chimera graph, where couplers are chosen to be -1 or +1 with equal probability, and the linear term values are
derived from the coupler values. The left plot is over 20,000 annealing trials for each of the 100 instances of
each size, while the right plot is the corresponding plot from Figure 18, included here for reference. The error
bars represent standard error over the, at most, 100 instances of each size. 54

Figure 20 Comparison of estimated run-time for D-Wave with Selbys heuristic (red plot) and exact QUBO
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trials. The error bars represent standard error over the, at most, 100 instances of each size. 56
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Executive Summary

Our goal is to lay the foundation for a benchmarking methodology that can be applied to assess current
and future quantum computers. We pose and begin addressing fundamental questions about how to
fairly compare computational devices at vastly different stages of technological maturity. We also
critically evaluate and offer our own contributions to current quantum benchmarking efforts, in
particular those involving adiabatic quantum computing and the Adiabatic Quantum Optimizers (AQ0s)
produced by D-Wave Systems, Inc. We find that, over a range of hard complex network analysis
problems, D-Wave's AQOs perform on par with classical approaches — this is impressive considering
these devices are harnessing an infant technology which is not well understood. However, current
architectural limitations of D-Wave devices present a significant impediment to evaluating their
performance on real-world applications. In addition to identifying and isolating such limitations, we
develop algorithmic tools that may be used to circumvent these limitations if D-Wave devices continue
to grow and mature at an exponential rate into the near future. Finally, we offer insight into the
challenges of predicting how far into the future a D-Wave AQO might begin to offer a resource
advantage over conventional computing technology in solving large-scale problems of practical interest
and how such a feat might be accomplished.

We identify and address several obstacles to carrying out informative benchmark comparisons of the
performance of an adiabatic quantum computer (AQC) and conventional (classical) digital computers.
We focus on graph analysis problems inspired by large-scale real-world applications and consider
instance families generated from real-world social network data. In addition we offer approaches to
generate synthetic graphs that possess real-world structural properties and are amenable to
benchmarking on a D-Wave AQO. Obstacles are encountered immediately, starting with two steps that
are equivalent to compiling and executing a program on a classical computer: mapping the problem of
interest onto the physical layout of the AQC and devising an algorithm that solves the mapped problem
using the operations native to the AQC. In particular, the first of these steps presents a considerable
challenge for using the one existing example of an AQC, the AQ0s produced by D-Wave Systems, Inc.,
that is a special-purpose AQC tailored to solve Quadratic Unconstrained Binary Optimization (QUBO)
problems.

We conclude that the D-Wave Two AQO (DW2), with 512 quantum bits (qubits), does not yet have
enough qubits nor sufficient numerical precision to execute analysis of arbitrary dense and complex
graphs beyond 30 or so vertices. Yet looking at the technology trajectory, rather than the current
computing device, we estimate that the D-Wave AQO will become more useful for making detailed
benchmarking comparisons with classical computers when the system size reaches approximately 2048
qubits, at which point exact classical algorithms will no longer be able to readily obtain optimal
solutions for commonly used random QUBO benchmark instances on the Chimera graph (the graph
representation of the physical layout of the DW2).

We also observe that published benchmarking studies may be requiring an impractical level of
performance that happens to underrate the capabilities of the DW2. Those studies all assess the ability
of a computer to find an optimal solution with some high frequency. An alternate metric that is of
practical use is finding a near-optimal solution all of the time. We observe that the DW2 excels at this
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problem practically, as well as theoretically, being within 4% of optimal almost always on random
Chimera instances.

D-Wave Systems, Inc. has achieved an impressive engineering feat in producing a functioning new
technology that exhibits essentially the same problem-size-dependent performance (scaling behavior) as
the combined, and very mature, hardware and software technology of classical computing, as indicated
by published studies of performance on random Chimera instances. We believe that substantial
improvements in AQO performance might be possible for certain kinds of problems, but this will require
a broader community of researchers devoting more effort to improving the aforementioned compilation
and execution steps for such systems.

We identify some problems for which empirical benchmarking results indicate that a DW2 outperforms
the classical algorithms pitted against it. However, we offer evidence that there are better classical
algorithms for these problems that are likely to outperform a DW2. We also show that slight changes in
problem formulation can lead to widely varying D-Wave performance. In general, the proper selection
and configuration of classical algorithms used in quantum benchmark studies is a critical issue. We
observe that some of the D-Wave speedups presented in the literature vanish when an appropriate
classical algorithm is selected for comparison. Further, we argue that a fairer and more informative
comparison would be between the D-Wave AQO and classical QUBO solvers, rather than against
specialized classical algorithms In addition to providing a more direct performance comparison, this
would allow researchers without classical algorithm expertise to benchmark QUBO on a D-Wave AQO.
Because it is generally unknown which algorithm will perform best on a given instance of a
combinatorial optimization problem, it is reasonable to cast the problem as an instance of QUBO and
then, as a practical matter, solve it with a variety of heuristics. In this spirit, the D-Wave AQO should
be regarded as one more algorithm for solving QUBO. Planned follow-on work includes creating a suite
of classical QUBO solvers for direct comparison with D-Wave's AQO treatment of QUBO.

Our fundamental technical contributions include:
1) Incorporating more realistic complex network instances into D-Wave benchmarking. We

devised an algorithm to generate, directly on the D-Wave Chimera architecture, synthetic graphs

with properties of real-world complex networks. This algorithm enables benchmarking DW2 on

larger real-world-like graphs than is otherwise currently possible. With this method we represent

complex-network-like graphs having approximately 280 vertices with the 512 qubits of the DW2.

Existing methods generally require up to N2 qubits to represent an arbitrary N-vertex problem-

domain graph, limiting one to graphs with approximately 30 vertices on the DW2;

2) Bringing mathematical insights to bear on D-Wave benchmarking. We show that the most

commonly used random Chimera benchmarking instances are indeed (NP-)hard problems, as had

been suspected but not proven. As alluded to above, solving a problem-domain QUBO instance

with N variables requires up to N2 qubits on D-Wave device using the state of the art in problem

compilation. We observe, drawing upon results from theoretical computer science, that this behavior

is likely an inherent and inescapable limitation of the D-Wave Chimera architecture rather than the

current compilation methods employed. Finally we observe that requiring a near-optimal solution

all of the time instead of an optimal solution most of the time can drastically affect both the
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theoretical and practical complexity of solving a problem on an AQO;

3) Developing algorithmic tools for trading off two critical AQO resources: qubits and numerical

precision. D-Wave AQ0s are only able to represent numerical values at low precision, and this is

often the critical bottleneck in solving real-world problems, which can require QUBO instances with

large numerical values. We present algorithmic techniques for allowing a low-precision AQO to

accept instances with high-precision data, at the expense of requiring additional qubits;

4) Developing a Quantum Monte Carlo (QMC) solver to simulate results from an AQC. We use

our QMC simulator to implement hybrid classical and quantum heuristics for solving community

detection problems on social networks;

5) Demonstrating that subtle issues in problem formulation and configuration of classical

algorithms can critically impact benchmarking results. We show that a prominent example of a

speedup for the D-Wave AQO vanishes with a change in configuration of the competing classical

algorithm. We also show that very similar problems with slight differences in formulation can result

in widely varying D-Wave performance.

This report begins with a compact introduction to quantum computing and the D-Wave AQO
architecture, in Sections 1 and 2, respectively. Section 3 offers our perspective on benchmarking
methodology and exposes some subtleties in D-Wave benchmarking. In Section 4 we discuss complex
and social networks, and we present algorithms for synthetic generation of real-world-like complex
networks; hurdles to representing real-world problems on a D-Wave AQO are also discussed in this
context. Section 5 covers our benchmarking study, including our specific benchmarking methodology,
problem definitions, and benchmarking results. The report concludes with a high-level and mostly self-
contained discussion of D-Wave's technology trajectory in Section 6. Those readers solely interested in
our perspective on questions such as: "Can D-Wave systems address real-world applications?", "How do
future D-Wave and classical technologies compare?", and "When will D-Wave be able to address more
challenging problems?" may skip to Section 6. A significant amount of additional information is
provided in the appendices, which cover topics such as a classical benchmarking study of community
detection in complex networks (Appendix C and Appendix D) and quantum entanglement in D-Wave
devices (Appendix G).
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Nomenclature

AQC — Adiabatic quantum computer (Section 1.2)
AQO — Adiabatic quantum optimization (Section 1.2)
BGP — Border gateway protocol (Appendix B.2.2)
Chimera — Qubit connectivity graph of D-Wave quantum annealers (Figure 1 and Figure 13)
DW2 — D-Wave Two quantum annealer (Section 2)
ETH — Exponential-time hypothesis (Section 6.4)
Ising — Classical Ising spin glass problem, which is equivalent to QUBO (Section 1.3)
MAIS — Maximum affinity independent set problem (Section 5.3.3)
MIS — Maximum independent set problem (Section 5.3.1)
NP-hard — The class of problems that are at least as hard as any problem in the computational
complexity class NP, which stands for nondeterministic polynomial time (Section 1.3)
PTAS — Polynomial-time approximation scheme (Section 3.3.1)
QA — Quantum annealer (Section 2)
QMC — Quantum Monte Carlo (Appendix F)
QSim — Our Quantum Monte Carlo simulator (Section 5.1.1 and Appendix F)
QUBO — Quadratic unconstrained binary optimization (Section 1.3)
SA — Simulated annealing (Sections 1.3 and 3.3.2)
SAT — Boolean satisfiability problem (Footnote 1)
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1 Introduction to quantum computing

For many years quantum physics itself was viewed as an obstacle to quantum information-based
computing. Over the course of the mid-1980s to the mid-1990s, this pessimistic view softened with a
series of discoveries that gave a clearer picture of what quantum physics does and does not allow for
computing, with the pessimism essentially vanishing with the discovery by Peter Shor of a fast quantum
algorithm for factoring integers into primes [1]. It turns out that quantum physics isn't a barrier to
computing — indeed it is quite the opposite — it is an enabler that can accelerate some computations far
beyond what common sense suggests. By using the new set of rules that quantum physics provides, it
appears one can solve some computational problems using fundamentally fewer steps than if one used
the classical binary logic. This speedup is qualitatively very different from the more familiar speedups
that miniaturization usually affords, such as faster clock speeds. It is more like the speedup one attains
when one transitions from using Roman numerals to using Arabic numerals for arithmetic. To be clear,
there is no mathematical proof that quantum computers are significantly more powerful than classical
computers in solving natural problems. Indeed, it is conjectured that neither quantum computers nor
classical computers can efficiently solve NP-hard problems (a well-known class of computationally hard
problems which will be described in more detail later). However, as researchers continue to develop
quantum algorithms that are faster than their best-known "classical algorithm" counterparts (with over
50 known quantum speedups to date [2]), the evidence for the power of quantum computing has
mounted to a level that cannot be ignored.

Our main focus is on adiabatic quantum computing; however, before motivating adiabatic quantum
computing we briefly describe the seminal circuit model of quantum computing, under which
breakthroughs such as the aforementioned Shor's factoring algorithm were forged. This will set the
context with key quantum concepts that will be revisited from a different perspective when we discuss
adiabatic quantum computing.

1.1 The quantum circuit architecture
To be useful, a quantum computer requires a well-defined architecture that specifies methods for input,
output, and processing. The most widely studied quantum computing architecture is the quantum circuit
architecture. The way a quantum circuit works is as follows. First one prepares a set of qubits in some
known state. Then one applies a sequence of "elementary" unitary transformations, each of which is
called a "quantum gate," to the state, where each gate acts on some small number of qubits, typically
one and two qubits. Finally one performs a sequence of measurements, each of which also acts on some
small number of qubits. The size and structure of a quantum circuit depends on the specific quantum
algorithm of interest. Variations on the quantum circuit architecture revolve around how exactly the
input, gates, and output are adaptively chosen as a function of the algorithm instance.

In the "standare quantum circuit architecture, the state preparation sequence is always the same — each
qubit begins prepared in the state 10), where 10) and 11) denote the preferred computational basis states of
the qubit ("preferree because we assume the native quantum technology can readily prepare and
measure qubits in this basis). The measurement sequence is always the same too, with each qubit
measured in the computational basis. The one thing that changes from program to program is the gate
sequence.
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An important feature of the quantum circuit architecture is that it is universal. This means that given
any dynamics described by quantum mechanics, a quantum circuit can create an efficient "digital"
approximation of the dynamics to any desired precision by using enough qubits, gates, and
measurements. In other words, the quantum circuit architecture is as powerful as quantum mechanics
will allow.

1.2 The adiabatic quantum architecture
Adiabatic quantum computing is an approach to computing that is distinctly different than the quantum
circuit architecture. Rather than performing a series of gate operations on a set of qubits to execute a
quantum algorithm, an adiabatic quantum computer (AQC) evolves a Hamiltonian governing the
physical dynamics of a set of qubits, always keeping the qubits in the Hamiltonian ground state [3]. The
ground state of a Hamiltonian is the lowest-energy state of the physical system it represents. An initial
Hamiltonian, whose ground state is easily attainable, is evolved into a "problem" Hamiltonian whose
ground state represents a solution to the problem of interest but can be difficult to obtain directly. A
more detailed presentation of an AQC architecture appears in the next section.

While, in theory AQCs could be made to be universal quantum machines, this will require technological
breakthroughs that enable a richer set of interactions among the qubits than just Ising two-body (anti-)
parallel spin interactions. Currently, a special-purpose adiabatic architecture, adiabatic quantum
optimization (AQO), is under very active development, with D-Wave Systems, Inc. actually selling a
device built using superconducting flux qubits and inspired by the AQO architecture. As AQO is the
technology most mature and likely the most — or only — available implementation of AQC for the next
five to ten years, and we summarize it next. Indeed, as the objective of our investigation is an evaluation
of the potential of AQC to benefit analysis of complex network analysis problems in the next five to ten
years, our main focus has been on AQO because of its relative maturity. A brief discussion of the
challenges of developing a universal AQC and its greater potential capabilities appears in Appendix A.3.

1.3 The adiabatic quantum optimization architecture
Proposed in 2000 by Farhi, Goldstone, Gutmann, and Sipser [3] as a quantum algorithm for "solving"
the (NP-hard) Boolean satisfiability problem1 (SAT), the AQO algorithm lends itself to a novel full-
fledged architecture for "solvine a large class of combinatorial optimization problems. The word
"solvine is in quotes here because, while the AQO algorithm does indeed give a solution to these
problems when run for a long enough time, it is an open research question as to just how long the
algorithm needs to run as a function of the problem's instance size to give a correct solution with high
probability. The perspective of many mathematicians is that, if the required time scales exponentially
with the instance size, the algorithm should not be said to be solving the problem. Classical computers
can already "solve' the same class of problems in exponential time!

It is worth noting a recent trend of referring to AQO as implemented in the D-Wave devices as
"quantum annealing." This is driven in part because of concerns by the research community that the D-
Wave devices are not truly utilizing "adiabatic quantum physics" to solve combinatorial optimization

1 The Boolean satisfiability problem, known as SAT, is that of determining whether the variables of a propositional logic
formula can be assigned values of either TRUE or FALSE so that the entire formula evaluates to TRUE. An example of such

(x1 v —ix2) A (-1x1 v x2 v x3) A —ixa formula is, 1, where "V", "A", and "—" are the logical OR, AND, and NOT operations,

respectively. This formula may be satisfied by setting x 1 = x 2 = TRUE x and 3 arbitrarily.
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problems. Instead, such hardware may be using some kinds of "quantum effects" in a manner
reminiscent of the classical algorithm known as "simulated annealing."

Unlike the quantum circuit architecture, the AQO architecture is special purpose and not universal. It is
only able to directly solve unconstrained Boolean optimization problems, namely problems of the form

min f (x) subject to x E {0,1}n.

We will more precisely describe the class of admissible objective functions, f (x) , for AQO shortly.
This class of Boolean optimization problems does not represent universal quantum computation, hence
one cannot encode an arbitrary quantum algorithm in this form. However, solving this class of problems
is highly useful; a great many optimization problems can be cast in this form, including some problems
that have very large commercial value. For example, AQO algorithms have been proposed for machine
learning [4], [5], satisfiability [6], and graph problems [7], [8]. Quite generally, unconstrained Boolean
optimization problems are known to be "NP-hard," which means that they are at least as hard as the
hardest problems in the complexity class NP. It is widely believed that no NP-hard problem can be
solved efficiently (even with quantum computers); there is currently a $1M prize for anyone who can
prove one way or the other whether every problem in NP can be solved in polynomial time, meaning
they can be solved with a time and resource expenditure that grows polynomially with the input size.
That said, even if these problems cannot be solved in polynomial time by an AQO device, it might be
the case that for some kinds of problems, an AQO device may be able to solve such problems more
quickly than any existing or near-term classical machine is able to.

Since AQO devices are able to solve all problems in NP, why would one even want a universal quantum
computer? One may certainly encode problems such as integer factoring as a Boolean optimization
problem and solve it on an AQO device. However, as noted above, an AQO algorithm may require
exponential time to guarantee a solution. Shor's algorithm demonstrates that there is a way to use
quantum resources to design an algorithm that solves integer factorization in polynomial time, but we
cannot express this quantum algorithm on an AQO. In fact one may view an AQO as implementing just
a single quantum algorithm for a specific class of Boolean optimization problems. The way that one
"programs" an AQO is by encoding a specific problem of interest as an instance of the class of Boolean
optimization problems that the AQO can solve. On one hand this is appealing since one needs to know
nothing about quantum computation in order to solve problems; however, this places on the programmer
the burden of efficiently expressing problems of interest as Boolean optimization problems. For the case
of D-Wave, we will see that the latter can be a significant burden.

We now describe the AQO architecture in more detail. Most of our discussion also applies to the more
general AQC architecture. The AQC architecture implements algorithms via a three-step process. For
the specific case of AQO, one first prepares n qubits in the state I + (i.e., the state 10) + II)). This is the

=
lowest-energy configuration, or "ground state," of the Hamiltonian i . This initial Hamiltonian,

HF=Zf (x)lx)(xl

H1 is turned on and then interpolated to a final "problem" Hamiltonian, x , where lx) is a
shorthand for the n-qubit computational basis state whose binary expansion is x. Note that the final
Hamiltonian depends on the objective function, f (x) , of our Boolean optimization problem; the initial
Hamiltonian does not depend on the problem, and one may use the same initial Hamiltonian for all
problems. If we think of the AQO as operating on a time scale that goes from 0 and 1, then at time
s E [0,1] we have the Hamiltonian,
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H (s) = (1 — s)H 1 + s H F.

The ground state of the final Hamiltonian, H F is a solution to the associated unconstrained Boolean
optimization problem for f , and the AQO algorithm starts in the ground state of H 1 . If the interpolation
between H1 and H F is performed slowly enough, then the system will remain in the ground state of H(s)

at each time S, and the initial state will have transformed "adiabatically" to the ground state of the final
Hamiltonian. Finally, the state of each qubit is measured in the computational basis, returning the
output of the algorithm. The only difference between the AQO architecture and the more general AQC
architecture is the choice of the initial Hamiltonian, H 1 and the problem Hamiltonian, H F. While AQO
employs the specific H1 and H F shown above, H1 and HF are parameters of the AQC architecture, thus the
above discussion also serves as a description of AQC. Like the quantum circuit architecture, the
preparation and readout steps are problem-independent. Only the dynamics in the middle (described by
the interpolating Hamiltonian) depends on the problem.

How slowly does the interpolation have to be run for the output of the AQC algorithm to be correct with
high probability? In other words, what is the running time of the AQC algorithm for a given problem?
The adiabatic theorem (or, more correctly, the adiabatic approximation) in quantum mechanics
guarantees that as long as the total time, T , for the interpolation is chosen to be large enough, the final
measurement will yield a value for -x that minimizes f with high probability. One may expect that some
problems would require more time to solve than others. This is captured by the fact the bounds on the
minimum sufficient interpolation time, T tend to depend inversely on the minimum gap between the
energy levels of the ground state and first excited state of the Hamiltonian, H(S) over the course of the
interpolation. Thus problems that result in Hamiltonians with large energy gaps between ground states
and first excited states would require less time for the AQC algorithm to produce an optimal solution
with high probability (see Appendix A.1 for technical details).

It is a common misperception to believe that the AQC architecture represents "analoe computing and is
riddled with all of the problems that analog classical computing has; most notably a complete lack of
robustness. In fact, quite the opposite may be true — the AQC architecture is predicted by some experts
to have exceptional implementation robustness, although this is a matter of ongoing debate. The AQC
architecture is definitely digital — the input and output are completely digital. Even though time is
treated as a continuous variable during the interpolation, the state space of the computer is not described
by a continuous variable. In fact, even seemingly discrete-time architectures, such as the quantum
circuit architecture, rely on continuous-time evolution when implemented in hardware.

In many, and perhaps all, physical systems, interactions act on just two objects at a time. For example,
if the qubits were represented by spin-1/2 particles, then a physically meaningful Hamiltonian would
necessarily be restricted to acting on at most two spins at a time. With this restriction in mind, it is
natural to consider the AQO architecture that is restricted to the Ising Hamiltonian as a final
Hamiltonian:

Hising =Ehiazi +Dijaziaffp (1)

which arises in many quantum information processing systems including semiconductors,
superconductors, and laser-trapped atoms and ions. An advantage of this AQO architecture is that we
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may characterize the class of problem solved. In particular, the architecture solves quadratic
unconstrained binary optimization (QUBO) problems, defined as

min f(x) =Eaixi+Ebux,xj, subject to x E 0,11n.

By a linear transformation of variables from 0 and 1 to —1 and 1, an equivalent representation of the
QUBO problem is the following, which we refer to as the Ising problem:

min f(x) =Ehisi+Ehisisi, subject to s e{— 1, + 1}n.

In summary, adiabatic quantum optimization as realized by plausible near-term quantum technology will
likely be restricted to solving QUBO problems. While seemingly narrow, this class of problems is NP-
hard. Billions of dollars have been invested in attempts to solve QUBO problems with classical digital
computing. Whether AQO technology will be able to outperform existing or near-term classical
methods for solving these problems is an open question; we address certain aspects of this question in
this report, focusing on eventual application to big data problems arising in the analysis of complex
networks.
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2 The D-Wave quantum annealer

D-Wave Systerns has produced the world's first commercial computational devices that are designed to
employ quantum effects to solve optimization problems. D-Wave refers to its devices as quantum
annealers (QA), which is meant to reflect that, although a D-Wave system does evolve in an adiabatic-
like fashion, it may not remain in a ground state throughout the entire evolution. The hope is that the
quantum annealing process is able to terminate in a low-energy state of the final problem Hamiltonian,
corresponding to a high-quality, but likely suboptimal solution to the optimization problem being solved.
D-Wave QAs are not universal quantum computers; they implement an Ising problem Hamiltonian (see
Eq. (1) in Section 1.3), hence D-Wave QAs are only able to solve QUBO, or equivalently Ising,
problems. As noted, the extent to which D-Wave's QAs are leveraging quantum mechanical effects is
currently a contested issue. We discuss the role of entanglement in D-Wave's QAs in Appendix G.

The current generation of D-Wave QA, the D-Wave Two (DW2), has an architectural capacity of 512
qubits; however, delivered systems may have fewer functioning qubits due to fabrication defects (see
Figure 1). The physical strengths of the couplers between qubits are tuned according to the hi values in
Eq. (1), which are specified by the programmer. However, the current precision for the problem
parameters, and hi, is 16 bits in the range { - 1, - + 7/8, + 1} [9]. While the coupler values, are
typically used to represent numerical values from the problem domain, common techniques for
formulating combinatorial optimization problems as QUBO instances require hi values with large
magnitudes that grow with the instance size. For these reasons, D-Wave's limited coupler precision is
one of the most significant barriers to solving real-world problems on D-Wave devices. Moreover, due
to control errors and other factors, the actual problem solved by a D-Wave QA may only be an
approximate version of the one specified by the user (e.g., [10]).

A D-Wave device performs quantum annealing for a user-specified annealing duration, which is
constrained to range between 2Otts and 20ms on a DW2. Upon termination of the annealing procedure, a
solution is returned to the user consisting of values in { - 1, + 1} for each variable. The solution is not
guaranteed to be optimal and a user would typically perform thousands of runs on the same instance to
obtain a distribution of solutions, from which one or more are ultimately selected. For the specific
parameters used in our D-Wave benchmarking experiments, consult Section 5.2.1.
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Figure 1 D-Wave Two architectural connectivity diagram [10], known as the Chimera graph. Nodes represent qubits and
links between nodes represent a coupler between the corresponding qubits. Missing nodes and links are an artifact of fabrication
defects and vary from physical device to device. Each eight-node cluster is called a cell or plaquette.

2.1 Solving combinatorial optimization problems on a D-Wave device
It is useful to think of QUBO (or Ising problems) as the "programming language of a D-Wave QA.
Although we cannot directly express traditional iterative programs as QUBO instances, QUBO is a rich
and expressive NP-hard problem that is able to naturally model many types of combinatorial
optimization problems. On classical computers, one solves combinatorial optimization problems by
implementing a specific algorithm that takes an instance of a problem as input and outputs a solution
that one hopes is close to optimal. In contrast, a D-Wave QA is essentially a hardware implementation
of a specific quantum algorithm for solving QUBO problems that directly accepts a QUBO instance as
input. Thus the programmer is freed from the burden of understanding and implementing an
optimization algorithm; however, this comes at the cost of being tied to a specific implementation (D-
Wave's) of a specific algorithm (QA) for a specific optimization problem (QUBO).

Just as classical computers implement programming languages atop an underlying machine language
and hardware architecture, D-Wave QAs implement QUBO atop an Ising Hamiltonian that represents
the underlying physical layout and connectivity of its qubits. A more expressive machine language may
result in shorter programs at the expense of complex hardware that is more difficult to design, fabricate,
and verify; a simpler machine language results in extra program overhead consisting of longer sequences
of simpler operations. Quantum computers, including D-Wave's, are not immune to such tradeoffs.

D-Wave QAs are special-purpose computers in their physical layout, as well as in the problems they can
solve. A qubit in a D-Wave QA cannot interact with every other qubit; it has a specific and restricted
connectivity (see Figure 1). D-Wave refers to the class of graphs2 representing the layout of its quantum
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annealers as Chimera graphs, and D-Wave QAs are only able to solve QUBO instances that conform to
a Chimera graph. More precisely, in programming a D-Wave QA, a user is only able to specify -it/
values for pairs of qubits that are physically connected — all other values are effectively fixed to O.
The Chimera graph represents a balance in the tradeoff described above and is a qubit architecture that
D-Wave has been able to successfully realize at successively larger scales. Though one is not able to
directly input an arbitrary QUBO instance to a D-Wave system, the connectivity offered by Chimera
graphs is universal in the sense that it can "efficiently" simulate solving QUBO on graphs with arbitrary
connectivity; i.e., QUBO remains NP-hard when restricted to Chimera graphs. The tradeoff is that the
mapping or "compilation" of a QUBO problem of interest (the problem-domain QUBO instance) to a
Chimera QUBO instance may require, in the worst case, a quadratic increase in the number of variables.
As each qubit represents one variable, mapping a problem-domain QUBO instance in N variables onto a
D-Wave QA can require up to N2 qubits in the worst case (see Figure 2).

(a) Computational problem

CBs: /\

Sensors:{m}

6 7 9 10 12  13 11 15 16 L7 le 19

1 H

24 15*ow
111111

n 29 Xlip 32 33 34 35

I I I

26

M

Obs.: {h} 1S:30 0 1 1 o 1 1 1 1 1 1 1 1

(b) QUBO form

Hproblern HnumFaults Hconsist

46 logical qubits

{q,} 000000000(000e,v 15 18 17 IS 19 20 21122 23 24 25 2,5 27 2/ 29 30 31 32 33 31 35 15 371311 30•••GIDTTC1

{xi}

(c) Hardware embedding

tiv, -: ildlitl
iivi(li,i'l•

i, i i.1,.
41, ir Pi
1 1 — 3 mil!
4,:r4 ) i 7 iirt‘ski14
+r:f4i. , i ,Li A: 1
1 le.%' 1 rio- i 1

* 6 6 1 ...46; , - 13
i.1 M, I, • t A ilW i 14
i 2 , , 2 mg 1 1. ;$ 2 IC A9 Ir ,,,, 9
I i • ' • spi us: +46 % IV?,
,I.,-e 0. .6)  3 4,-43 h. 1,43

f V e A TA T ,ii.
se 7 II) CO '43 12

4r) a a4 Q :r.i, — _

I, T li Iti / kekw
f. i ire r. 11It •', .4 Co4 '1.04: !Me

li;'fr 
ii 4 i irk lir*,.

S'I‘'T #1: - Srt
ti r ,—. A — 

il
1  --

14,/ Ali4 A 1% • i AO./
I. )4 1 •V4

toi1:141, , 14 tit Aim I CM:,
14 1 iv*. 1,4

• 0
66 v 4r 

81 hardware qubits
Figure 2 An example of mapping a problem-domain graph into a Chimera graph [11]. A computational problem, (a) is
captured as solving a QUBO problem on a graph, (b); this QUBO instance is then embedded into a Chimera graph, (c). Each vertex
of the original graph is mapped to a set of connected vertices in the Chimera graph. Although the original graph has 46 nodes, the

embedding uses 81 Chimera graph nodes, which correspond to qubits. A dense, fully connected graph on N nodes requires —N2
Chimera nodes when embedded in this fashion.

{?),} {0,}

2 A graph or network, usually denoted by G, in our context consists of a finite set of nodes (also called vertices), V, and a set

of edges, E, which is a collection of (undirected) pairs of nodes. See Section 3.1 for more details.
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This quadratic overhead may be acceptable from a coarse, theoretical outlook, but finer, practical
concerns are important to us, especially given the current limited number of qubits available on D-Wave
QAs. For a specific problem that we seek to solve, there may be many known representations of it as a
QUBO problem. Such representations are likely to result in QUBO instances that are not expressible on
a Chimera graph, so we must map the problem-domain QUBO instance onto another representation that
casts the problem as a QUBO instance on a Chimera graph. Moreover, selecting different mappings will
result in different QUBO instances of different qualities and sizes, and a D-Wave device may be able to
solve some of these Chimera instances better than others. It may even be the case that we prefer a
representation that requires more qubits if the representation is somehow structurally simpler and solves
faster than smaller, but structurally complicated alternatives. As a step toward enabling users to reap the
full potential of a D-Wave QA, in the next section we explore the types of subtleties described above
from both a theoretical and practical perspective.

26



3 Benchmarking methodology

3.1 Benchmarking challenges
There are several layers of challenges in comparing the performance of two algorithms. For the
purposes of benchmarking, an algorithm, be it quantum or classical, is simply a black box. When given
an instance of a problem and a maximum execution time, the black box either terminates and produces a
feasible, but not necessarily optimal, solution or fails to do so in the allotted execution time. Our
general goal is to estimate the performance of each algorithm under consideration on problem instances
of increasing size. Two questions are immediate: (i) what is an appropriate measure of performance,
and (ii) how do we select a family of instances in order to derive a meaningful and valid comparison.

The notion of the performance of an algorithm depends on some resource being measured. The usual
notion of performance is with respect to overall running time; however, care must be taken to define
"overall running time" properly. Is our concern the CPU time expended or wall-clock time? The former
is a fairer comparison metric, but the latter may better reflect practical scenarios. There are cases when
running time may not be an appropriate metric at all. Consider comparing a quantum algorithm versus a
classical one. The notion of an algorithm is distinct from that of a code or software that may be readily
executed. The former is a more abstract notion of a recipe for solving a problem, whereas the latter is an
implementation of such a recipe on a specific platform. In the classical world we have many examples
of both algorithms and software implementations, whereas in the quantum world, we essentially have
only algorithms. One manifestation of this issue is that overall running time may not be informative in
comparing a highly optimized classical code against a seminal implementation of a quantum algorithm
on an immature quantum device. In the short run, a well-engineered implementation of a poor algorithm
may outperform a poor implementation of an algorithm based on a powerful and clever idea; however,
as our data sets grow larger we expect the latter to outperform the former. A benchmark that considers
this also allows for the possibility of better-engineered versions of algorithms in the future. Thus, we
focus on relative performance, represented by growth curves indicating scalability over instances of
increasing size, rather than absolute performance.

Instance selection is another critical issue. Because we want benchmarks that are indicative of how
algorithms will perform on real-world problems, randomly generated QUBO problems on the Chimera
graph are unlikely to provide useful benchmarking results. Instances derived from one-off real-world
data sets can also be a poor choice. One reason is that in order to sketch the asymptotic scaling for our
algorithms, we need families of related instances rather than one-off data sets. Thus we seek families of
related test problems of differing size that have real-world character. Indeed, corpuses of data of
varying sizes are often available; however, the issue here is that there is possibly no relation between the
individual data sets in the corpus. For example, size may not correlate with complexity and we may
have a corpus where all the large data sets are "easy," while the small ones are "hard." Our goal is to
capture some inherent notion of complexity that is independent of size. Consider a text corpus
consisting of Shakespeare's plays and a collection of e-mail messages. This corpus certainly has both
large and small instances, but these instances are unrelated. On the other hand consider a corpus
consisting of Shakespeare's plays as well as his letters. Now we have a relation among the instances
that transcends size — namely, there were all written by a single individual. We may be able to find
idealized instances or synthesize families of related instances; however, they may not capture key
characteristics of real-world data. On the other hand, real-world data sets tend to be unrelated to one
another. This sort of tradeoff between rich but complex versus simper but less accurate models is not
uncommon; we saw another example of this type of tradeoff above in CPU versus wall-clock time. The
latter is a simpler and more natural model but fails to capture how a computer truly operates.
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The complexities described above are precisely why we focus much of our attention on generating and
analyzing families of real-world and synthetic social networks (see Section 4). Below we address some
of the other issues raised above in the context of recent studies and our present work on benchmarking
D-Wave's QAs. We select graph analysis problems on complex networks3 as a relevant and illustrative
problem of big data analysis on which to demonstrate our benchmarking methodology. The issues we
raise and consider apply broadly to general quantum computing, as well as other types of emerging non-
classical technologies.

3.2 Our goals and contribution
We view D-Wave's QAs, and more generally AQC, as a technological trajectory. Although we use a
current generation D-Wave QA as an experimental tool, the questions we address and techniques we
develop apply to future generations as well. Even if we cannot prove that current quantum devices offer
a computational advantage on some class of interesting and practically relevant problem, we seek to
poise ourselves to answer these types of questions as quantum devices become larger, more robust, and
more capable.

Some of the immediate goals of our study, as well as longer-term aspirations, are to:
o Assess the current and projected future performance of D-Wave QAs (and AQCs);
o Compare them against variety of classical algorithms, including real-world heuristics on real-

world-like instances;
o Identify barriers and workarounds in formulating and representing problems on D-Wave QAs;
o Place the D-Wave community benchmarking results in context with one another, as well as with
our findings;

o Fill the gap between theoretical worst-case analysis of quantum algorithms and quantum software
engineering on practical instances with empirical computational results.

In the context of these goals, we consider the following our main contributions:
o We bring real-world algorithms, problems, and instances to bear;
o We introduce more rigorous benchmarking methodology;
o We expose the importance of selecting appropriate metrics, algorithms, and configuration;
o We draw upon the rigor of theoretical computer science techniques and results to offer new

insights on the D-Wave QAs;
o We demonstrate the formal NP-hardness of a widely used class of Ising instances;
o We develop new tools and techniques for trading off coupler precision and qubits;
o We explore QUBO-based approaches to complex network analysis problem.

Our contributions collectively offer a methodology to aid one in predicting whether maturing AQCs,
such as D-Wave's QAs, are likely to have a near-term impact on real-world applications; we also
identify impediments to such an impact.

3 Our notion of a complex network is a graph arising in the modeling of complex social, physical, or other real-world
phenomenon. We think of social networks as a kind of complex network, though we often use the two terms
interchangeably. See Section 3 for more details.
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3.3 Subtleties in D-Wave benchmarking
In this section we highlight some of the pitfalls and subtleties that we have both encountered in our own
work and observed in recent D-Wave benchmarking efforts [12]. Our goal is simple but important: we
seek to alert the reader that while benchmarking itself may very well be a "simple' matter of running
computational experiments and processing collected data, drawing valid and meaningful conclusions
from benchmarking endeavors is an art that warrants some care.

We bring insights from theoretical computer science and combinatorial optimization to bear on
benchmarking quantum algorithms and discuss the following issues.

o What is an appropriate measure of success?
o Which classical algorithms ought to be used for comparison?
o How does one select appropriate benchmarking instances?
o How large are hard instances?

3.3.1 What is an appropriate measure of success?
Consider the following success criteria:

(i) for 99% of instances, produce an optimal solution,
or

(ii) for all instances, produce a solution that achieves a value that is 99% of the optimal.

From a practical perspective the two seem virtually indistinguishable, and one tasked with solving a
real-world combinatorial optimization problem would likely be happy with an algorithm meeting either
criterion. However, surprisingly enough, the theoretical complexities of (i) and (ii) can differ drastically.
In fact this is the case with D-Wave's QAs. For solving QUBO problems on the D-Wave Chimera
graph, we observe that, from a formal perspective, (i) is likely NP-hard, while (ii) is solvable in
polynomial time by a classical algorithm. This is counterintuitive and, as far as we know, has not been
previously observed in the D-Wave benchmarking community.

We note, however, that "polynomial time" does not mean practically efficient, as the currently best-
known algorithm for criterion (ii) follows from a polynomial-time approximation scheme (PTAS) for
QUBO on the Chimera graph by Saket [13]. A PTAS is a polynomial-time algorithm that, for any
constant E in (0,1], is able to always deliver a solution whose value is at least (1 - E) of the optimal;
however, the running time can depend exponentially on E (since E is a constant that is independent of the
instance size). PTAS's are technically polynomial-time algorithms, but are rarely of practical use since
for small values of E, the constant factors in the running time can be astronomical. However, the
existence of a PTAS is encouraging as it leaves open the possibility that a more efficient polynomial-
time algorithm exists.

We complement the above observation by demonstrating that criterion (ii) also appears to be easier from
a practical perspective. D-Wave performance on random Ising instances on the Chimera graph with no

linear term (hi 0, for all i, in Eq. (1) from Section 1.3) tends to scale as -dry where N is the instance
size (Section 5.2.3 or [14]). However, we observe that even though finding a precise optimal solution
appears to be hard, D-Wave is almost always near optimal — all runs produced a solution achieving
value at least 96% of the optimal for our experiment in Figure 3.
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Figure 3 Histogram of solution quality as relative percentage of optimal (100% corresponds to optimal). The results are

over 55,000 random Ising instances on the Chimera graph with couplers uniformly in { - 1, + 1} and no linear term.

Since both criteria (i) and (ii) seem equally valid from a practical perspective, which should one select?
Following the seminal work of Boixo et al. [15], the D-Wave benchmarking community seems to have
adopted (i) as its standard, which raises the question: has the community been focusing on an artificially
hard success criterion, when one that is potentially easier for classical computers might suffice in its
place?

3.3.2 Which classical algorithms ought to be used for comparison?
Although simulated annealing seems like a natural classical counterpart and point of comparison for
quantum annealing, Hen and Young [16] observed empirically that for a certain variant of the Boolean
satisfiability problem, both simulated annealing and simulated quantum annealing scale exponentially,
while a reasonably efficient polynomial-time algorithm based on Gaussian elimination exists. We give
another such example in Section 5.3.2. The existence of such problems should not be so surprising,
since polynomial-time algorithms often employ sophisticated problem-specific insights; in fact it would
be more surprising if a general approach like simulated annealing were able to somehow automatically
and categorically take advantage of problem-specific insights. The point to be observed is that selecting
a suboptimal classical algorithm in a benchmarking study may lend an unfair and artificial advantage to
quantum algorithms. The polynomial-time algorithm for criterion (ii) from above is another example.
Suppose we discovered a reasonably efficient polynomial-time classical algorithm that was able to
always return a solution with value 99% of the optimal for any D-Wave QUBO instance. No doubt D-
Wave's QAs would still remain scientific curiosities, but would anyone still be interested in using them?
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Figure 4 D-Wave vs. CPLEX performance on random Chimera instances of QUBO, without a linear term. The left plot, from

McGeoch and Wang [17], depicts the performance of a D-Wave Two and several classical algorithms, when given only 491ms to

execute, on random Chimera QUBO instances with coupler weights uniformly drawn from — 1, + 1}. The plot indicates that the

D-Wave Two always found an optimal solution within 491ms while the success rate dropped sharply for all of the classical
algorithms, including CPLEX used as a QUBO solver. The right plot shows our own experiments, using CPLEX v12.4 as an integer-
linear-program solver, performed on a 16-core machine with 3GHz Intel Xeon cores. We generated 100 instances of each size and
measured the average time to find an optimal solution. The green plot corresponds to the random Ising instances used by Boixo et
al. [15], while blue plot corresponds to the random QUBO instances of McGeoch and Wang [17] as on the left. Our results
demonstrate that CPLEX can perform comparably to a D-Wave Two on the McGeoch-Wang instances. (Note that although QUBO
and Ising problems are equivalent by a linear transform (Section 1.3), the above random variants are not distributed equivalently,
hence the empirical difference in complexity.)

On the other hand, an expertly engineered classical code may currently outperform a quantum
alternative, but may not be able to sustain an asymptotic advantage as problem size grows. How do we
compare a technology that we have had decades to hone versus an infant technology that has yet to
mature? Even after selecting an algorithm, how do we know that it is configured properly for optimal
performance? A case in point is that McGeoch and Wang [17] reported a 3600x speedup for a DW2
over the CPLEX integer linear solver. We observe (Figure 4 and independently by Dash [18]) that the
speedup vanishes when CPLEX is used with an appropriate integer linear reformulation of the problem.
CPLEX can solve QUBO problems directly, but its primary design and purpose is in solving integer
linear programming problems. Using CPLEX as a QUBO solver is fair, in some sense, in a comparison
against a DW2 system. However, the overarching goal in quantum benchmarking is to compare
quantum systems and algorithms against the best available or possible classical algorithms, and the
selection and configuration of the classical algorithms to be pitted against quantum algorithms is
challenging, even for algorithms experts.

One of our contributions is to address the above issues, as well as other gaps in D-Wave benchmarking
For example, if one is willing to spend about $10,000,000 on a D-Wave QA, one should have no qualms
spending another $50,000 for a modest classical computer or small cluster on which to execute available
classical algorithms. Then one may simply run all available algorithms, quantum or classical,
simultaneously and select the best solution returned by any of them. Thus one need not try making a
choice in advance between using a quantum (annealing) algorithm or a classical algorithm. Some of the
D-Wave studies seem to indicate that problems hard for quantum annealing may be easy for simulated
annealing and vice-versa. This type of analysis was used to suggest that quantum annealing is different
from and perhaps superior to simulated annealing. However, ironically, if this were true, then by
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running both algorithms simultaneously and selecting the better solution, we obtain a new algorithm that
performs at least as well as either — yielding the best of both worlds. The fact that we do not routinely
see such hybrid algorithms, especially in benchmark studies, is perhaps a blind spot fueled by our nature
to compete rather than cooperate. Hybrid approaches have proven quite successful in solving Boolean
satisfiability problems (SAT). Solving SAT problems has become an international competitive
phenomenon [19], attracting experts and amateurs alike. Recently a new algorithm has taken the lead
and has proven itself extremely difficult to beat. The approach, pioneered by Xu et al. [20], is simply to
use a machine-learning technique that performs a cursory analysis of a given instance and then selects an
algorithm to use on the instance from a portfolio of existing algorithms.

3.3.3 How does one select appropriate benchmarking instances?
As previously discussed, random instances are easy to generate but are unlikely to be representative of
real-world problems. Moreover, random instances can be subject to phase transitions wherein the values
of critical parameters can render instances extremely easy or extremely hard. Such parameters are often
difficult to ascertain. Hence, by blindly generating random instances, one may be unwittingly solving
artificially easier or harder problems than intended. How does one know that one is selecting or
generating instances of appropriate difficulty? For example, the random instances used in recent
benchmarking seem to have been assumed to be NP-hard based on Barahona's seminal work [21] on the
complexity of Ising problems. We observe that the hardness of these instances does not follow directly
from Barahona's work, and devise a new proof showing that these random instances are, indeed, NP-
hard. The technical details of our proof are beyond the scope of this document and will appear in a
technical article that is under preparation [22].

However, this is not the end of the story. The notion of NP-hardness pertains to worst-case complexity,
whereas, from a practical perspective, we are more interested in randomized or approximate algorithms,
such as simulated annealing or quantum annealing. Also, the instances themselves are drawn randomly
(from a uniform distribution). Are such instances hard in some average-case sense? Defining a robust
and meaningful notion of average-case complexity is a non-trivial task and computer scientists have
struggled in making significant progress on understanding this phenomenon.

More realistic instances are desirable; however, in the case of D-Wave, we must efficiently transform
our desired instance into a related instance on the Chimera graph. We summarize our efforts to
overcome this barrier. One such approach is embedding the desired instance within a Chimera graph
(details presented in Section 4.3). However, doing so is an NP-hard problem, itself, and moreover, such
embeddings require ranges of coupler weights beyond the current precision of D-Wave annealers. We
have developed an algorithm that is able to generate, directly within the Chimera graph, synthetic graphs
with properties of real-world social networks, sidestepping the embedding issue (see Section 4.3.2). We
have also designed an algorithm to reduce a weighted instance of QUBO to a polynomially larger, but
unweighted, instance of QUBO to circumvent coupler precision limitations. The details of this
technique will appear in a technical article that is under preparation [12]; however, Figure 5 gives a
high-level schematic view of the different problems and mappings involved. The resulting unweighted
instance is larger than the original weighted instance, and one may view such techniques as enabling a
tradeoff between coupler precision and qubits. Currently our approach is only practical for relatively
sparse instances of weighted QUBO, and the associated qubit overhead renders it impractical for the
current generation 512-qubit D-Wave annealers. However, we expect that our type of approach will be
a useful practical tool for modeling real-world problems on upcoming generations of D-Wave QAs, for
which we expect coupler precision to remain a bottleneck.
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Figure 5 A high-level schematic view of our reduction from weighted QUBO instances to unweighted Ising instances.

3.3.4 How large are hard instances?
Ideally we would be able to discover a hard family of instances that tax conventional computing
approaches but that we can faithfully represent on a current or near-term D-Wave device. This would
allow for a somewhat direct comparison between conventional computing and quantum annealing. This
would also give us a better sense of what we could accomplish with the nearly 512 qubits of a DW2.

How large would we expect such an instance to be? We demonstrate that this is an extremely difficult
question to answer. For example, Figure 6 depicts the evaluation of the performance of a particular
classical Ising (equivalently, QUBO; see Section 1.3) heuristic by Bonato et al. [23] on two families of
instances. One family consists of randomly generated instances on a grid ranging in size from 900 to
6,400 nodes, while the other consists of a few 250-node instances that were collected by Beasley for
inclusion in a library of hard and varied QUBO instances [23], [24].

Some of the random grid instances with thousands of nodes took minutes to solve, while most of the
250-node Beasley problems took hours to solve. Moreover, the Beasley problems represent a family of
related instances of varying degrees of difficulty, yet all of them have 250 nodes. This suggests that size
is not the only measure of complexity, and that other, more elusive, structural properties can play a key
role in the complexity of a problem.

The above examples are hundreds and thousands of nodes in size. For some problems we will discuss in
this report, such as community detection, there are very fast heuristics, such as the Louvain algorithm,
that can handle sparse graphs with millions of nodes in a matter of minutes (see Appendices C.2 and
D.1). Yet in this case it is not clear what "handle means, since the Louvain algorithm is a heuristic that
comes with no guarantees. Practitioners have widely observed that this algorithm delivers high-quality
solutions on large real-world networks; however, it is entirely possible that there exist very small
instances, structured in a particular way, on which the algorithm fails dramatically. Thus a
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quantification of hard instances is as much a function of the problem and solution model4 as it is the
instance itself. This is one of the reasons why the search for a small but hard class of problems that can
be represented and executed on D-Wave's QA has been a difficult enterprise. Hardness is difficult to
predict and analyze; the few options at our disposal usually entail trial and error.
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4 For example, an exact algorithm that always delivers an optimal solution is one such model, while a heuristic, with no
performance guarantees, is another.
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4 Complex-network instance families

We motivated the need for a careful consideration and selection of benchmarking instances in the
previous section. One of our main contributions is bringing real-world instances into quantum annealing
benchmarking. Existing work has focused on random or simple instances, mainly due to the limitations
imposed by the D-Wave Chimera architecture (Section 2). We bridge this gap by devising a novel
method to generate real-world-like social networks that can be natively embedded with a D-Wave
Chimera graph. Although synthetically generating real-world-inspired graphs is an active research area,
to the best of our knowledge, our work is the first of its kind, combining synthetic graph generation with
the notion of graph embeddings (see Figure 2 and Figure 12). We also develop a method to produce
families of social networks derived from actual Twitter and Internet routing data; this addresses a
shortcoming in many social network analysis studies, which use one-off data sets, such as Netflix or
academic co-authorship data, rather than families of related instances. We use these families of
networks for the classical portion of our benchmarking study and as a ground truth against which we
validate the structural properties our synthetically generated Chimera social networks.

Though these contributions constitute a significant portion of our effort, the details may be somewhat of
a diversion from the overall theme of our investigation. We present highlights below in order to give a
flavor of our work and refer the reader to Appendix B for further details.

4.1 Introduction
Graphs are commonly used to model real-world data and offer a rich platform for further analysis.
Graphs, which are also called networks, are composed of a finite set of nodes (also called vertices and
often depicted as points) and edges (links or line segments) that connect pairs of vertices. One may
think of the edges as defining a relationship on pairs of vertices, with those pairs that share an edge as
being related. In social networks, for example, edges tend to denote similarity, affinity, or perhaps that
two nodes have communicated. In case of the latter, one sometimes may want to distinguish the sender
of a message from its recipient. In this case we can think of an edge as being directed with one of the
nodes of the directed edge its source and the other its destination.

The variable G is usually used to denote a graph, and 17 and E denote its vertex and edge sets,
respectively. For our purposes, undirected graphs will generally suffice, and for nodes i and I that are
connected by an edge, we use the notation (4i) or li to refer to this edge; in an undirected graph, if and .ii
both refer to the same edge.

Graphs serve as a mathematical representation for interesting real-world phenomena: personal
interactions become social networks; webpages linking to each other become Internet graphs, and
protein interactions in biology become biochemical networks, for example. By way of graphs, real-
world phenomena can be encoded and shared succinctly, categorized, and analyzed efficiently.
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To further categorize and describe graphs, researchers have proposed various graph measures. We
present a few of these below with a more detailed list appearing in Appendix B.
• Number of vertices (n) — Together with number of edges, describes graph size.
• Number of edges (m) — Together with number of vertices, describes graph size.
• Degree (d or .5) — The number of edges incident to a vertex.
• Average degree (2m/n) — Describes the average number of edges incident to a vertex.
• Degree distribution (see Figure 7) — The number of vertices for each distinct degree value.
• Clustering coefficient (C) — A measure (between 0 and 1) indicating the tendency for nodes to

cluster. Specifically, it is the fraction of all node triples (three nodes connected by at least two
edges) that are connected by three edges, forming a triangle.

• Diameter (d) — The maximum distance between any pair of nodes, where the distance between
two nodes is the number of edges on a shortest path between them.

Measures such as these allow us to better understand graph features despite their inherent complexity.
Real-world graphs generated from different sources will often have similar values on some of these
measures, but can have very different values on other measures.

Performing a scaling analysis of algorithms requires having graphs of different sizes that possess some
inherent or structural similarity; we call such a collection a family of related graphs. The danger of
benchmarking on a family of unrelated graphs of different sizes is that performance variation at different
scales may not be a function of scale alone and may be related to varying complexities among the
instances themselves. We saw examples of this in Section 3.3.4. Moreover, we want our results to be
indicative of the scaling of computational effort of analyzing real-world graphs; all benchmarking
studies to date have treated random graphs on the D-Wave Chimera qubit connectivity graph. Therefore,
we want a family of graphs with real-world character that grow in size while remaining consistent in the
other measures. After examining various possibilities (see Appendix B.3), we determined that growing
graphs of different sizes from the same underlying data was our best option for generating a family of
such similar graphs. The graph families we generate in this manner serve two purposes: (i) we use them
directly in a comparative benchmarking study of community detection algorithms (covered in Section
5.5 and Appendix D), and (ii) we use them to validate a new algorithm we have devised to generate
synthetic real-world-like networks that can be easily represented on a D-Wave Chimera graph.
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4.2 Real-world instances

4.2.1 Twitter graphs
Internet-based technologies that enable and record human interactions are often called social media.
These technologies include weblogs (blogs), Facebook, Twitter, and YouTube. In social media, people
often link to specific other people. The graphs resulting from these interactions can be used to group
people in communities, describe human communication patterns, and identify influential people.

We used Twitter data readily available from its data feed. Twitter is a social network where users
broadcast short messages (tweets) that can, in practice, be seen by anyone on the Internet. If the sender
wants a specific other user to see their tweet they refer to that user's name and precede it with the "@"
character; this does not, however, preclude others from seeing the message as well. Twitter does also
offer a private direct message facility. These so-called "@-refers" indicate that the sender is "talkine to
the receiver. However, as Twitter contains many celebrities to whom many fans @-refer, we did not
want to count all @-refers as a "conversation." Therefore, in our Twitter graphs, we include an edge
between two nodes, corresponding to users, precisely when both users @-refer each other.

We ran our algorithm, which generates Twitter graphs based on specified time windows (see Appendix
B.2.1), for various time periods of the Twitter data feed: from 2 hours to 20 days and with 13 different
start dates. This resulted in 92 different graphs. Visual inspection of several of the graphs shows they
appear similar with many long chains of vertices and occasional higher degree clumps (Figure 8).

•
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Figure 8 Two sample Twitter graphs. The graph on the left has approximately 350 vertices and the graph on the right has
approximately 700 vertices. Notice that both have small clusters of connected nodes and long strings of smaller groups of nodes.
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These graphs grow drastically in size while maintaining a similar average degree (Figure 9). The
average degree remains steady at a value of around two for graphs with tens of nodes through graphs
with tens of thousands. As the graphs grow considerably larger, the average degree does begin to
smoothly increase until average degree is approximately 4. We note that the graph size is primarily a
function of the length of the corresponding time window, and although we hypothesize that degree
increase may be related to short-term versus longer-term communication patterns, an analysis validating
such a hypothesis is beyond the scope of this work.
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Figure 9 Average degree for all our Twitter graphs. Each point displays the number of nodes and the average degree for that
graph.
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These Twitter-based graphs smoothly change diameter as the size of the graph increases (Figure 10).
The diameter increases steadily until around 10,000 nodes, and then the diameter stabilizes and slowly
decreases. It is interesting that this is also approximately when the average degree begins to increase,
and this could support our hypothesis above in that people may communicate with more distant
acquaintances in addition to closer friends over longer periods of time, resulting in long-range edges that
might decrease diameter.
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Figure 10 Diameter for all our Twitter graphs. Each point displays the number of nodes and diameter for that graph.
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These graphs also smoothly transition their clustering coefficient while staying rather low. With the
exception of some very small graphs (a couple hundred nodes), the clustering coefficient ranges between
0.05 and 0.10. The smaller graphs with both the highest and the lowest clustering coefficients are more
drastically affected by noise where a small number of triangles5 can have a larger influence on the score.
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Figure 11 Clustering coefficient for all our Twitter graphs. Each point displays the number of nodes and clustering coefficient
for that graph.

We also generated a family of graphs from Internet Border Gateway Protocol data; details are given in
Appendix B.2.2.

4.3 D-Wave-embeddable graphs
For our benchmarking work, graph families that can be run on a D-Wave device are paramount. We
briefly describe the issues with representing problem-domain graphs on a D-Wave Chimera graph and
present a new algorithm for generating real-world-like graphs that are readily representable on a D-
Wave Chimera graph.

4.3.1 D-Wave graph embeddings
A D-Wave QA is equipped to solve QUBO problems defined on a sparse and fixed Chimera graph,
representing the connectivity of its qubits (see Figure 1). In order to solve more general QUBO
problems on a D-Wave QA, one must somehow reduce the problem at hand to an instance of QUBO on
the Chimera graph. One natural approach is called a minor embedding in the graph theory literature.
The idea is to represent each node of the original graph by a set of connected nodes in the Chimera
graph. For each edge in the original graph, we require at least one edge between the sets of
corresponding nodes in the Chimera graph (see Figure 12 and Figure 2). By using coupler weights of
sufficiently large magnitude on the edges within each of the node sets, we can force the Chimera QUBO
instance to set all the variables in any given node set to take the same value. This, in essence, solves
QUBO on the original problem-domain graph.

In order to maximize the size of problems we can solve on a D-Wave device, we seek an efficient minor
embedding — one that uses as few Chimera nodes as possible. Unfortunately, not only is it intractable
to find an efficient minor embedding, it is in general NP-hard to even determine whether a graph is
minor-embeddable within another graph. This poses a serious hurdle to using such an approach. We
may still appeal to heuristic approaches to attempt to find a minor embedding, and D-Wave provides
such a heuristic as part of its software tool set. In general such heuristics, including D-Wave's, are not
viable for real-world applications.

5 Recall that a triangle is a set of three nodes where all three possible edges among these nodes are present in the graph.
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Another approach is to try and find a universal minor embedding. If one can embed a fully connected or
complete graph on N nodes within the Chimera graph, then one can embed any graph on N nodes. It is
known that a complete graph on N nodes can indeed be minor-embedded into a Chimera graph on
—1\12 nodes (Figure 12) from the work of Choi [25]; conversely, any minor embedding of a complete
graph requires —N2 nodes6, so we cannot hope to do better using this strategy. This quadratic overhead
may be prohibitively high; for example, we currently only know how to embed a complete graph with
approximately 33 nodes in the current generation DW2 QA.

Figure 12 A minor embedding of a fully connected graph on 8 nodes into a subgraph of the Chimera graph [25].

Even if one is able to find an efficient minor embedding, a bigger issue is that current D-Wave QAs do
not offer couplers with great enough precision (see Section 2) to accurately represent the minor-
embedded problem. Thus even if one can embed a problem-domain graph into the Chimera graph,
attempting to solve the problem on a D-Wave device will likely result in a solution that cannot be
converted into a solution to the original problem. For many problems, the embedding coupler
magnitude may need to be as large as the number of nodes in the graph. This is the most significant
hurdle in solving real-world problems on D-Wave annealers.

Despite these obstacles, minor embedding is currently the only general technique known for reducing
arbitrary QUBO instances to Chimera QUBO instances. We leverage the fact that our goal is to
benchmark on real-world-like graphs, and we turn the embedding problem on its head. For the purposes
of benchmarking, we do not have a specific instance that we need to embed and only seek to represent
families of graphs that resemble real-world social networks. Thus, rather than attempt to embed a given
graph into the Chimera graph, we start with a Chimera graph and generate a real-world-like random
graph within it. For an N-node Chimera graph, our algorithm is able to produce a Chimera-embedded
real-world-like social network with approximately N/2 nodes. While we can only embed complete
graphs with approximately 33 nodes on current D-Wave QAs, our algorithm is able to generate
Chimera-embedded social-network-like graphs with more than 250 nodes. For a point of reference,
recall from Section 3.3.4 that we know of QUBO instances with 250 nodes that take hours to solve on a
conventional computer. Although a few hours may not seem long, if one's task requires solving a large
number of such instances, reducing the per-instance run time could make significant difference in
overall run time.

6 This follows because the treewidth of an N-node Chimera graph is --Or‘f; a discussion of treewidth is beyond the scope of
this report.
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4.3.2 Real-world-like Chimera-minor graphs
We describe our new embedding approach in more detail. Our goal is to compare the performance of
both classical and D-Wave systems on real-world graphs; however, as noted earlier, embedding arbitrary
real-world graphs within the Chimera graph can impose drastic size limitations. Our approach is to start
with a Chimera graph and alter its topology to create a new graph that is automatically minor-embedded
within the original Chimera graph and exhibits the targeted characteristics. Of course many such minors7
are possible, and the challenge is generating one that has properties of a real-world complex network.
The Chimera graph has three principal features we seek to change to create a graph minor with more
real-world character. In order of our valuation of their importance, they are the following:

o The Chimera graph has only degree five and six nodes, with the vast majority degree six. This is
very different from the long-tailed degree distribution seen in real-world graphs (Figure 7).

o The Chimera graph contains no triangles and thus has a zero clustering coefficient. Again, this is
very different from the clustering coefficients of real-world graphs (Figure 11).

o The Chimera graph's diameter grows drastically as the number of nodes increases. This is also
different from real-world graphs (compare with Figure 10).

Figure 13 An alternate drawing of a Chimera graph (compare with Figure 1). Each eight-node cluster is called a cell or
plaquette.

Our algorithm for generating realistic graph minors from the Chimera graph follows three phases. In the
first phase, our goal is to increase the clustering coefficient by introducing triangles. A graph minor is
obtained by merging nodes and possibly removing edges or nodes. As removing edges or nodes cannot
create triangles, we merge nodes. A good strategy for generating triangles is by merging nodes within
the Chimera's eight-node cells (see Figure 13 and Figure 1). In this step, we divide each eight-node cell
into four pairs with one node from the left group of four nodes and one node from right group of four
nodes (see expanded box in Figure 13). Given a user-specified probability parameter Pl, we merge each
such pair of nodes with this probability. This results in triangles formed between each merged pair and
all unmerged pairs.

7 A graph H is called a minor of graph G if H can be minor-embedded within G.
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The second phase focuses on generating high-degree nodes and decreasing diameter. Again, removing
edges cannot create higher degree nodes or decrease diameter, so we employ node merging. We found
that merging connected nodes from different cells best fulfilled these goals. As with the previous phase,
given a parameter P2, we merge each pair of connected nodes from different cells with probability P2.
To extend the reach of some of these merged nodes beyond the immediately neighboring groups, we
perform multiple iterations with a lower P2 value rather than opting for a single iteration at a higher
probability.

The final phase focuses on creating low-degree nodes. For each edge in the graph, we consider
removing the edge with a probability P3. However, we want to ensure that we are not creating too many
small components8 in the graph, as real-world networks tend to have large components. Therefore, after
removing an edge from the graph, we ensure that the two vertices in the removed edge can still reach
each other through some series of other edges. If not, we reinsert the edge.

,We determined suitable values for p 1,p2 and p3 in order to generate graphs that mimic real-world
complex network properties, based on analysis of degree distribution, diameter, and clustering
coefficient. Our synthetic graphs have much of the long, spindly look of our Twitter graphs (see Figure
8). Unlike the Twitter graphs, these pseudo-social graphs do not often contain loops.
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Figure 14 Two sample randomly generated real-world-like graph minors of the Chimera graph. The graph on the left was
generated from an 800-node Chimera graph and has approximately 450 nodes. The graph on the right, generated from a 1600-
node Chimera graph, has approximately 1000 nodes.

We present a quantitative comparison of our synthetic complex-network minors of the Chimera graph
with our other families of graphs in the next section. Beyond this, we are also interested in the node
utilization of our graph minors, which is the percentage of nodes of the original Chimera graph retained
in a minor. As previously mentioned, in a Chimera graph with N nodes, we would expect to be able to

8 A graph is connected if there is a path in the graph between each pair of nodes. For a disconnected graph, its connected
components are its maximally connected subgraphs. Every pair of nodes within a component can reach one another, and no
two nodes in separate components can reach each other.
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embed a graph with only AY/ nodes, in the worst case. On a 512-node Chimera graph, this represents a
node utilization of under 5%. However, our Chimera-minor9 graphs have a nearly constant utilization
percentage at just over 55%.

We have now presented the three different graph families we will use in our benchmarking analysis:
Twitter, BGP, and real-world-like Chimera-minor graphs. In the previous sections (or Appendix B), we
showed examples of each graph family along with various metrics for each family. In Appendix B.4 we
synthesize these results to more clearly highlight the similarities and differences between each family,
with the goal of demonstrating that our Chimera-minor graphs possess real-world graph properties.

80%

70% —

50%-
5

40% —

30%—

.2

1200/.-
04!
look-

•

8 

8
.  

8 0 8 e e o

.
102 102 104 105

Number of Nodes (Origlnal Chimera Graph)

Figure 15 Percentage of nodes in original Chimera graph retained in real-world-like graph rninors. The utilization remains
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9 By Chimera-minor graph we mean a graph that is a minor of the Chimera graph.
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5 Quantum benchmarking studies

5.1 Introduction
This section presents our quantum benchmarking studies, complementing our classical benchmarking
studies, presented in Appendix D. We expand our repertoire of the problems considered as well as the
algorithms applied. While we focused on real-world classical heuristics in Appendix D, here we present
data from experiments conducted on the DW2 QA housed at NASA Ames Research Center at the time
of this writing, as well as comparative experiments performed using the classical Chimera QUBO/Ising1°
heuristic by Selby [26], and a Quantum Monte Carlo (QMC) simulator of our design (see Appendix F
for details). The Ames DW2 has a 512-qubit "Vesuvius" chip with 509 functional qubits.

We consider complex network analysis problems, as well as random Ising spin glass instances on the
Chimera topology. For the former, we employ Ising-based formulations that are described below. The
latter class of instances has become somewhat of a standard for D-Wave benchmarking instances
following the seminal work of Boixo et al. [15] in the field. Our interest in these instances is to validate
our basic methodology by ensuring that we obtain comparable results as previous studies. Moreover, we
use these instances to illustrate some of the subtleties in D-Wave benchmarking that we have
encountered (Section 3.3). The random spin glass instances also serve as a benchmark for assessing the
performance and fidelity of our QMC simulator with respect to a D-Wave QA. We have selected
problem sets to evaluate various aspects of solving Ising problems on a D-Wave QA. For example,
while our baseline Ising instances have no linear field term, our independent set problems critically rely
on a linear term. The planted-solution instances employed are generated using random walks as
opposed to selecting coupler weights directly from a random distribution [27], [28].

Although some recent D-Wave benchmarking work has considered instances requiring a minor
embedding [11], [29], [30], we have specifically avoided such instances. This is because, even with an
embedding in hand, one must determine coupler weights allowing a D-Wave system to accurately
represent the embedded instance. This typically requires large coupler magnitudes, resulting in coupler
weight ranges that cannot be captured with the precision offered by current D-Wave systems. Recent
work by Perdomo-Ortiz et al. [30] presents a heuristic for setting coupler weights, enabling approximate
representation of an embedded instance on D-Wave. We could benchmark D-Wave on our real-world-
like Chimera-minor instances (Section 4.3.2) in conjunction with such a heuristic; however, doing so
would add another layer of complexity and variability that is beyond the scope of our present study. We
do benchmark our Chimera-minor instances on our QMC simulator, which does not share D-Wave's
precision constraints.

We summarize our problems and algorithms in Table 1; each problem is introduced in detail in its
respective section below.

10 As noted in Section 1.3, the two problems are equivalent by a linear change in variables. We use QUBO and Ising problem
interchangeably.
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Real-world
classical
heuristic

Selby classical
QUBO solver

D-Wave
quantum
annealin

Simulated
quantum
annealin

Ising - 1,1 couplers

Independent set

Affinity independent set

Planted solution

Community detection

X X X

X X

Table 1 Problems (rows) and algorithms (columns) employed in our quantum benchmarking study. A mark in the table
indicates that we ran the corresponding algorithm on the corresponding problem.

Although a variety of classical approaches are known for the Ising spin glass and independent set
problems, there is no clear consensus on a widely adopted set of practical classical heuristics, as is the
case for problems like community detection (see Appendix C). Thus we have selected Selby's Chimera
QUBO solver as our primary classical point of comparison for our problems. The sparse connectivity of
the Chimera graph in conjunction with the precision limits of the DW2 are obstacles to a D-Wave
implementation of our Ising-based community detection heuristic, which is described in Section 5.5.1;
however, as indicated in Table 1, we do implement this community detection heuristic on our QMC
simulator.

5.1.1 Quantum Monte Carlo simulator
Numerically simulating the operation of a quantum computer presents a host of challenges. The biggest
of these challenges may be seen directly by considering the space in which such a computer operates. A
quantum computer with N qubits will have 2" possible states. Unlike a classical computer, a truly
quantum system may occupy all of these simultaneously, meaning that the cost of keeping up with this
information in a direct simulation grows much too rapidly with system size to be practical. For some
classes of problem, such as linear chains of qubits, specialized techniques such as matrix product states
or density matrix renormalization group are able to directly solve large instances. Unfortunately, none of
these methods can be applied to a general topology, such as the Chimera graph. For a reasonably large
assembly of qubits, by far the most practical technique for these simulations is to use a stochastic
method. Stochastic methods like Monte Carlo sampling are attractive because once converged, the cost
of obtaining an answer with a given amount of error does not grow with the system size. For the
purposes of this study, more time will likely be spent in converging the simulation than collecting the
results, but we still expect the scaling of the cost to be moderate with system size, meaning that
simulations with large numbers of qubits should be possible.

We consider two main approaches to the stochastic simulation of qubits. The first approach exploits
Feynman's path integral formulation of quantum mechanics to map the quantum system onto an
equivalent problem in finite temperature polymer physics. This technique is rather robust, but as it is
naturally performed at finite temperature, this method invites significant challenges when studying
systems where low-lying excited states may be present, as is expected to be the case in the evolution of
an adiabatic quantum computer. The second approach is to stochastically project out the lowest energy
solution of the problem. This approach is often less computationally efficient than the path integral
formulation, but allows for a much more straightforward interpretation of results.
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Our QMC simulator is under active development and will benefit from further tuning; hence we limited
its use to our baseline Ising and community detection instances, for which we deemed its contribution
critical. We do not report the baseline Ising results here but offer the general observation that our QMC
simulation results are well correlated with D-Wave results for up to 288 nodes. For larger instances, our
simulator currently rarely finds optimal solutions. The performance of our simulator is not as critical for
our community-detection benchmarking, since it is part of a hybrid classical/Ising algorithm, described
in Section 5.5.1.

5.2 Chimera lsing spin glass instances
In this section we describe the random Chimera Ising spin glass instances that have been commonly
used in D-Wave benchmarking studies. We also explain our general D-Wave benchmarking
methodology here, which is used for our other problem sets as well.

The specific instances generated draw weights from { - 1, + 1} uniformly on the edges of the Chimera
graph. Hence, they can be natively represented on a D-Wave device. This avoids the embedding issue,
and the choice of weights sidesteps the precision issue.

We generated 100 random instances, where each instance corresponds to a Chimera graph consisting of
a k x k "gricr of eight-node cells, for k in the range [1,8]. For example, in this taxonomy the entire D-
Wave graph depicted in Figure 1 is an 8 x 8 grid of eight-node cells (ignoring faulty nodes), hence k = 8;
setting k = 7 would correspond to D-Wave's 128-qubit previous-generation "Rainier" chip.

This results in total node sizes of 8, 32, 72, 128, 200, 288, 392, and 512, allowing us to get a sense of
scaling on a D-Wave device. Of course our DW2 QA has a fixed-size Chimera graph (consisting of 509
out of 512 functional qubit nodes). We simulate Chimera graphs of varying size by selecting an
appropriate subgraph of the overall 509-Chimera graph. We ignore the three non-functioning nodes.

5.2.1 Methodology
We performed 1000 or 5000 anneal cycles for each of the 100 instances of each of the 8 possible sizes.
For our purposes, a gauge is simply a transformation of the Ising instance that does not alter the
landscape of attainable energy values, although the particular solutions corresponding to a specific
energy value may change. A gauge transformation results in a mathematically equivalent problem;
however, the particular numerical values of the transformed instance may render it easier to solve for a
D-Wave QA, due to coupler calibration issues in representing problems. In order to more fairly account
for calibration issues with couplers, we adopt two strategies: (i) for each instance we generate 20
random gauges, and (ii) when selecting one of our k x k grid Chimera subgraphs, we select its position"
within the overall 512-node Chimera graph randomly. Thus, we performed at least
1000 (D — Wave annealing runs) x 100 (instances) x 20 (gauges) = 2,000,000 runs for each of the eight
Chimera instance sizes considered. For a given instance, a trial is a single D-Wave annealing run with
a fixed gauge. In assessing performance, we calculate a mean over all gauges rather than selecting the
best one. The latter strategy could be used to obtain an optimistic best-case bound on performance;
however, such an assessment is unrealistic as it is difficult to compute or predict the optimal gauge for a
particular instance.

II More precisely we select a cell, c, of the Chimera graph randomly as the lower-left endpoint of our k x k grid Chimera
subgraph. We then take the k x k grid defined by the intersection of: (i) the k columns of cells including and to the right of
the cell c, and (ii) the k rows of cells including and above the cell c. Of course not all choices of c would leave enough room
to select a full k x k grid, and we only pick among the feasible choices.
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As with previous studies [11], [14], [15], we opted for the minimum DW2 annealing time of 2011s . The
issue with selecting a larger annealing time is that this may expend more time than necessary to solve
small or easy instances. For example, in most of our experiments, annealing for nits almost always
finds an optimal solution on Chimera instances with eight nodes. Thus 2Olts is likely too large and
imprecise an annealing time to obtain meaningful statistics on the performance of the DW2 on such
small instances. It may very well be that the annealer performs equally well on these instances when
annealing for, say, 10its, but we would be unable to detect this because of the 20its limit on minimum
annealing time.

Another technical detail is the implicit assumption that selecting a subgraph of the overall Chimera
graph (by effectively setting excluded couplers at a strength of 0) results in an easier instance for a D-
Wave QA. To be more precise, a D-Wave QA only accepts an input of a fixed size (e.g., 509 nodes in
the case of the DW2 at NASA Ames Research Center); in contrast, we are able to feed inputs of varying
size to algorithms running on classical (e.g., von Neumann) architectures. We seek to assess scaling,
hence we must find some way to simulate inputs of varying sizes with only a fixed-size D-Wave
Chimera graph at our disposal. A natural strategy is to set the strengths on the unused portion of the
Chimera graph to be 0; however, this is only a heuristic, as there is no guarantee that a D-Wave device
will run faster on such a "smaller' instance. We assume other studies have adopted this approach as
well. Fortunately, D-Wave experiments tend to support the above assumption in that the D-Wave
annealers do seem to have an easier time finding an optimal solution on smaller instances obtained in
this fashion. To be as fair as possible, we follow this same approach, as appropriate, when employing
the Selby solver and our QMC simulator.

5.2.2 D-Wave run-time estimation
We report comparable results to previous studies on the metrics used therein. However, we also obtain
the new result that a different, but perhaps more practically valid, metric leads to a marked improvement
in performance across our algorithms (Section 3.3.1). We propose a reexamination or broadening, at the
very least, of the metrics considered in future D-Wave benchmarking studies.

As discussed in Section 2, D-Wave QAs run for a pre-specified annealing time and produce a solution.
There is no guarantee on the quality of the solution produced, and there is no explicit notion of an
execution time necessary to produce an optimal or near-optimal solution. Thus we must estimate the
latter. A comrnon technique is to perform many annealing trials on a given instance and count how
many times the annealer "succeeds" according to some success criterion. We may take the fraction of
successful trials as a success probability and use the latter to derive an estimate for execution time. Two
natural questions arise: (i) what is a valid success criterion, and (ii) how do we estimate execution time
from a success probability?

The D-Wave benchmarking community has focused on finding an optimal solution as a success criterion,
and we also adopt this for most of our experiments. However, as demonstrated in Section 2.3.1,
selecting near-optimality as a success criterion can lead to a marked difference in results.

For the question of deriving a run-time estimate from success probabilities, there are two commonly
used candidates: (i) the number of annealing trials necessary in order to succeed at least once with 99%
probability, and (ii) the mean number of annealing trials necessary to first succeed. Once we have an
estimate on the number of annealing trials necessary for each of these criteria, we may multiply by our
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annealing time per trial of 201ts to obtain a numerical estimate on running tirne. More precisely, if P is
the observed probability of success for a particular instance, then

rog (1 - 0.99)1 
1  and

I log (1 - p) p

are the functions corresponding to (i) and (ii), respectively. These may be derived using elementary
probability theory; we refer to the reader to e.g., [14] for more details. Thus our D-Wave running time
estimates are,

20ps 
[log (1 - 0.99)1 20,us
  and  
log (1 - p)

We note that following the work of Boixo et al. [15], the D-Wave benchmarking cornmunity has
primarily focused on (i). We cannot overstress that although our plots below depict estimated running
tirnes; for the D-Wave system, these values are obtained in the indirect fashion frorn success counts as
described above. Although it is reasonable to expect that the asymptotic D-Wave run-time scaling
depicted in our plots approximates the true run-tirne scaling, drawing conclusions based on direct
comparisons between run-time values is a murkier prospect.

Once a run-time estimate is obtained for an instance, we take the mean run time over all instances of the
sarne size. One complication is that, for the hardest instances, one of our heuristics may fail in finding
an optimal solution and produce an infinite run-time estimate. We throw out such instances from our
data set; hence our results are only over instances for which every heuristic was able to discover an
optimal solution at least once. We prefer (ii) as a run-time estimate. One reason is that the function VP
is better intuitively understood and appears more transparent. A more precise and technical reason is
that this quantity is easily and directly observable. For a given instance, one could simply perform some
number of annealing trials and directly cornpute the number of trials before success is achieved.
Repetitions of this process would produce a mean run time to success. Contrast this with the roundabout
way this value is derived from success probabilities above. Although our D-Wave experiments continue
to use the latter method in order to maintain consistency with previous work, our run-time estimates for
classical algorithms use a variation of the more direct method described above. This is yet another
reason one should avoid drawing direct comparisons based on actual run-time values and rather appeal
to the asymptotic scaling of the values.

5.2.3 Results
Figure 16 summarizes the results of our first, baseline Ising problem set. Our D-Wave run-time
estimates are comparable to those previously reported for this class of instances [14], [15]. We plot D-
Wave run-time estimates based on both the metrics (i) and (ii) from the previous section. Although they
differ by an order of magnitude in value, they scale almost identically. We observe similar behavior
between the two in the problem sets to follow, as well. This is further justification that (ii) is a
reasonable metric.
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Figure 16 Comparison of estimated run-time for D-Wave with both Selbys heuristic (red plot) and exact QUBO solvers
(green plot). Instances are randomly generated Chimera Ising problems with -1 and +1 couplers and no linear term. The dashed
blue line estimates the run-time for the Ames D-Wave Two to find an optimal solution once with 99% probability, while the solid
blue line estimates the mean run-time for this D-Wave Two to first find an optimal solution. The left plot is over 20,000 annealing
trials for each of the, at most, 100 instances of each size, while the right is over 100,000 trials. The error bars represent standard
error over the, at most, 100 instances of each size.

Selby's classical QUBO solver operates in a number of modes. One of the modes (mode 0) not only
attempts to find an optimal solution, but also expends the effort to verify that its solution is indeed
optimal. As expected this takes considerably more time than heuristic approaches such as D-Wave's.
Another mode of Selby's solver (mode 1) performs a heuristic search of the solution space in hopes of
reaching an optimal solution. This is the more appropriate comparison with D-Wave. This mode is also
able to report a direct estimate of the mean time to find an optimal solution.

Several features of the plots are worth noting. The first is that one would ex ect the green plot

representing Selby's exact algorithm to asymptotically scale roughly as —c N, which would correspond
to a linear curve in the log-square-root plot above. This estimate is derived from a worst-case analysis
of Selby's algorithm. We do see roughly linear behavior for the corresponding plot above, and this
behavior is especially dominant on the three largest instances. Additional data obtained from larger D-
Wave annealers would allow us to better evaluate this hypothesis. Such exponential-like scaling is
typically indicative of an NP-hard problem; however, conclusions drawn on the theoretical worst-case
complexity of a problem based on randomly generated instances are not necessarily sound. As we will
see with our independent set problems, below, one can empirically observe exponential-like scaling for
problems that are known to be solvable in polynomial time and have efficient practical implementations.

The second feature of note is the dampening effect on left end of the D-Wave plots for the smaller
instances. This is very likely an artifact of 20tts being too large an annealing time for the three smallest
instance sizes, as discussed in Section 5.2.1. There may be a similar effect with the classical algorithms
as well, and, if we ignore the smallest instances, we do see nearly linear plots for both D-Wave and
Selby's heuristic mode. Finally, we note that a crossover occurs between the D-Wave mean time to
solution and the Selby heuristic mean time to solution between 288 and 392 nodes. Boixo et al. [15] and
Ronnow et al. [14] also report that their classical simulated annealing algorithms outperform D-Wave on
these instances. The scaling of the D-Wave seems to be on par with Selby's heuristic for the instance
sizes we considered. Whether this trend continues on future D-Wave machines remains to be seen.
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5.3 Independent set problems

5.3.1 Problem motivation and definition
An independent set in a graph is a set of nodes such that no two nodes in the set share an edge (see
Figure 17). The objective of the maximum independent set (MIS) problem is to find an independent set
of maximum size. We include this problem in our study for several reasons: (i) it is a fundamental NP-
hard combinatorial optimization problem that has been studied for over 40 years [31], (ii) it has
applications to complex network analysis, (iii) it has a fairly natural Ising representation requiring a
linear term (in contrast to the basic Ising problems above), and (iv) it turns out that the natural Ising
representation on a Chimera graph has weight ranges that are representable on the DW2 (for
mathematical details see Appendix E.2). Thus MIS helps us cover the gamut in terms of benchmarking
problems with linear terms as well as nontrivial, but D-Wave-representable, weights.

Figure 17 An independent set in a graph (image from [32]). The blue nodes form an independent set since there are no edges
between any two blue nodes. The black nodes do not forrn an independent set since some pairs of black nodes are connected by
edges.

One application of MIS in a complex network is to find a set of nodes that is likely to intersect many
different communities without containing too many nodes from any single community. This is because
we expect communities to contain many edges, while an independent set cannot contain any edges. A
more precise connection to complex network analysis is via the maximum clique problem. A clique in a
graph is a set of nodes for which there is an edge between every pair of nodes in the set. Another way of
thinking of a clique is that it contains every possible edge between its nodes. A clique is in some sense
the opposite of an independent set in that a clique contains every possible edge while an independent set
contains no edge. In fact, the two problems are equivalent in that one can be solved as an instance of the
other by taking the complementu of the input graph. In complex networks, cliques represent sets of
nodes that are tightly coupled and are of interest in a variety of applications.

5.3.2 Independent set results
We generate Ising instances encoding the MIS problem by assigning each edge a coupler value of 0 or 1
with equal probability. The linear term has to be set in a specific manner based on the coupler weights
in order for such an Ising instance to correspond to an MIS instance (see Appendix E.2). The range of

12 The complement of a graph is the graph obtained by deleting all existing edges and adding new edges between nodes that
were not previously connected by an edge.
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the required linear term components is [ - 2, + 4] for instances on the Chimera graph. These values may
be scaled to lie within the DW2's coupler range and precision (Section 2). Another detail worth noting
here is that the edges that are assigned a coupler value of 0 are effectively eliminated from the instance,
which is not as obvious as it was with our baseline Ising instances, since a linear term is present in the
MIS case. For benchmarking purposes, this is useful as it allows us to represent smaller instances within
our full 509-node DW2 Chimera graph.
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Figure 18 Comparison of estimated run-time for D-Wave with both Selbys heuristic (red plot) and exact QUBO solvers
(green plot). Instances correspond to randomly generated maximum independent set instances on the Chimera graph, where
couplers are assigned a value of 0 or 1 with equal probability and the linear term values are derived from the coupler values
(Appendix E.2). The left plot is over 20,000 annealing trials for each of the, at most, 100 instances of each size, while the right is
over 100,000 trials. The error bars represent standard error over the, at most, 100 instances of each size.

The performance of Selby's heuristic mode is comparable to its performance on the baseline Ising
instances from the previous section; however, the performance of Selby's exact mode is drastically
improved and appears to scale better than the heuristic mode, which is surprising. We hypothesize an
explanation for this below. D-Wave performs poorly on these instances both in terms of scaling and run
times. For the latter, a crossover with Selby's heuristic already occurs below 128 nodes. D-Wave's
scaling behavior is both more varied and extreme than on the baseline Ising instances. These are the
hardest instances for D-Wave among those we considered.

The D-Wave performance on our independent set instances is particularly striking considering this
problem is actually solvable in polynomial time on the Chimera graph. This does not contradict the
surprisingly poor performance of D-Wave, since polynomial-time solvability only implies that there is
some algorithm that solves the problem in polynomial time; the present results indicate that D-Wave is
almost certainly not one of them. Here we have an illustration of one of the prime dangers of empirical
benchmarking of algorithms — our perspective is limited to only the algorithms and instances that we
try. This should be kept in mind when attempting to extrapolate results and draw conclusions.

In fact an optimal independent set can be found in polynomial time for any bipartite13 graph. Generally,
a theoretical result like this may not say anything about the practical performance of algorithms that only

1 3 A bipartite graph is one whose vertices may be colored red and blue such that all the edges of the graph join a red vertex to
a blue vertex. Although it may not be apparent from a cursory visual inspection, Chimera graphs are bipartite.
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theoretically run in polynomial time. For this particular problem, though, algorithms that work
reasonably well in practice are also known. This may offer an explanation of why the exact Selby
algorithm scales better than the heuristic Selby algorithm. We might expect that the former would have
to do more work than the latter, since it has to not only generate a good solution (optimal in this case),
but also prove that no better solution exists. The key is that an exact algorithm knows from the outset it
is searching for an optimal solution. If it is able to somehow cleverly eliminate large portions of the
solution space as being suboptimal without exhaustively searching them, then it may perform quite well.
One could even say that this is precisely the goal of an exact algorithm. Heuristics, on the other hand,
are generally designed to search only select portions of the solution space, and so they must decide when
to stop searching. If a heuristic searches for too long, a smarter exact algorithm may outperform it.
Exact algorithms tend to have higher overhead, and we suspect that if we had benchmarked an exact
bipartite independent set algorithm, it would have performed similarly to Selby's exact algorithm for
these instances.

5.3.3 Affinity independent sets
We also consider a variant of the maximum independent set problem that we call the maximum affinity
independent set (MAIS) problem. In this version of the problem, the input graph contains two types of
edges: plus edges represent pairs of nodes that we think of as having an affinity towards one another,
while minus edges represent pairs of nodes that are dissimilar or incompatible with one another. This
type of graph is called a signed graph in the social network literature. Our goal in the MAIS problem is
to find a set of nodes that is large and contains many plus edges but few minus edges. A precise
mathematical formulation is given in Appendix E.2. The relationship to MIS is that if our input graph
contains only minus edges, then MAIS is equivalent to MIS.

5.3.4 Affinity independent set results
Our MAIS Ising instances are generated analogously to the MIS Ising instances above; however, we
select each coupler value to be either -1 or +1 with equal probability. This allows us to represent both
plus and minus edges. We may think of affinity independent set instances as versions of independent set
where we set couplers to be -1 or +1 rather than 0 or 1. The linear terms differ between the two
problems, but they are derived in a consistent manner from the coupler values for both problems.
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Our results for the MAIS problem appear in Figure 19, where we have also included the corresponding
results for MIS for comparison. The MAIS results complement the MIS results. Although the
performance of all three algorithms is better on the affinity independent set instances, the improvement
for D-Wave is incredible at up to three orders of magnitude on the larger instances. The performance
improvement in the other algorithms is dwarfed in comparison, especially for exact Selby.

These results are quite surprising and relevant for several reasons. The foremost is that because D-Wave
is extremely sensitive to the difference in the MIS and MAIS problems, while the other algorithms are
not, we may have identified a variable that tells us something about the particular strengths and
weaknesses of D-Wave's technology. For example, it may turn out that although they are within D-
Wave's range and precision, the values used in our MIS instances are an especially bad case for D-Wave
for some reason that is not yet understood. Knowing something like this could be tremendously useful.
On the other hand, there may be something special about the structure of our MAIS instances that speaks
to some yet unknown strength that D-Wave possesses. If we can fathom such a "hidden" strength, then
we may be able to apply it to other problems.

Clearly, this phenomenon warrants further investigation, which we plan to undertake. We should also
note that the outcome of this could be more mundane than either of the options suggested above. It may
be that, as with the McGeoch and Wang instances, we simply are not using the best classical algorithms
or configuring them properly (Section 3.3.2, particularly Figure 4). McGeoch and Wang [17] observed
a D-Wave speedup when they used CPLEX directly as a QUBO solver instead of as an integer-linear-
program solver configured with an appropriate integer-linear program. One counterpoint to the
suggestion that we may have a similar issue with our MAIS instances is that, as far as we know, no one
has demonstrated that CPLEX is effective at solving 512-node Chimera QUBO problems as an out-of-
the-box QUBO solver, while Selby's algorithms have performed respectably on such instances across
our study.
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Unlike the bipartite independent set problem, it is not clear what kind of scaling we should expect to see
for bipartite affinity independent set. We included the affinity independent set problem in our study as a
variation of the independent set problem; we are unaware of its exact theoretical complexity. It is also
unclear how to apply the techniques that give a polynomial time algorithm for the bipartite independent
set problem to the bipartite affinity independent set problem, nor is it obvious how to show the problem
is NP-hard. If we were to casually glance at Figure 19 without any foreknowledge about D-Wave
benchmarking results, we would hazard that the MAIS problem is probably not NP-Hard on bipartite
graphs. Of course when making such predictions based on limited and perhaps irrelevant data, one must
tread carefully, as we have been taking every opportunity to emphasize. Still, it is useful having
examples of problems that empirically appear to be easy, but whose theoretical complexity is unknown.
If nothing else, we have a clue as to how we might attack the unknown; it may be that understanding
why these instances are empirically easy allows us to devise a true polynomial-time algorithm. In our
experience such problems are rare gems, and it is our pleasure to make the acquaintance of one more
such problem.

5.4 Planted-solution instances

5.4.1 Problem motivation and definition
As previously discussed, although we have given both empirical and theoretical evidence that finding an
optimal solution should not always be one's objective (Section 3.3.1), we still seek to compare
performance relative to an optimal solution. Doing so gives us more meaningful and definitive
benchmarking results. Fortunately, we were able to use classical algorithms to verify the optimal
solution (value) for all of the D-Wave benchmarking instances we considered. In fact, for each of our
instances, we were able to find the optimal solution within 30 minutes; the vast majority of the instances
took less than one minute to solve. Current incarnations of D-Wave's technology have approximately
512 qubits; however, as D-Wave's QAs grow in size and, presumably, problem-solving capacity, it will
be increasingly difficult for one to generate and verify optimal solutions by other means. Although this
poses a difficult regime for benchmarking, it appears inevitable and is interesting for assessing the near-
term potential of D-Wave's annealing technology. How does one perform benchmarks that require
knowing an optimal solution for problems where finding one is extremely difficult?

One elegant means of circumventing the inability to find an optimal solution is to plant an optimal
solution. The idea is that one first fixes a solution, x and then fabricates an instance where x is in fact an
optimal solution for the instance. This endeavor can be as tricky as it may sound: how does one
generate an instance around x; how does one guarantee that x is indeed optimal for the generated
instance, and if one succeeds, how does one ensure that the resulting instance is actually rich and non-
trivial? For these reasons, planting strategies are usually highly problem specific. Hen et al. [27]
suggested a planting strategy for Ising instances on the Chimera graph14. They performed experiments
indicating that their generated instances may be tweaked so that they vary in difficulty for a DW2. For
easier instances, they give evidence that D-Wave outperforms classical approaches such as simulated
annealing and the Selby heuristic that we have used in this study. We find their results compelling and
reproduce some of their experiments here. King [28] has obtained comparable results even when
considering such instances with range-limited coupler weights. One new discovery on our part is that
the optimal solution value (but not necessarily the planted solution itself) can be computed in
polynomial time [33]. We are in the process of exploring further ramifications of this result and are
preparing a technical article describing it.

14 Their solution-planting strategy applies to Ising instances on general graphs as well.
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5.4.2 Results
Hen and collaborators' planted-solution instances are defined on a graph that is a collection of cycles15
within the Chimera graph; refer to [27] for more details. We define the cycle density, C, as the ratio of
the number of cycles in the collection to the number of nodes in the graph. Hen and collaborators found
that C plays a critical role in determining the difficulty of solving their instances, particularly for their
DW2. They discovered that c = 0.2 appears to be the hardest case. We performed experiments with
c = 0.2 and c = 0.5; the latter is interesting because Hen and collaborators' results indicate that D-Wave
outperforms other algorithms at this cycle density. They compare D-Wave against Selby's heuristic
solver, but they do not use Selby's exact mode.
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Figure 20 Comparison of estimated run-time for D-Wave with Selbys heuristic (red plot) and exact QUBO solvers (green
plot). Instances contain a planted solution with a cycle density parameter of 0.2. The left plot is over 20,000 annealing trials for
each of the, at most, 100 instances of each size, while the right is over 100,000 trials. The error bars represent standard error over
the, at most, 100 instances of each size.

Our results for C = 0.2 in Figure 20 are comparable to Hen and collaborators'. One difference is that
their results do not show a crossover between D-Wave and heuristic Selby. We obtained slightly larger
mean solution times for D-Wave at 392 and 512 qubits. There are many possible explanations for the
discrepancy. The most likely is that, although our methodologies are similar, they opted to use the
annealing time that resulted in the best performance for each instance. Although this happened to
correspond to our annealing time of Hits most of the time, this was not always the case. Even though
they do not observe a crossover in their data, their data indicates that a crossover is imminent upon
extrapolation. The other major difference is that they used the DW2 machine at the Information Science
Institute at the University of Southern California. Given that our results are generally consistent, we
consider our results a verification of theirs.

15 A cycle in a graph is a path that starts and ends at the same vertex '0; edges or vertices are not allowed to repeat, except V.
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At a cycle density value of C = 0.5, our results are virtually identical to Hen and collaborators'. D-Wave
appears to perform an order of magnitude better than the Selby heuristic, and it is not clear whether a
crossover might occur. Of course our focus is on scaling, and the plots show nearly identical scaling.
The more interesting feature of the results is the scaling of Selby's exact algorithm. It appears to be the

only one that may be scaling better than —cVN in the long run, though we would need more data to
validate this hypothesis. One point possibly supporting such behavior is our aforementioned
polynomial-time algorithm to obtain the optimal value of these planted-solution instances.

In the next section we present a different flavor of quantum approach that we are not currently able to
effectively implement on a D-Wave system. We frame our results for this approach using our Quantum
Monte Carlo simulator.

5.5 Community detection
Most types of real-world complex networks contain groups of related or well-connected entities, that
one may call a community. For example, a community might represent users who tweet about similar
topics in a Twitter network, while in biological networks communities might represent groups of
proteins that interact for some specific function. Community detection is the problem of identifying
interesting or relevant communities in a network. Appendix C offers a more detailed introduction to
community detection, and in Appendix D we present a thorough benchmarking study of common
classical community-detection heuristics. Our main purpose here is to explain and present our QMC
simulation results and compare them with our classical benchmarking results. There are a number of
significant challenges to obtaining a fair comparison. The first is that our "quantum" algorithm is
actually a hybrid approach that pairs a classical Ising-based heuristic with the QMC simulator as an
Ising-solving facility. The second is that the QMC simulator requires a fair amount of tuning and
performance is highly sensitive to a number of parameters. Although we have done some preliminary
experiments to determine reasonable parameter settings, we suspect further research could have a
significant impact on its performance and results.
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5.5.1 Hybrid community detection algorithm
Although the notion of a community in a complex network is often nebulously defined, researchers have
developed several measures that seek to capture the notion of a community. Modularity was one of the
first such measures considered, and it is the measure used by well-known classical heuristics such as
Louvain's algorithm; a precise mathematical formulation of modularity appears in Appendix C.2.
Although several issues in using modularity for community detection have been identified, modularity
maximization is readily formulated as an Ising problem. For this reason, in addition to those above, we
use modularity-based community detection algorithms in our work. Our goal is not to advance the state
of the art of community detection; rather, we seek to bring rich and real-world domains to bear on
benchmarking quantum annealing.

Our ultimate goal with community detection is to partition a network into many communities so as to
maximize the modularity measure. A direct Ising formulation for this problem requires significant
overhead in terms of variables, which correspond to qubits for a quantum solver. One way of
circumventing this issue is to use a quantum annealer to solve community detection instances where we
seek to bipartition the graph into two communities. Of course our ultimate goal is to partition into
possibly many more communities, and we must resolve this discrepancy. We do so with a hybrid
algorithm that has two components: (i) a purely classical component that uses recursive bipartioning16 to
partition a graph into many communities using, (ii) a black-box Ising solver to actually perform each
bipartitioning so as to maximize modularity. We note that any Ising solver, quantum or classical,
suffices for the black box in (ii).

We may view our hybrid approach as follows. The classical bipartioning heuristic, (i) from above, has
at its disposal a black box, (ii) from above, that can partition a graph into two communities in a way that
approximately maximizes modularity, and it seeks to use this black-box facility to partition the graph
into many communities to maximize modularity. The heuristic first starts with the whole graph and
evaluates the change in modularity attained by splitting the graph into two parts; if such a split would
increase modularity, it is performed. Now the same algorithm is applied on each resulting piece; namely,
if a bipartioning would increase modularity, it is executed. The algorithm continues recursively
bipartitioning in this fashion until an increase in modularity is no longer possible. Such a greedy
approach is common for solving graph-partitioning problems, but can fail to find an optimal partitioning.

The overall quality of the above approach will depend on two main factors: (i) is recursive bipartitioning
the right approach in the first place, and (ii) how well does our Ising black-box solve each bipartitioning
sub-problem. Even with an exact Ising solver as our black box, recursive bipartitioning could perform
poorly as an overall strategy. On the other hand, it could be that recursive bipartioning could perform
poorly only because we are using an Ising solver that is not effectively finding near-optimal solutions to
the sub-problems handed to it. Moreover, these factors will likely vary from instance to instance. Thus
we must be careful in doling out blame if we witness poor overall performance from the hybrid
algorithm.

5.5.2 Execution time results
The specifics of using an Ising solver to find a modularity maximizing bipartition are given in Appendix
E.1. A point worth mentioning here is that even if the graph underlying a particular bipartioning sub-
problem is sparse, the resulting Ising instance is dense and essentially requires edges between all pairs of
nodes. This precludes an effective D-Wave implementation, as we would have to rely on embedding a

16 Recursive bipartitioning is an old and well-known approach that splits a graph into two parts and then recurses on each of
the resulting parts until some stopping criterion is met, which is commonly based on the size or number of parts obtained.
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fully connected graph on a D-Wave system, affording us approximately 33 nodes. Even if we opted to
do this, both the bipartioning Ising instances and the embedding itself would require coupler weights
well beyond the precision the current D-Wave systems offer. Admittedly, this is an artifact of the way
in which the problem is formulated as an Ising instance. Other formulations are possible; however, the
current formulation is direct and natural. Other formulations are likely to incur overhead as well, but for
different reasons. Thus we opted not to pursue a D-Wave implementation and stick to our Quantum
Monte Carlo simulator, which we refer to as "QSim" below.
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Figure 22 Comprehensive execution effort results for QSim (top) and for the classical heuristics on BGP instances (left)
and Twitter instances (right). The reported values are the slope of the best-fit line for each algorithm on a log-log plot.

A comparison of the execution times for our simulation and the classical community detection heuristics
(from Appendix D, Figure 39) is presented in Figure 22. In order to isolate the quantum system being
simulated from the classical simulation overhead, we report the number of Monte Carlo steps as a proxy
for run time. This is a reasonable choice since our primary concern is scaling rather than absolute run
time; previous studies have adopted this convention as well [14], [15].

The other factor to note is that each time our simulator is called to solve an Ising bipartitioning sub-
problem, we control the number of Monte Carlo steps for which it is executed. The number of steps
displayed in the plot above is the total number of Monte Carlo steps during the entire execution of the
hybrid algorithm. We experimented with the Monte Carlo step parameter in order to obtain total running
times comparable to the classical algorithms. The numbers in parentheses next to the instance family
name in the legend of the top plot are parameters from which we may infer the number of Monte Carlo

59



steps allowed for each Ising bipartitioning sub-problem executed during the overall hybrid algorithm.
The precise correspondence is described by example below.

"Twitter (0," in the top plot, indicates running each Ising bipartitioning sub-problem for —nc iterations,
where n is the number of nodes in the subgraph being bipartitioned. Thus n will vary during the
execution of the algorithm. For the first subproblem that bipartitions the entire graph, we would have
n = N, where the latter is the number of nodes in the entire graph. For later subproblems, n could
represent just a handful of nodes. As described in Section D.1.2, the slope of the lines in the log-log plot
above corresponds to the exponent of the overall running time, as derived from a fit of our data. As an
example, from the plot for "Twitter (1.5)," we see that when we afforded each Ising sub-problem —n1.5
Monte Carlo steps on our Twitter instances, then our overall QSim running time was —N1.6. We infer
from our results that letting QSim run for —n1.15 steps on each Ising subproblem yields overall run times
comparable to Louvain.

5.5.3 Modularity results
Having determined how long we should run QSim, we may examine the quality of solutions produced,
which we measure using modularity as with our classical community detection study in Appendix D.
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The modularity of the solutions obtained by our algorithms appears in Figure 23. "QSim" indicates a
run time of --n for Ising subproblems, while "QSim + Loe entails first executing QSim, at the
aforementioned run time, and then executing the Louvain heuristic seeded with the partition discovered
by the former. Louvain is fast, especially relative to the QSim; hence this type of post-processing
approach is an inexpensive way to get a potential improvement in solution quality.

For all three social network families we see that the QSim variants are competitive with, if not better
than, the others up to approximately 1000 nodes. Yet in all three cases, we see a sharp drop in QSim
quality beyond this threshold. This is curious behavior, and the cause is not clear. One possibility is
that the graphs are not sufficiently complex until this point. This hypothesis could be tested by further
varying the Monte Carlo steps allotted to the local bipartitioning sub-problems, as discussed above. We
would expect a QSim run with more allotted steps to perform better than ones with fewer allotted steps.
Indeed, for the Twitter instances we were able to collect data allotting —n1.15 and --n1.5 steps to the Ising
sub-problems; however, we exhausted our data for the -.111.5 runs soon after the divergence occurs in the
above Twitter plot. These runs are time-consuming, with some of them continuing to run for over a
week with no apparent end in sight.

Another explanation is simply that our QSim algorithm requires a more favorable setting of parameters
or further tuning. We witnessed for our baseline Ising results in Section 5.2 that the current version
QSim was not able to produce meaningful results for our 392- and 512-node Chimera Ising instances.
Our modularity results could be another manifestation of this phenomenon. If this is the case, then there
is hope that future QSim versions or quantum annealers may prove competitive with Louvain on the
types of instances we consider.

Our final explanation hinges on the hybrid QSim approach itself. Solving Ising sub-problems to
optimality is powerful but expensive. The hope driving the hybrid QSim approach is that it converges to
a high-modularity partition of communities quickly without executing too many Ising-based
bipartitioning sub-problems along the way. Of course, by setting the number of Monte Carlo steps
allotted to these sub-problems, we expect a tradeoff between execution time and the quality of the
bipartitioning found by the simulator. Balancing these quantities is key, and a deeper exploration
remains to be done.

In contrast, the Louvain heuristic performs basic moves that are simple and inexpensive in that a single
node is potentially moved to a community in which one of its neighbors lives (see Appendix C.2 for
details). Louvain is more of a "bottom-up" approach that builds larger communities from smaller ones,
whereas QSim splits large communities into smaller ones "top-down." Combining these ideas could
lead to improvements in QSim, as well as new approaches to community detection that are competitive
with Louvain but rely on solving Ising-based sub-problems. For instance, our QSim + Louvain
approach uses Louvain as a kind of black-box post-processing step at the end. What if we were to use
simple Louvain-like steps during the execution of the algorithm? We intend to explore these types of
questions, as well as alternate Ising formulations for modularity-based bipartitioning that may be
implemented on larger near-term D-Wave devices.

The aforementioned quality drop notwithstanding, we consider the above results encouraging in that
Ising-based approaches amenable to quantum implementation may be able to compete with leading-edge
classical heuristics.
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6 Discussion and concluding thoughts

This section is framed in terms of high-level questions pertaining to D-Wave systems. Although this
section may be treated independently of its predecessors, our discussions draw upon and refer to the
body of work presented in this document.

6.1 Can D-Wave systems address real-world applications?
Although we have developed infrastructure to allow D-Wave systems to address real-world complex-
network analysis problems, we feel that the current generation is not up to the task of handling real-
world data. Recent investigations attempt to address real-world applications [4], [11], [34], [35], though
in general we feel the precision and connectivity limitations are too great for meaningful benchmarks.

6.2 How does one assess the growth of D-Wave systems?
Computing is pervasive in modern culture, and jargon pertaining to the anatomy of a conventional
computer, such as "CPU" and "RAM," is now mainstream. We, as a computing-savvy culture, also
have a basic grasp of the resources underlying traditional computation, such as processing time and
memory, at least at a high enough level to guide us when shopping for a new computer. We understand
that processing speed is currently measured in gigahertz and that memory is currently measured in
gigabytes. We also understand that computers have hierarchies of at least two types of memory17, with
one type being an order or two of magnitude larger (but slower) than the other. Finally, we are aware
that modern CPUs are actually composed of several cores that are essentially independent processing
units that tend to share the same memory. Perhaps to our annoyance as upgrade-averse consumers, we
have observed that the capacity for these resources has been growing at a staggering pace.

How do we compare the growth of the above classical resources with the growth of quantum resources?
If a conventional computer's CPU is upgraded from 2Ghz to 4Ghz, with all other resources remaining
equal, this means that over a fixed interval of time, the computer will perform twice as many basic
operations as it could before. This does not directly imply that an arbitrary algorithm will run twice as
fast, since other resources may pose a bottleneck; for example, a memory-intensive big-data algorithm
may be constrained more by memory access times than processing time. In contrast, what does it mean
if a D-Wave QA is upgraded from 128 qubits to 512 qubits? Are there other resources that quantum
annealing explicitly or implicitly leverages?

The qubits available to a quantum system allow it to represent a state, which may be a superposition.
We may perform physical operations, governed by the laws of quantum mechanics, that allow us to
transform one state into another. In this way we arrive at quantum computation. Having access to a
greater number of qubits allows us to represent a larger state space and, consequently, larger problem
instances. Thus qubits correspond to memory rather than processing speed; qubits are a limited and
precious resource, and current quantum systems may be considered memory constrained. If qubits
correspond to memory, then what is a quantum analog for processing speed? The speed at which a
quantum system solves problems is dictated by its architecture and implementation (see Section 1 and
Appendix A).

17 There is generally a hierarchy of memory, with small amounts of cache memory offering the fastest access times. One
could argue that at the other end of the hierarchy lies the collective memory of the Internet, with relatively glacial access
times that require retrieving information over great distances. We will use memory to refer to cache and RAM, while storage
will refer to slower archival systems such as hard drives.
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6.2.1 Processing speed
For adiabatic quantum computing and quantum annealing (see Section 1.2 and Section 1.3), the
"processine speed is dictated by the particular adiabatic evolution and speed implemented by the
system. D-Wave systems do allow some degree of user-level control over the later with the annealing
time. However, there is a delicate balance between annealing time and expected solution quality, and
the optimal annealing time for a problem is not clear a priori and may lie somewhere in between the
minimum and maximum allowable annealing times. Empirically, the D-Wave Two's minimum
annealing time of 20Its appears to perform best for the problems and instances the community has
benchmarked [11], [14], [15]. Another complication is that empirical evidence suggests that we must
perform upwards of thousands of annealing runs in order to obtain near-optimal solutions with a
reasonable success rate. The number of runs necessary is not clear a priori either.

Zeroing in on a concrete and generic analog for classical processing performance is difficult; however,
we may circumvent this task by empirically assessing whether D-Wave quantum annealing "processing
powee is growing with qubit count. D-Wave qubit capacity has enjoyed exponential growth (Figure
27). Are D-Wave systems becoming faster as they get larger? Although the fundamental quantum
annealing architecture remains the same among D-Wave's systems, one might expect engineering
improvements to manifest themselves as speedup. To the best of our knowledge, such an analysis has
not been previously published. We obtain a rough estimate based on comparing a current-generation D-
Wave Two with a previous-generation D-Wave One system, in Figure 24. We compare the D-Wave
One results published in the seminal work of Boixo et al. [15] with the corresponding results appearing
in the follow-up D-Wave Two work [14] on the largest instance size supported on the former. Since this
particular instance size of approximately 100 qubits was not directly used in the D-Wave Two study, we
are comparing observed D-Wave One results with interpolated D-Wave Two results. With this said, the
comparison indicates that although the D-Wave Two is likely to be about an order of magnitude faster
on the hardest 1% of instances, the D-Wave One actually appears faster on the remaining instances. This
may be due to the D-Wave One supporting a smaller minimum annealing time of 5Ps rather than 2011s.
A more conclusive study would incorporate data from previous generations as well, which only D-Wave
is likely to possess. For our purposes, this crude comparison is sufficient to suggest that D-Wave
systems may not be getting faster as they grow larger. It could be the case that inherent challenges of
assembling larger D-Wave systems shadow engineering improvements, or it may be that a more
sophisticated study is required in order to bring to light improvements in the current D-Wave systems.
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functional qubits. The minimum annealing times of 5 its and 20i1s were used for the D-Wave One and D-Wave Two, respectively.

6.3 How do future D-Wave and classical technologies compare?
If both D-Wave and conventional classical computing technologies continue at their current rate of
growth, do we expect D-Wave to offer a computational resource advantage at some point? Although
such questions are foremost in the minds of those with an interest in D-Wave's devices, providing a
satisfactory, fair, and complete answer is tricky, if not impossible. For one, extrapolating technological
growth is ultimately just speculation. The known limits to computation are both broad and deep (Figure
25). Experts have been predicting the end of the golden age of exponential growth in conventional
computing, characterized by principles such as Moore's Law and Dennard Scaling18. Of course other
experts have also managed to creatively and deftly circumvent computing bottlenecks in the form of
new paradigms such as massively parallel and cloud computing. Yet new paradigms can demand
drastically new algorithms, and a true continued exponential growth in raw problem-solving power
draws upon a delicate dance between hardware, architecture, software, and algorithmic insights.

18 Gordon Moore, co-founder of Intel, observed in 1965 that the transistor count in integrated circuits doubled approximately
every two years. This became known as Moore's Law; it still holds today though many predict a near-term end. Dennard
Scaling postulates that transistor power consumption is proportional to area. Thus Moore's Law along with Dennard Scaling
predicts exponential growth in performance per watt. Unfortunately, Dennard Scaling appears to have ended (see Figure 26).
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With that said, we may still, perhaps naïvely, extrapolate conventional computing and D-Wave
technological growth patterns, along with our experimental results, and derive a rough sense of whether
a D-Wave system might offer an eventual computational resource advantage on some class of problem
or instances. Our goal is to evaluate whether some near-term crossover favoring D-Wave is likely to
occur. Although we try to be as precise and accurate as possible, there are many unknowns, and when
we must, we generally resolve unknowns in favor of D-Wave. For example, Dennard Scaling appears to
have ended (Figure 26); for our purposes, we favor D-Wave and indeed assume that this is the case and
that conventional classical computing has plateaued. Thus in looking for a crossover when extrapolating
and adjusting our empirical results, we assume no increase in classical algorithmic performance. We
observed in the previous section that although D-Wave system qubit capacity has enjoyed an analog of
Moore's Law (Figure 27), newer and larger D-Wave systems do not appear solve problems any faster
than older systems. Thus we assume no increase in D-Wave's raw algorithmic performance either.
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In a regime expecting no performance improvement in future classical and D-Wave devices, we may
simply extrapolate our plots from Section 5 without additional adjustment. For the majority of our
benchmark instances, we already observe a crossover favoring Selby's classical Ising heuristic. The
exceptions are the affinity-independent-set instances (Section 5.3.4) and some of the planted-solution
instances (when the cycle density is 0.5; see Section 5.4.2). However, as mentioned earlier, we suspect
that these instances are solvable in polynomial time by efficient algorithms and that we are not currently
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comparing against the best-available classical options [33]. Yet it is not at all clear to us if we may be
failing to predict a D-Wave speedup because of underestimating D-Wave system performance

6.3.1 Does parallel computing offer an advantage?
Ronnow et al. [14] suggest that a more accurate assessment of D-Wave system performance ought to
take into account that executing instances smaller than system capacity does not fully leverage all the
system's resources. In other words, given a D-Wave machine with a total capacity of Al qubits (e.g.,
M= 512 for an ideal D-Wave Two), we may actually execute K = MN] independent instances of size N
in parallel on such a D-Wave machine. Ronnow and collaborators thus propose that when assessing a
potential D-Wave quantum speedup, D-Wave system performance ought to be scaled accordingly.

We see two flaws in this suggestion. Benchmarking instances of varying sizes on a fixed-size D-Wave
system is meant to give us an estimate of how D-Wave performance scales as system size increases. At
any given point in time, we assume there is some largest D-Wave system, with machine size M, at our
disposal. We are most interested in evaluating this D-Wave system's performance on the largest viable
instances, of size M, rather than smaller instances of size N« M. An opposing viewpoint is that we have
access to some arbitrarily large D-Wave system on which we are interested in executing relatively small
instances. As qubit quantity is likely to be a bottleneck well into the future, the latter viewpoint is
unrealistic in that instances that are small compared to M are generally not representative of interesting,
real-world-scale problems. The other, more critical issue is that to truly take advantage of this factor
K in a parallel speedup, one needs to be able to efficiently load all K instances of size N onto a D-Wave
system in some sort of parallel fashion, otherwise one might take —114 steps just to load all the instances.
When N« M, the loading time might dwarf a potential parallel speedup. More to the point, the
assumption of solving many independent instances is precisely the type "embarrassingly parallel" task
that is extremely well suited to current massively parallel classical systems. Thus, if we assume D-
Wave systems are able to take advantage of this scenario, it is fair to assume classical systems are able
to as well.

6.4 What other resources are relevant to D-Wave computation?
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Figure 28 Projected physical vs. logical qubit capacity for D-Wave systems. This assumes physical qubit capacity continues to
grow at the rate suggested in Figure 27.
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Although system capacity in terms of total number of qubits is the key D-Wave resource we consider,
this does not take into account the significant limitations imposed by D-Wave's restricted qubit
connectivity and limited coupler precision (see Section 4.3.1). To factor this in, we consider the
difference between logical qubits, corresponding to problem-domain variables such as vertices in a
graph, and physical or hardware qubits actually present in a D-Wave system. This distinction is
illustrated in Figure 2. If we rely on minor embeddings (defined in Section 4.3.1) to represent logical
qubits using physical qubits, then it could take up to —N2 physical qubits to represent N logical qubits.
Assuming this worst case, Figure 28 depicts projected D-Wave physical and logical qubit capacities. If
the current rate of D-Wave system growth were sustained, we would expect approximately 10,000
physical qubits by 2020; however, this corresponds to only 100 logical qubits and ignores the issue of
coupler precision, which may require additional qubits to circumvent. This drives home the point we
have been reiterating: the most severe bottleneck in effectively leveraging a D-Wave system is efficiently
representing real-world and interesting problems on a Chimera graph. For benchmarking purposes we
have been successful in circumventing these limitations to some extent (e.g., our real-world-like
Chimera-minor social networks from Section 4.3.2); however, it is unclear how the situation will unfold
for solving real-world problems on future D-Wave devices.

Although minor embeddings are natural, they are perhaps not the best means of expressing problem-
domain instances on a Chimera graph. Is there some other approach that would allow one to use fewer
physical qubits? Unfortunately, the worst-case requirement of —N2 physical qubits for N logical qubits is
likely an artifact of the limited connectivity of the Chimera graph itself, rather than minor embeddings.
We base this claim on what is known in theoretical computer science as the Exponential Time
Hypothesis (ETH) [38], [39]. The ETH roughly postulates that there are some fundamental problems for
which the best exact classical algorithm, one that always finds an optimal solution, takes no less than
-2N time on an instance of size N. One such problem is the maximum cut problem on arbitrary graphs,
which is equivalent to the Ising problem on arbitrary graphs (as opposed to Chimera graphs). The Ising

problem on an N-node Chimera graph can be solved in time -2'/N, due to the inherent structure of the
Chimera graph. This is relevant because, if one could represent an arbitrary N-node Ising instance as an
Al-node Chimera instance, where Al << N2, then one would be able to solve the original instance in time

2
approximately 2' \ IM « 2 VN = 2 N , violating the ETH. Although no proof of the ETH is currently known, it
is widely believed to be true. Thus, in the worst case, we are unlikely to do significantly better than the
scenario depicted in Figure 28, but this does not preclude improvements for specific classes of problems
to which the ETH does not apply.

6.5 When will D-Wave be able to address more challenging problems?
For the majority of D-Wave Two benchmark instances considered, there is a known exact classical
algorithm that is able to find and verify the optimal solution in a reasonable amount of time. For our
work this is true of Selby's exact algorithm, which typically took under an hour on even the hardest 512-
node instances. Being able to find an optimal solution for an instance is critical for benchmarking,
although there are alternatives such as planted solutions (Section 5.4.1). On the other hand, if we can
find an optimal solution classically, what is the point of using a D-Wave system? From a different
angle: if D-Wave systems continue to grow, at what point will we no longer be able to find an optimal
solution efficiently with a classical algorithm?
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Figure 29 provides a projection of the run time of Selby's exact Ising algorithm on the baseline Chimera
Ising instances from Figure 16 in Section 5.2. In our results, the algorithm took a mean time of —23
minutes for 512-node Chimera Ising instances. At 1152 nodes, which is the approximate size of the next
generation D-Wave system, we expect a run time of —54 hours. We expect —1321 hours at 1568 qubits,
and a whopping —31,873 hours or —3.63 years for a 2048-node Chimera instance. From Figure 28, at the
current rate of growth, we would expect a 2048-qubit D-Wave system in 2016. In a couple of years we
could be in a situation where finding optimal solutions to our staple Chimera Ising benchmark instances
is intractable using the current classical approaches. It may be that there are other exact classical
approaches that perform significantly better, or that these instances are simply hard for all exact classical
algorithms. It will be interesting to see how such a 2048-qubit D-Wave system fares against classical
heuristics in addition to exact classical algorithms. We remind the reader that size alone does not dictate
the complexity of an instance, and that there may be other problems with much smaller instances that are
hard for exact classical algorithms; see Section 3.3.4 for a discussion of this issue.

6.6 Should we dismiss D-Wave as a competitive technology?
As far as we know, no one has yet discovered even a single hard problem or class of instances for which
D-Wave is the fastest or otherwise best solution method. There have been candidates, but we feel that
these have not yet undergone sufficient scrutiny to reach a firm conclusion. In addition to the affinity-
independent-set and planted-solution instances mentioned in Section 6.3, instances suggested by
McGeoch and Wang are another candidate [17]. However, as noted earlier, we showed that using a
different, but simple, CPLEX formulation puts CPLEX on par with D-Wave (Section 3.3.2).

In light of the above, a natural reaction to existing D-Wave benchmarking studies, including this one,
would be simply dismissing D-Wave quantum annealers on the grounds that we have not discovered a
clear success. We advocate quite the opposite. From a scientific point of view, this uncertainty is one of
the more interesting facets of D-Wave benchmarking.
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We may seek to know whether a current or future D-Wave system is the best means of solving even a
single problem of vital interest, yet a conclusive answer, either way, is unlikely. Even if one were to
find an example of such a problem, how would one demonstrate that no classical heuristic could best D-
Wave on this problem? On the other hand, what if no one is able to discover such a problem? D-
Wave's quantum annealers are a technological trajectory rather than a single device. Even if we are
unable to find a "killer applicatioe for the D-Wave Two, does this mean that one will not exist for the
D-Wave Five? Do the same technological and deeply underlying physical limitations that have
precipitated the apparent end of Dennard Scaling ultimately apply to D-Wave's and other quantum
devices? This is the long view that has motivated our study. Conclusive answers to such questions are
unlikely, and at best, we would expect an "arms race" between algorithm designers aiming to devise
classical algorithms outperforming D-Wave and D-Wave engineers and advocates searching for "killer"
applications and effective means of efficiently representing problem-domain instances on Chimera
graphs. Such a race may lead to advances in classical algorithms, modeling and simulating quantum
annealers, and working within the confines of restricted quantum architectures such as a Chimera graph.
The lessons we learn may transfer to other quantum devices and architectures. Hence, we see great
technical appeal and practical value in continued pursuit of classical-quantum benchmarking
comparisons, preferably by an increasingly larger community of researchers.

6.7 Conclusion
To us D-Wave is a resource that, if nothing else, is a monumental feat of engineering. We took it upon
ourselves to attempt to assess the current computational value of this resource. Thus, our primary
contribution is a methodology for benchmarking D-Wave devices. Not all of the techniques and tools
we develop apply to the current D-Wave Two system due to its capacity and precision limitations;
however, we do not expect this to remain true if D-Wave systems continue along their recent
exponential growth trajectory.

The general question we ask is whether systems such as D-Wave's can provide a computational resource
advantage, of any kind, in an appropriate context. We do not subscribe to a particular answer to this
question and do not believe this question will necessarily converge to a conclusive answer. Our goal is
to collect data and provide evidence in order to address this question. We believe that with the current
generation of D-Wave system, we cannot adequately do so; however, we have developed an
infrastructure consisting of insights, algorithmic tools, and empirical evidence with which the research
community may evaluate this question for future D-Wave devices and other adiabatic quantum
computers that may be developed.
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Appendix A. Quantum architectures

A.1 The adiabatic quantum optimization architecture
A natural question from Section 1.3 is, "How slowly does the interpolation have to be run for the output
of the AQO algorithm to be correct with high probability?" The adiabatic theorem (or, more correctly,
the adiabatic approximation) in quantum mechanics guarantees that as long as the total time for the
interpolation, T , is chosen to be large enough, the final measurement will yield a value for x that
minimizes f with high probability.

The "rule of thumb" that physicists have used for years for how long "long enough" needs to be [40] is
that

T >> 
RE 11 111E Olmax

,
2

gmin

(1)

where 1Eo) and IE1) denote the instantaneous ground and first-excited states of the system, whose
corresponding energies are E0 and E1 respectively, 9 denotes the difference in energy 1E1 — E01, also called

d
—H

the "(energy) gap," H denotes the derivative ds , where s'=t/T is the interpolation parameter, and the
maximization and minimization are taken over all s E [O, 11. In this and subsequent formulas, the units
can be corrected by inserting powers of Planck's constant h where necessary; in other words, here and
henceforth we will work with units in which h = 1.

For most, and perhaps all, AQO problems, it is fairly straightforward to choose an interpolation path
without too many wiggles so that the numerator of Eq. (1) does not become too large. The challenge
then becomes finding a path such that the minimum gap in the denominator of Eq. (1) does not become
too small. For example, if the minimum gap became exponentially small as n increased, then the AQO
problem would need to be run for an exponentially long time to ensure that it yields the answer with
high probability.

In order to get a better handle on just how long the AQO problem must be run to succeed with high
probability, tighter bounds than Eq. (1) have been developed in recent years. Indeed, it is the prospect of
adiabatic quantum computing that has motivated mathematical physicists and computer scientists to
sharpen this rather loose bound. One of the tightest bounds to date, although somewhat baroque, is the
following implicit expression for T [41]:

1_[111-120  (0) + 11112II  (1) + if ds(71111112 + Pill)
IllzP(T)) - lE o(1))11 7  9 g 3 2

0 g 9

A.2 Alternative quantum circuit architectures
Two alternative quantum circuit architectures are worth mentioning. The first is the architecture
variously described as the "cluster-state," "measurement-based," or "one-way" architecture, in which the
(entangled) state preparations are problem-independent and there are no gate operations, but the
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measurement sequence depends (adaptively) on the problem. The second is the "programmable"
quantum circuit architecture, in which the input is prepared to hold both the data and the program in a
problem-dependent way, but the gate and measurement sequences are problem-independent. These
variants are relevant for certain types of adiabatic quantum computing, described below.

A.3 A universal adiabatic quantum computing architecture
While most of this report is focused on exploring how adiabatic quantum computers might fare when
attempting to solve QUBO problems of practical interest, it is widely believed that, at sufficiently large
problem sizes, even quantum computers, no matter what architecture they use, will be unable to solve
QUBO problems efficiently. What could be a real game changer is a universal adiabatic quantum
computer—a device that efficiently implements all quantum algorithms that have been or will be
discovered.

The basic idea behind universal adiabatic quantum computing architectures proposed to date is to have
them directly simulate a quantum circuit by taking a description of that circuit as input. Adapting an
idea of Feynman [42], Kitaev [43] and then others [44], [45] proposed constructing a final Hamiltonian
of an adiabatic evolution something like the following to simulate a quantum circuit defined by the gate
sequence uT ...ul .

H =

T

t=1

II CY +  U t 0-  at t t-1 t t t- ±r

Numerous improvements to this Hamiltonian have occurred over the years and it is now known that it
suffices to have a final Hamiltonian of the following form, with coefficients that can be both positive
and negative, to effect universal adiabatic quantum computation [46]:

H=Eh.1„zi+Ditrziol+EK,;„xiol.

No technology has demonstrated a sufficiently tunable Hamiltonian of this form, but proposals exist for
several technologies, including superconductors and semiconductors.
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Appendix B. Complex-network instance families

B.1 A catalog of commonly used graph parameters
To categorize and describe complex networks, researchers have proposed various measures. The list
below extends the one from Section 4.1.
• Number of vertices (n) — Together with number of edges, describes graph size.
• Number of edges (m) — Together with number of vertices, describes graph size.
• Degree (c/) — The number of edges incident to a vertex.
• Average degree (ml n) — Describes the average number of edges incident to a vertex.
• Degree distribution — The number of vertices for each distinct degree value.
• Clustering coefficient (c) — A measure (between 0 and 1) indicating the tendency for nodes to

cluster. Specifically, it is the fraction of all node triples (three nodes connected by at least two
edges) that are connected by three edges, forming a triangle.

• Eccentricity (e(v)) — The distance to the farthest vertex from vertex v, where the distance between
two vertices is the number of edges on a shortest path between them.

• Radius (r) — The minimum eccentricity on the full graph. The vertex with the minimum
eccentricity is the central vertex.

• Diameter (d) — The maximum eccentricity on the full graph. The vertices with the maximum
eccentricity are the peripheral vertices.

• Number of connected components — A set of vertices where each vertex is able to reach all
others in the set by only traversing edges within the set. A weakly connected component is one
where vertices can reach all other vertices when ignoring edge directions. A strongly connected
component is one where all vertices can reach all other vertices by only following directed paths.

• Clique — A set of completely interconnected vertices in the graph.
• Assortativity — The Pearson correlation between all pairs of connected vertices' degree. A graph

with -1 assortativity is dissassortative with low-degree vertices matched with high-degree and
vice-versa. A graph with 1 assortativity is assortative with high-degree vertices paired with
high-degree vertices and low-degree vertices with low-degree vertices.

• Modularity — Given both a graph and a partitioning, the fraction of edges within the partitions
minus the expected fraction for a random partitioning. Partitions with high modularity tend to
correlate with communities in complex networks.

B.2 Real-world instances

B.2.1 Twitter graphs
Our algorithm for growing Twitter graphs is as follows:
Function growTwitterGraph(Date startDate, Date endDate, TwitterData data)

g E7 new graph
// Create complete graph of all refers

for each message in data f
if message sent after startDate and before endDate f

for each refer in message f
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g.addDirectedEdge(message.from, refer)

}
// Remove all edges that only go one way

for each edge in g f

if g doesn't contain edge with opposite direction f
g.remove(edge)

1
// As there are now many disconnected nodes and separate components,
// return only the largest weakly connected component
return g.largestWeaklyConnectedComponent()

B.2.2 Autonomous System graphs
The Internet is comprised of a set of separate networks owned by different companies. Internet
communications require quickly routing data packets between machines that are possibly very distant
from each other. When packets are traveling between machines within one company's network, that
company's internal routing policies determine how packets are delivered. However, when the two
communicating machines are on different companies' networks, the companies' border routers must
find a route from the sender's network to the receiver's network. Each border router maintains a table of
ways to reach different address families. However, since routers can go down, these tables require
constant refreshing.

The Border Gateway Protocol (BGP) was developed as a way for border routers to request and advertise
paths between border routers. The advertised paths represent legal peering agreements between the
companies that they will route each other's data. BGP logs are available that include these advertise
messages. Furthermore, these advertised paths are already bi-directional and can be naturally
represented as a graph.

Our algorithm for creating BGP graphs is as follows:
Function growBgpGraph(Date startDate, Date endDate, BgpLogs data) f

g EH new graph

// Create complete graph of all refers
for each advertise message in data f

if message sent after startDate and before endDate f
for each edge in advertised path f

g.addEdge(edge)

}
// As there could be separate components,

// return only the largest weakly connected component
return g.largestWeaklyConnectedComponent()

We ran this algorithm for various time periods of the BGP logs, from 1 minute to 1 day and with 12
different start dates. This resulted in 43 different graphs. Visual inspection of several of the graphs
shows they appear similar having a dense central cluster of vertices with many strands extending off (see
Figure 30).

79



w.

\

Figure 30 Two sample BGP graphs. The graph on the left has approximately 510 vertices, and the one on the right has
approximately 1,100 vertices. Notice that these graphs both have a dense central cluster and chains of vertices extending off.
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These graphs grow considerably in size (although less than the Twitter graphs from Section 4.2.1) and
quickly converge to a fairly consistent average degree staying fairly consistent from 1,000 vertices to
approximately 50,000 vertices.
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Figure 31 Average degree for all BGP graphs. Each point displays the number of nodes and the average degree for that graph.

The average diameter is surprisingly steady varying between 10 and 15 continually throughout the
disparate sizes (Figure 31). We believe this consistency is due to the dense central region — few vertices
get too far from each other because all quickly connect back to the central cluster.
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Of all metrics for BGP graphs, the clustering coefficient varies the most (Figure 33). It starts relatively
high (-0.2), drops in the middle to a much smaller value (-0.05), and then climbs back up at the end.
This variation does surprise us, but it also transitions fairly smoothly.
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Figure 33 Clustering coefficient for all BGP graphs. Each point displays the number of nodes and clustering coefficient for that
graph.

With the metrics for both our BGP family and Twitter family (see 4.2.1), we can now compare their
results. Although both graph families have some metrics that vary as the graph size increases, the most
notable thing is that in both families, all metrics vary relatively smoothly. Recall that each of these
graph families was generated by sampling each original data stream from some start time for some
period. Thus, the BGP graphs of approximately the same size were generated by sampling different
time periods, and so the smooth variation for different time periods for these graphs indicates that the
scores at different graph scales appear inherent to the graph family. Moreover, when the two graph
families' scores are overlain, it is easy to separate the two families' data points. Qualitatively, these
graph families appear internally similar at varying sizes. A quantitative comparison appears in Section
B.4.
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B.3 Synthetic graph generation

B.3.1 Motivation
We surveyed well-known methods for generating synthetic graphs. Our initial motivation was to build
complex network models from our Twitter and BGP data and to then use a synthetic graph generator to
produce instances of arbitrary size based on each of these models. We tested some of the techniques
below and generally found that real-world properties of interest were not present or did no scale well in
the generated synthetic graphs. We ultimately decided to directly generate graphs from the data as
described in Section 4.2 and Appendix B. However our foray into synthetic graph generation was useful
in developing our algorithm for generating real-world-like Chimera-minor social networks (see Section
4.3.2).

B.3.2 Overview of synthetic complex-network generation techniques
LFR: Lancichinetti, Fortunato, and Radicchi proposed the LFR graph generation algorithm specifically
designed for benchmarking community detection algorithms [47]. The LFR algorithm accepts five
parameters: number of nodes, degree distribution exponent, average node degree, community size
exponent, and a mixing parameter (between zero and one). Given these inputs, the algorithm assigns
each node a degree ensuring the degree distribution and average degree are preserved. It then randomly
assigns each node to a community, ensuring that the community is large enough to contain a node of this
degree. Edges are randomly assigned within the community — preserving the assigned degree for all
nodes. In a final step, random edges are removed from within communities and assigned outside the
community until the mixing-parameter-defined fraction of edges occur between communities instead of
within communities. While the LFR algorithm generates random graphs with some user-specifiable
parameters — which can be set to match those observed in a real-world graph — how to select appropriate
values for the non-natural mixing parameter is less apparent.

MagFit/MagGen: Kim and Leskovec proposed multiplicative attribute graphs (MAGs) that can
represent external features like political affiliation, gender, etc. [48]. Specifically, probability matrices
for each feature represent the likelihood that two nodes are connected by an edge. Thus, if one node is
assigned a 0 and another a 1 for a feature, the probability they connect based on this feature is stored at
entry A(1, 0) of the probability matrix, A. Nodes are assigned a 0 or 1 for a feature based on a specified
probability (p i). They proposed an algorithm, called MagFit, to generate these probability matrices and
feature probabilities from existing graphs; a companion algorithm, called MagGen, creates a random
graph that follows those probability distributions. Implementations of both are available as part of the
SNAP codebase19. Given this model, an attribute contributes an average probability (Pi) of an edge
forming between two "average" nodes as follows:

P i= p i2 A(0, 0) + pi)A(0,1) + (1- 0730(1,0) + (1- p 1)2 A(1,1)

All attributes are combined by multiplication to form the overall probability that an edge will be created
between two nodes:
P = np,

bi

After experimenting with this method, we realized something intrinsic about the MAG model: the above
average edge-forming probability (P) in no way depends on the number of nodes. On average, this

19 http://snap.stanford.edu/snap/download.htrn1
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probability is applied at every opportunity, resulting in —n2 expected edges, where n is number of nodes.
This means that the expected average degree (number of edges divided by n) scales with n — an average
node connects to a fixed percentage of the nodes in the graph.

In their study of graphs growing over time, Leskovec, Kleinberg, and Faloutsos found that for real-world
citation and affiliation graphs (authors-to-papers and actors-to-movies) average degree does increase
with time [49]. The amount of increase varied between 

n1.08 to 
n 
_1.68

(average 
n1.26,.
) Even the most

aggressively increasing degree fell well below MAG's n2 rate.

BTER: Seshadhri, Kolda, and Pinar [50] proposed a method similar to LFR, but ground their Block
Two-Level Erdös-Rényi model (BTER) on several real-world-graph theories. Much like LFR, BTER
requires distribution parameters for both the degree distribution and the community size distribution.
First, BTER randomly assigns each node to a community. Second, each community is self-connected as
an Erdös-Rényi graph. Some number of connections for each node are reserved for cross-community
edges, which are added next. These cross-community edges are added randomly. They demonstrate
that BTER better matches average clustering coefficient by degree and the eigenvalues of the sample
graph than a model proposed by Chung and Lu [51], [52].

Both LFR and BTER should better match the degree distribution as graph size increases than MAG.
Unfortunately, LFR and BTER both require community size distribution to generate graphs — a feature
that cannot be known for the input graph without having definitive answers for the community detection
problem. For this reason, we were unable to use either of these synthetic graph generation methods to
demonstrate our benchmarking methodology.

B.4 Similarity analysis of graph families
In the interest of conducting proper science, we also introduce, as a control, a family of graphs that does
not have many of properties of real-world graphs: Erdös-Rényi graphs. Erdös-Rényi graphs are perhaps
the simplest model of a random graph and were introduced by Erdös and Rényi over fifty years ago [53],
[54]. These graphs are generated by fixing n nodes and for each pair of nodes, randomly introducing an
edge with a fixed probability p. An Erdös-Rényi graph is not necessarily connected; hence we retain the
largest component from the graph. We generated Erdös-Rényi graphs by selecting values of n and p that
would produce graphs with large connected components that approximately match the number of nodes
and edges for each of our mid-sized Twitter graphs (100 to 5000 nodes).
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Figure 34 Two sample randomly generated Erdös-Rényi graphs generated with approximately the same number of nodes
and edges in their largest connected component as our Twitter graphs. The graph on the left has approximately 350 nodes
and the graph on the right has approximately 700 nodes.

Comparing Figure 34, Figure 8, and Figure 14, we see that Erdös-Rényi graphs differ qualitatively from
our Twitter and Chimera-minor graphs. We present a quantitative comparison of average degree,
clustering coefficient, and diameter below. The plots below include standard Chimera graphs as well,
for reference.
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Figure 35 Average degree for each of our three graph families and Erdos-Rényi graphs.
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Figure 35 shows the average degree for each of our three graph families and the Erdös-Rényi graphs.
The Chimera and BGP graphs are internally consistent but are very different from all other graph
families. The Erdös-Rényi and Chimera-minor graphs show a similar degree distribution to the Twitter
graphs. It is well known that Erdös-Rényi graphs have heavy-tailed degree distributions, as real-world
complex networks do, and the former have been used as synthetic models of real-world complex
networks. However, Erdös-Rényi is not a completely satisfactory model, as seen below, and other
models have been developed (see Appendix B.3).
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Figure 36 Clustering coefficient for each of our four graph families and Erdös-Rényi graphs.

Figure 36 shows the clustering coefficients for each of our four graph families and the Erdös-Rényi
graphs. In this case, notice that the two real-world graph families (BGP and Twitter) both show some
tendency to form triangles for all but their smallest instances (less than 100 nodes). Also, note that both
of these families' scores fluctuate between 0.05 and 0.2 throughout their ranges. Erdös-Rényi graph
families have almost no tendency to form triangles, and the standard Chimera graphs have no triangles.
However, for all but the smallest graphs, the clustering coefficient of the Chimera-minor graphs
correlates very well with the real-world families, especially the Twitter graphs. This is particularly
striking as these graphs started from Chimera graphs and formed through a guided but random process.
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Figure 37 Diameter for each of our four graph families and Ercins-Rényi graphs.

Figure 37 shows the diameter for each of our four graph families and the Erdös-Rényi graphs. In this
case, BGP is clearly the graph family with smallest diameter; one might expect this, as long-range
connectivity is desirable in a communications network. The standard Chimera and Chimera-minor
graph families are clearly the largest diameter graph family, with Twitter and Erdös-Rényi graphs lying
somewhere in the middle. Reducing the diameter of our Chimera-minor graphs is a subject for future
work.

Although our Chimera-minor graphs exhibit larger diameters than the real-world networks, we still feel
they have sufficient real-world character to be much more useful for our benchmarking purposes than
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are random graphs. First, unlike Erdös-Rényi graphs, they are embeddable on the D-Wave's Chimera
graph with significant node utilization. Secondly, unlike Erdös-Rényi graphs, they have the real-world
tendency to form triangles. Triangle formation is considered a reasonable indicator of community
formation and a feature of real-world social networks. We discuss community detection in the next
appendix.
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Appendix C. Community detection in complex networks

C.1 Introduction
Most types of real-world complex networks contain groups of related or well-connected entities, that
one may call a community. For example, a community might represent users who tweet about similar
topics in a Twitter network, while in biological networks communities might represent groups of
proteins that interact for some specific function. The notion of a community in a complex network is
often nebulously defined, and pinning down a precise mathematical objective that categorically captures
the notion of a community is elusive. In fact Kleinberg showed that for three natural properties that one
might expect of a good clustering, it is impossible to devise a single clustering function that possesses all
of these properties [55]. While defining a community is difficult, we still seek to find naturally
occurring communities in social networks, whatever they may be. Community detection is the problem
of identifying interesting or relevant communities in a network. Given our growing ability to collect and
process massive amounts of data, community detection has become quite an interdisciplinary
phenomenon over the last decade, spanning sociology, physics, and computer science. We only touch
on this rich and vibrant topic here and refer the reader to Easley and Kleinberg's book for an
introduction to complex networks [56].

Kleinberg and Lawrence [57] used community detection to identify web pages that shared topics on the
Internet. They used this analysis to organize Internet content and proposed that this organization could
help identify "hubs" (index pages that identify many pages in a topic) and "authorities" (leader pages in
topic areas). They suggest such pages could help improve Internet search engines.

Colbaugh and Glass leveraged community detection in their early warning system for predicting which
large-scale movements will gain traction [58], [59]. Their work is based on a principle from social
sciences: if one hears of an event at various locations in one's life (work, social functions, sporting
events, etc.), then one is more likely to think it important than if one heard of it in only one location.
They use blogs and news sites on the Internet as proxy for real-world discussions. They create a graph
of the blogs and news sites where edges are based on links between the sites. The communities
identified on this graph serve as proxy to the different real-world communities where one might hear of
an event. They then search for early distribution of the topic across multiple communities. They found
that if the spread occurs before the overall volume on the topic becomes too high, it serves as a good
predictor of real-world action.

Ravasz et al. [60] use similar graph metrics to analyze metabolic pathways in cellular organisms. They
demonstrate that metabolic pathways create sparse graph structures that are different from the small-
world graphs built by social networks. They show that community detection can be used on the
metabolic graph to separate largely disparate metabolic processes from each other.

We selected community detection as one of our benchmark problems because, in addition to the above
discussion: (i) several classical heuristics exist, there is a general consensus on which heuristics perform
best, and optimized implementations are freely available, and (ii) core community detection problems
are readily mapped to an Ising problem (see Appendix E.1), suitable for benchmarking on a quantum
annealer. With that said, we are currently unable to effectively map community detection problems onto
a D-Wave device due to aforementioned Chimera-embedding and limited-precision issues (Section
4.3.1); however, we are able to implement quantum approaches to community detection using a
quantum simulator, which we have developed. Moreover, the connection to Ising problems mentioned
above makes community detection a prime candidate for benchmarking on future quantum devices.
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We present our results benchmarking classical community detection algorithms in Appendix D, and our
quantum simulation benchmarking results appear in Section 5.5. Before proceeding to the results, we
cover community detection algorithms below.

C.2 Classical community detection algorithms
Clauset-Newmann-Moore (CNM) [61]: Clauset, Newmann, and Moore proposed an efficient algorithm
for a greedy approximation to community detection. They begin by assigning each node its own
community. Then, at each iteration they merge the two communities that will most improve modularity.
Modularity is high when the number of edges within a community is significantly greater than would be
expected in a random reconfiguration of the graph. We describe modularity in more detail below. This
algorithm requires no user inputs. By intelligently choosing their data structures, this algorithm runs in
0('12) time, where n is the number of nodes in the graph.

Walktrap [62]: Pons and Latapy's algorithm begins from the observation that random walks on a graph
starting from any node are more likely to stay within that node's community than to leave it. This is due
to the fact that most edges should stay within the same community, and fewer leave it. They assign each
node u in the input graph a probability distribution over the nodes in the graph, indicating the likelihood
of reaching each node in t steps when starting at u. The assumption is that members of the same
community should have similar probability distributions. They begin by assigning each node its own
community. Then, during each iteration they merge the two communities that minimize the change in
the probability distribution when merged. This algorithm requires the user to specify the number of
steps to take in the random walk. Their algorithm runs in time 0(mn2), where m is the number of edges
in the graph.

Louvain [63]: Blondel, Guillame, Lambiotte, and Lefebvre's algorithm performs a variant of CNM's
algorithm. They begin by assigning each node its own community. During the first step, they greedily
identify nodes that can be moved to another community to increase modularity. This continues as long
as modularity increases. When modularity can no longer increase, they create a new graph from the
communities created in step one. They repeat these two steps until no communities are merged in the
first step. This algorithm requires no user inputs. While they do not provide an algorithmic analysis,
they demonstrate that Louvain functions faster than previous techniques and continues to run on massive
datasets when previous algorithms fail to complete.

Even though the Walktrap algorithm merges based on a different metric than modularity, all of these
algorithms compute their best result using modularity as a quality metric. One may think of modularity
as a measure that assigns a score to a particular partitioning of a graph into communities. Modularity
was designed so as to favor partitions that represent real-world notions of communities in complex
networks [64]. Mathematically, the modularity, Q, of a partition into communities is defined as follows:

1 kvicw
Q = 

2m 
ZE[Avw 

2m 
8(c

v 
,c
w 
),

v w

where m is the number of edges, and for any two nodes v and w, the quantity A, represents the
adjacency between these nodes and is 1 if an edge exists between nodes v and w, and is 0 otherwise; ki, is
the degree of node v, and 6(cv, cw) is 1 if v and w are in the same community, else O. At a high level,
maximizing modularity tends to favor partitions that assign communities in such a way that edges
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between nodes within communities rather than nodes across communities. A bit more precisely, under
an appropriate statistical graph model, one may think of maximizing modularity as maximizing the
difference of the actual number of edges and the expected number of edges within each community.
Thus modularity maximization seeks community structures that tend to have edges where they are
expected (under the aforementioned statistical model). We refer the reader to Newman's seminal work
for details [64].

However, maximizing modularity is not necessarily the best way to solve community detection.
Fortunato and Barthélemy found that the smallest community that could be found via modularity
maximization is bounded by the number of edges in the graph [65]. Specifically, the smallest
community that can be found is bounded by

mc >

where mc is the number of edges in a community, and m is the total number of edges in the graph. This
means that, even when the graph is obviously partitioned into much smaller communities, modularity
maximizing methods will merge the smaller "true communities until the within-community internal
edge count reaches this threshold.

wCNM 1661: Berry, Hendrickson, LaViolette, and Phillips recognize Fortunato and Barthélemy's
limitation, but note that it only holds true for unweighted edges. The equation becomes more
complicated when edge weights are included, and the resolution limit becomes based on the overall
weight on the graph and the weight of the edges within a community. They propose an algorithm that
weights edges based on their likelihood of being within-community edges: by adding weights to an edge
based on the number of triangles and rectangles it is a member of, they increase the weight of edges with
strong interconnections — thus likely within a community. This algorithm requires the user to specify
the number of pre-weighting iterations to run. We decided not to include this algorithm in our
benchmark study so we could restrict our attention to unweighted graphs.

Further modularity maximization weaknesses are all related to difficulties in finding a single best answer.
Even in small graphs, a single vertex that bridges two clusters could be assigned to either neighboring
community while still maximizing modularity. This vertex is randomly assigned to one community.
When analyzing modularity maximizing community detection, Good et al. [67] found that "it typically
admits an exponential number of distinct high-scoring solutions." Moreover, as the size of the graph
and number of communities increase, the high-scoring solutions all approach the highest possible
modularity score.

Finally, modularity maximization is tied to exclusive community detection — assigning each vertex to a
single community. Many researchers point out that exclusive community detection does not faithfully
match the real world: For example, a person can belong to a work community, church community, and
sports team; exclusive community detection could only assign them to one.

Nonetheless, exclusive community detection is the most mature analysis at present, and modularity
maximization implementations are best able to scale.
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C.3 !sing-based community detection
The classical community detection algorithms described above are heuristics that aim to cluster into
communities by roughly maximizing modularity; however, as observed above, maximizing modularity
is not a completely satisfying objective. In light of this, why consider classical community detection
heuristics that seek to maximize modularity? We consider them, because for better or for worse, the
above types of heuristics are those currently used in practice due to excellent runtime performance. This
presents an interesting benchmarking challenge: how does one compare an arbitrary classical heuristic,
which may not necessarily be framed in terms of optimizing a mathematical objective, to a Ising-based
algorithm (equivalently, QUBO-based) whose sole purpose is attempting to optimize some given
objective function.

For our benchmarking study, we address this question by employing a hybrid community detection
algorithm that solves many Ising-based sub-problems in order to solve the overarching community
detection problem. One could solve the sub-problems with any Ising solver, including quantum
annealing. We defer the details of our approach until we discuss our quantum benchmarking results in
Section 5. We cover our classical benchmarking results in the next section.
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Appendix D. Classical benchmarking studies

D.1 Study 1: Purely classical benchmarking on large-scale families
Our goal is to perform a thorough benchmarking study of three common modularity-maximizing
classical-computing community detection algorithms: CNM, Walktrap, and Louvain. To ensure a
thorough test, we want to make sure we use datasets with real-world character, that the datasets scale as
real-world datasets would, and we collect many different metrics for each test.

Many of the ingredients of our study have been previously discussed. In Section 4.2, we described how
we generated two families of real-world graphs (Twitter and BGP). In Section C.2, we described the
CNM, Walktrap, and Louvain algorithms. We now describe our testing methodology.

On an otherwise unloaded desktop workstation, we run each algorithm for each graph. We used a
Macintosh PowerMac workstation with 2x2.4 GHz Quad-Core Intel Xeon processors20, and 24 GB 1066
MHz DDR3 RAM. We use the Unix tools "time21 and "ps"22 to record various metrics about the
execution of the algorithm (system time, page swaps, memory usage, etc.). To account for both
randomness in some of the algorithms, and for random machine usage issues (disk stalls, cache misses,
etc.), we run each algorithm and graph instance pair ten times. Finally, as the slower algorithms take too
long on the larger graphs, we interrupt the algorithms when their execution time exceeds 2 hours.

D.1.1 Solution quality and modularity
Before analyzing how quickly the different algorithms complete their execution, we report on the quality
of communities found. As described in Section C.2, although modularity has many issues, it is the
metric used by each of these algorithms to determine the best community partitioning. Therefore, we
report the modularity reported for the final partitioning of each graph/algorithm execution.

104
Number of Nodes

101 162 163 164 165 166

Number of Nodes

Figure 38: Modularity results for BGP graphs (left) and Twitter graphs (right). Insets magnify a portion of the results. Notice
that Louvain and CNM perform consistently better than Walktrap. Louvain's modularity is generally equal to or greater than CNM.

20 None of the implementations we used are multi-threaded codes, so we expect that (excepting some multi-threaded system
calls) only one processor was used.
21 Specifically, we used the Mac version of time called "gtime available through the MacPorts tool.
22 For an unknown reason, gtime failed to return max resident set size (memory usage) values for one of the algorithms. We
wrote our own script that polled "ps —0 rss" throughout program execution and stored the maximum value found.
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Figure 38 shows the modularity results for all three algorithms on all graphs. First, notice that for any
single graph there are different scores for different executions of Louvain. Given the same graph, all
executions of Walktrap and CNM produced the same modularity score. This is to be expected as
Louvain is a randomized method and Walktrap and CNM are not.

The key modularity result is directly evident: CNM and Louvain return communities with better
modularity score than Walktrap. Louvain generally achieves similar or greater modularity than CNM.

For both BGP (left) and Twitter graphs (right), all three algorithms produce lower-modularity partitions
for the smaller graphs than for the larger graphs. The scores become more stable (and larger) once the
graphs reach several hundred or a thousand nodes. We believe this is a function of true underlying
graph features: the smaller graphs have less community structure. We are surprised that the modularity
scores fall, for all algorithms, as the Twitter graphs get larger than ten thousand nodes.

Recall that modularity can range from -1/2 to 1. Comparing the maximum BGP and maximum Twitter
scores, it appears that Twitter has more clear community structure than BGP, as found by these
algorithms and assuming that modularity does correlate with community structure in our graphs.

Finally, although there are sometimes marked differences between the modularity of the resulting
communities found, all three algorithms' scores follow similar overall trends — increasing and
decreasing together. Thus, they appear to agree on which graph instances demonstrate more clear
community structure. The differences in modularity score between CNM and Louvain are so slight as to
possibly be acceptable if modularity were the only consideration.

D.1.2 Execution Time
After quality of the resulting communities, the next most common concern for any algorithm is
execution time. The "time' command reports several metrics for execution time. We report the sum of
system time and user time.
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Figure 39 Execution time results for BGP (left) and Twitter graphs (right). Reported values are the slope of the best-fit line
for each algorithm on a log-log plot.
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Figure 39 shows the execution times and best-fit lines for each algorithm on a log-log plot. Since the
time command can only measure speed in increments of 0.01 seconds, when any program completed in
less than 0.01 seconds, time reports execution in 0.00 seconds. A log-log plot is unable to plot zero-
valued points, so all three algorithms' runtimes on graphs below —500 nodes are not shown (below
—3,000 nodes for Louvain). Moreover, as execution was halted when execution time exceeded 2 hours,
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there are no scores for CNM on graphs greater than —20,000 nodes and for Walktrap on graphs greater
than —80,000 nodes.

The key execution time result is that Louvain is markedly faster than both Walktrap and CNM. On
smaller graphs, CNM is faster than Walktrap, but CNM scales poorly relative to Walktrap; as graph size
increases, CNM becomes slower than Walktrap.

The slope of the line on a log-log plot provides the exponent (a) that best fits the following function on a
linear plot:
Time = (Number of Nodes)"

Thus, not only does Louvain run faster on all of the instances of both families we tested, the slopes
indicate that as the size of the graph increases Louvain will always run faster than CNM and Walktrap,
and their relative difference is increasing.

Finally, the quality of the fitted line can help indicate how well the line can extrapolate to future
execution speeds. For both Walktrap and Louvain the R2 score of the fit on both graphs (Walktrap R2 =
0.99 (BGP) and 0.98 (Twitter); Louvain R2 = 0.98 (BGP) and 0.99 (Twitter)) indicate a very high
quality fit. The corresponding R2 scores for CNM (0.98 (BGP) and 0.92 (Twitter)) are still good, but not
as strong. This is visually evident on the Twitter plot where CNM performs better than the line predicts
in the middle, but worse on either end.

D.1.3 Memory Analysis
Memory considerations directly influence computation speeds on classical computers. Classical
computers contain a memory hierarchy with small and very fast memory stores (registers) within the
central processor, through many different layers, to the truly massive but relatively extremely slow hard
drive. Thus, when writing optimized code for classical computers, the programmer must consider many
factors related to memory — amount used, how coherent usage patterns are with memory layout, etc.
Unfortunately, we were only able to measure maximum memory usage for the algorithms. Fortunately,
memory usage smaller than the amount available generally correlates with improved memory coherency.
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Figure 40 Maximum memory usage results for BGP (left) and Twitter graphs (right). Reported values are the slope of the
best-fit line for each algorithm.

Figure 40 shows the maximum memory usage for each run of each algorithm on a log-log plot. Loading
and running a program requires a minimum amount of memory, and then loading relatively small graphs
into memory can seem negligible next to the memory required for the program's instructions. Thus
these plots show flat periods of memory usage on the left side of the Twitter plot for all algorithms and
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for Louvain on the BGP plot. Note that on the Twitter plot, Walktrap and CNM both start increasing
from their baselines around 1,000 nodes, which is the approximate size of the smallest graphs in BGP
group. Louvain is fairly consistent with the change occurring around 5,000 nodes in both.

The key result from this work is that Louvain uses considerably less memory than both Walktrap and
CNM on both graph families. Not only that, but Louvain's slope is again lower than both CNM's and
Walktrap's indicating that CNM and Walktrap will use comparatively more memory than Louvain as the
graph size increases.

The quality of fit of the lines in these graphs is lower than in the execution graphs. In this analysis,
CNM and Louvain have the best R2 fits (CNM R2 = 0.98 (BGP), 0.95 (Twitter); Louvain R2 = 0.95
(BGP) and >0.99 (Twitter)), with Walktrap a little poorer (0.91 (BGP) and 0.97 (Twitter)).

D.2 Study 2: Classical benchmarking on D-Wave-compatible families
In this study, our goal is to perform a study that permits comparing adiabatic quantum computing
capabilities against classical-computing community detection algorithms. Currently the only available
adiabatic computing devices are produced by D-Wave and are limited in the size and type of graphs that
can be encoded on them. Specifically, the D-Wave Two machine we have access to has 509 functional
qubits.

Most of the ingredients used in this analysis have been previously discussed. In Section 2, we described
the D-Wave Chimera graph, and in Section 4.3.2 we described our algorithm for generating synthetic
real-world-like graphs as minors of the Chimera graph. In Section C.2, we described the classical-
computing algorithms we use herein, and in Section 5.5, we describe our approach to solving
comparable problems on a quantum annealer. In Section 3, we discussed difficulties with measuring
performance on quantum devices in general and D-Wave machines in particular.

D.2.1 Classical-computing results
For this analysis, we used the same workstation and measuring technique as described in Section D.1.
Herein, we will only present and discuss results.
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Figure 41 Modularity scores for standard Chimera (left) and real-world-like Chimera-minor graphs (right). Insets show a
magnified portion of the results.
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Solution quality and modularity: Figure 41 shows the modularity results for all graphs from both the
standard Chimera and real-world-like Chimera-minor graph families The former graphs are highly
structured and do not have social-network properties (Figure 1 and Figure 13) and are included only as a
point of reference. Recall that although our Chimera-minor graphs may be embedded within the
Chimera graph, they exhibit real-world properties (Section B.4). For the purposes of our classical
benchmarks, we need not worry about Chimera embedding issues and simply execute our algorithms on
our minor graphs, as depicted in Figure 14.

The principal result on these Chimera-based graphs is less clear than on the real-world graphs. In the
previous results, CNM and Louvain consistently found higher modularity results than Walktrap. For the
standard Chimera graph, the three algorithms found largely the same modularity results — with Walktrap
sometimes finding the best result. In our real-world-like Chimera-minor graphs, it appears that
Walktrap finds generally lower-score results, but with considerable overlap.

These graphs show a similar trend as the previous set: all algorithms follow a similar upward trend in
finding higher modularity results in larger graphs than in smaller graphs.

Finally, it is interesting that although the standard Chimera graphs have no triangles, they still appear to
have clear community structure as measured by modularity.
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Figure 42 Execution time results for Chimera (left) and real-world-like Chimera-minor graphs (right). Note the log-log
axes. Best-fit slopes indicate how the algorithm will likely continue to scale on larger graphs.

Execution time: Figure 42 shows the timing results for all graphs from both the Chimera and real-
world-similar Chimera-minor graph families. As with the previous timing results, if program execution
took less than 0.01 seconds, the tests reported a zero running time — meaning that some smaller graphs
have no data points on this log-log plot.

The principal result is the same as with the real-world graphs: Louvain runs markedly faster than both
Walktrap and CNM. In the case of the real-world-like Chimera-minor graphs, CNM appears markedly
better than Walktrap on execution speed for the first time.

Analyzing the slopes, for standard Chimera graphs, we get the same result as in previous tests: not only
does Louvain run considerably faster, it scales better and will likely continue to perform much better.
However, with the real-world-like graphs, CNM exhibits a slightly better slope than Louvain — opening
the possibility that Louvain may run slower than CNM on larger graphs from this family. Unfortunately,
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our code for sampling these minor graphs does not scale well enough to generate larger graphs in a
reasonable time frame. Also, as the slopes for these data are based on so few distinct data points, this
trend may not continue.
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the log-log axes. Best-fit slopes indicate how the algorithms will likely continue to scale on larger graphs.
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Memory analysis: Figure 43 shows the maximum memory usage results for all graphs from both the
Chimera and real-world-similar Chimera-minor graph families. As with the real-world graphs, Louvain
again uses considerably less memory than both Walktrap and CNM. Louvain's slope is also about the
same as it was in the previous cases — just under 1.0. However, with these graphs, Walktrap and CNM's
memory usage slopes are much lower than on the real-world graphs.

Conclusion: Louvain emerges as a clear winner across most of our metrics. If this were the case, then
why would someone opt to use anything else? For one, all of these algorithms are heuristics and they
come with no guarantee of near-optimality. Although we know that maximum possible modularity is 1,
for the instances we used, we do not know the precise maximum modularity. In fact, in Figure 38, we
see that modularity drops as the graph size increases across all of the heuristics. This might indicate the
larger graphs simply do not have community structure with large modularity, or it may be that our
collection of heuristics is unable to find such communities.

Another dimension is that, as noted in Section C.1, a precise definition of a good community is elusive.
It could be that a Louvain-user is satisfied with the communities it produces but she would be even
happier with some other set of communities of which she is unaware. In many cases such a choice is
moot, since Louvain is the only common community detection heuristic that is viable for massive graphs.
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Appendix E. !sing formulations of combinatorial optimization problems

E.1 Modularity-maximizing bipartition
Here we present a well-known Ising formulation for finding a bipartition of a graph (i.e., a partition into
two parts or communities) that maximizes modularity. Refer to Section C.2 for an introduction to
modularity; recall that the modularity, Q, of a partition of a graph into communities is defined as:
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where m is the number of edges, and for any two nodes v and w, the quantity Avw represents the
adjacency between these nodes and is 1 if an edge exists between nodes v and w, and Avw= 0 otherwise;
k„ is the degree of node v, and 8(cv, cw) is 1 if v and w are in the same community, else O. If we are
evaluating the modularity of a bipartition, as opposed to a partition into greater than two parts, we may
simplify the expression for modularity. For convenience we refer to the two communities as the -1 and
the +1 communities. The definition of modularity now becomes:
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where, for each node v, sv = 1 if v belongs to the +1 community, and sv = - 1 if v belongs to the -1

community. Thus, since we only have two communities, we have 6(cvcw) = (s, sw + 1)/2 We observe
that finding a bipartition that maximizes modularity is equivalent to finding an assignment of either -1 or
+1 to each node-variable sv so as to maximize the value of Q. This can be cast as an optimization
problem:

max
1 

A 
k,kwis,sw + 1

Sv c { - 1, + 1}2m
E E [ 
' 2m i 2 '
v vv

which is equivalent an Ising problem, by ignoring the portion of the objective that is constant with
respect to the sv variables, and instead of maximizing the function above, minimizing its negation. We
note that one undesirable feature of this formulation is that each term svsw has a nonzero coefficient,
1 kvkw
—[zi  
4 vwm  2m , even if an edge does not exist between nodes v and w (i.e., Avw = 13). In terms of a
quantum-annealing implementation of this formulation, one would require couplers with nonzero values
between every pair of nodes. This would make a D-Wave Chimera implementation impossible without
an embedding or mapping. This is precisely the reason we chose to implement our Ising-based
community detection algorithm only on our quantum simulator.
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E.2 Independent set problems
Recall from Section 5.3 that an independent set in a graph is a set of nodes such that no edges exist
between any two nodes within the set. The maximum independent set (MIS) problem seeks to find an
independent set of maximum size. We are given an Ising formulation of this problem, in the form:

min E Jusisi + hisi.
siE{-1,+1} 

ijEE iEV

The summation is over the edges of the qubit-connectivity graph, which represent the couplers of the
underlying quantum annealer. For the case of a D-Wave system, we have the Chimera graph. We

hi = (E - 2

observe that by setting 1 for each edge ij E E in the graph, and setting J:ij E E , we, in effect,
model the MIS problem.

When we set some of the fij variables to be 0, we are in effect solving the MIS problem on a subgraph of
the ambient graph. When we let E t — we obtain the affinity independent set problem. Consult the
seminal work of Barahona [21] or the recent work of Choi [68] for more details on the relationship
between independent set problems and the above setting of instance parameters.
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Appendix F. Quantum Monte Carlo simulator

The exponential cost of directly simulating an adiabatic quantum computer has necessitated some
tradeoffs in the effort to understand how such a computer, if available, would perform on a given
problem. This is not to say that simulations cannot play a role in understanding these machines, only
that a judicious choice of strategy is necessary. With this in mind we have developed a simulation suite
that looks to answer two questions. Firstly, how would a purely classical annealer perform on a given
algorithm, and secondly, what is the structure of the quantum problem at any given instant during the
annealing? With these two pieces of information, we can hope to answer whether there is an advantage
to using an adiabatic quantum computer on a given problem; this would also allow us to compare
different implementations of the same problem.

The simulation suite developed for this work is optimized for flexibility with the goal of allowing
discovery-based simulations. Specifically the interactions between sites are allowed to take on arbitrary
strengths and couple arbitrary pairs of spins. This flexibility allows for a much more general exploration
of hardware in designing and evaluating algorithms than would be available if the simulation suite
would have been confined to the Chimera graph. The tradeoff is that this precludes many of the
optimizations that would be possible with a less flexible framework. As such, we emphasize that this
simulation suite is not suitable for directly answering the question commonly posed in the literature
about whether a highly tuned classical algorithm would be faster than a given candidate adiabatic
quantum computer; it can only address scaling behavior of a given problem to help determine whether it
may be advantageous to solve the problem on an adiabatic quantum computer.

More concretely, the tools we have developed allow simulation of a Hamiltonian (set of interactions) of
the following form:

H =ET
IJ 1

.Z Z F (OZO-Xt + EL La iz
The indices i and./ run over the sites, the Tij are the coupling strengths between the spins, F(t) is the
(potentially time dependent) transverse external field, and Li are local magnetic fields that may be tuned
individually for each spin.

An adiabatic quantum annealing calculation proceeds as follows. The device is first cooled to a low
temperature and then an external field (F(t), above) is slowly tuned from an initially large value to a
small one. If the external field is initially much larger than all of the other interactions above, then all
spins will align with the field. Furthermore, if the field is reduced slowly enough, the system will stay in
the lowest energy state during the entire evolution, thereby finding the minimum energy configuration
for the problem Hamiltonian, i.e., for the set of interactions of interest to the programmer.

There are several pitfalls that may occur during such an evolution that we would like to study with this
simulator. These may be more easily understood thinking of an analogous problem of a ball placed on a
rough landscape that may be tilted to one side. The location of the ball on the landscape is a proxy for
the orientations of the spins in the quantum computer. The heights of the bumps and wiggles in the
landscape encode the interactions and local fields on the spins and the tilt is the external magnetic field.
The goal is to get the ball to the lowest point on the landscape. Analogous to the operation of the
quantum computer, the system is initialized by tipping the landscape so far to one side that the ball is
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forced to that side of the landscape. Then the tilt is slowly reduced. If the system is purely classical,
than the ball will follow a path set by the nearby dips and valleys as the tilt is reduced and in the end will
end up at the lowest point on its path. The goal is that this lowest point is the lowest point in the entire
landscape.

There are two fairly simple ways in which this method can fail to get the ball to the lowest point on the
map. The first of these is that the landscape is not amenable to the problem. As a concrete example,
imagine that the landscape is a topographic map of the United States and tipping the map all the way
towards the east initializes the experiment. As the map is slowly brought back to level, the ball will
never be able to make it over the continental divide to death valley on the western side of the map. This
scenario where the basins of attraction for different local minima in the landscape are separated by a
barrier is the most problematic for the operation of the quantum computer. The second way in which the
method can fail is if the tilt in the landscape is reduced too quickly. Then, the momentum of the ball can
carry it out of the local dips and valleys in the map. In addition if there is not enough friction to slow the
ball down, it will never settle into the lowest point on the map.

In order to test for these conditions, we developed a purely classical capability to simulate the dynamics
of the spins. In this case, after programming in the interactions, the spins are initialized as directions in
a three dimensional space. At each point in time, the force on each spin is calculated due to these
interactions and then all of the spin directions are updated, synchronously.

This classical technique can be used in two different ways. First, the dynamics of the spins can be
calculated ignoring the momentum of the spins as they rotate. By always moving in the direction of the
steepest change in the energy landscape, we can find out if an arbitrarily slow classical evolution of the
computer could reach the optimal solution. If this works, the implication is that no quantum
entanglement is necessary for a D-Wave type device to find the optimal solution. The second technique
is to use the momentum on the spins to construct a real time dynamics. In this case, it is possible to get
information about how slowly the external transverse field needs to be decreased in order to avoid
leaving the local environment of the lowest energy state of the system, again assuming a purely classical
evolution of the spins.

These methods provide insight about the evolution of the spins in the absence of noise (or, equivalently,
at zero temperature). In order to assess the role of the thermal effects, we also implemented a
Metropolis Monte Carlo sampling scheme. This method works by proposing random perturbations of

E - E

the spins and then accepting these perturbations with the probability maxle T ,11 where E is the
energy of the perturbed system, E is the energy before the perturbation and T is the temperature. In
doing this, the simulation ceases to be an approximation of the evolution of the system with time, but as
the perturbations may be quite general, it is much more probable that small energy barriers will be
crossed than in the classical methods. This method has also been shown to correlate with the results of
simulations on the D-Wave machine by Smolin and Smith [69].

The more interesting case is to perform quantum calculations to see whether the presence of
entanglement eases the task of finding the global minimum of the energy landscape. We analyzed
several quantum Monte Carlo methods to perform these calculations. We concentrated on zero-
temperature projector methods that evolve a trial wavefunction in imaginary time in order to select out
the ground state of the system. These all rely on mapping the time-dependent Schrödinger equation into
imaginary time:
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Now the solution to this partial differential equation can be written as
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It is apparent in this form that, as imaginary time increases, eigenstates of the Hamiltonian will acquire
an exponential damping according to their energy. If the wavefunction is kept normalized during the
evolution this will effectively select out the lowest energy (ground) state.

The difficulty comes in applying the propagator e -111, which is a 2N x 2N matrix. For this reason it is
applied stochastically. There are several options for how this stochastic projection is implemented. One
can either sample terms in the Hamiltonian, as in stochastic series expansion, or sample directly the
wavefunction. For the case of the D-Wave style Hamiltonian, the lack of symmetry imposed both by the
configurable interactions between the qubits and the local fields make cluster updates much more
complicated to apply. Therefore, we have opted to sample the wavefunction directly. The wavefunction
is represented in the crz basis rendering all of the operations implementable as binary arithmetic and
random number generation.

Specifically, we make a Taylor series expansion of the propagator above:

e-rH_>1 - TH

Clearly this is valid only in the limit where i becomes small. The advantage of this formulation is that
the application of each term in the Hamiltonian operator to a state in the aZ basis is to either keep the
state the same, due to the local fields, or to flip a single spin, due to the transverse field. Exploiting this,
the simulation now works in two parts. First, a random term of the Hamiltonian is selected to apply to
each state in the population according to its strength. If the term is not due to the transverse field, the
state is unchanged. If it is, then the appropriate spin is flipped. The second part of this operation is to
add a weight to each state due to the non-spin flip terms. This has the effect of making configurations
that have a lower energy more important and those with a higher energy less important.

In order to use this machinery to find the lowest energy solution for a given set of interactions with the
transverse field set to zero (the final state of the quantum annealer), we initially start with a set of
configurations with spins randomly oriented and with some relatively large transverse magnetic field.
The transverse field is necessary because without it, the algorithm would never flip any spins and would
only select the lowest energy of the random states that we had started with. As the calculation
progresses, the transverse field is gradually decreased until its effect is negligible, in analogy with the D-
Wave machine.

An important consideration in developing this, or any other stochastic algorithm, is the development of
test cases with known solutions to which the machinery can be applied. Our algorithm was tested in two
independent ways. The first of these was by comparison to an exact evolution in the full state space that
can be accessed by such a machine. Specifically, we store the entire 2N dimensional state vector
describing every possible orientation of the spins, including the phases between them. Obviously this
limits the size of the system that can be studied (30 qubits requires storing 23° ;:--; 1,000,000,000 numbers),
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but for arbitrary interactions between the qubits the system can be solved exactly. We have tested our
implementation for 500 different configurations of interactions between 5 and 25 qubits and have
obtained the optimal solution in each case.

Testing this Monte Carlo method on larger systems posed a challenge because of the difficulty of
obtaining difficult problems and exact solutions against which the simulator could be tested. However,
a recent talk by Itay Hen at the Third Workshop in Adiabatic Quantum Computing, 2014 [27] provided
an interesting possibility. His collaborators and he suggested that one could plant a solution of up and
down orientations of the qubits and they build a set of interactions around them that would be both
difficult to solve and would be unlikely to be degenerate. His method was to take the planned solution
and then perform a random walk between the spins until a loop was formed. Once this loop was formed,
interactions would be chosen to decrease the energy of the system due to this spin configuration except
that one of the interactions would randomly have the opposite sign to introduce a frustration that would
make the problem harder. This procedure is repeated many times, building an increasingly complex
Hamiltonian until the planted solution is likely to be unique. We discuss our D-Wave benchmarking
results on these instances in Section 5.4.

We also performed some quantum simulator tests using these planted solutions on the Chimera graph for
problems with square arrangements of plaquettes between 2x2 and 10x 10 (32 to 800 qubits; see Figure
1). For graphs that are 4x4 or smaller, we were almost always able to find the optimal solution on the
first attempt. As the problem became larger, however, errors began to occur. The nature of these errors
was interesting in that they were almost always due to having entire plaquettes of spins flipped relative
to the exact solution. We theorized that this was due to the connectivity of the Chimera graph being
much greater within plaquettes than between them. In order to test this, we controlled the size of the
loops out of which the interactions were generated. Some instances were generated with all loops
connecting only four spins. In this case, the interactions were much more likely to remain entirely on a
single plaquette and coupling between the plaquettes was therefore rather weak. The instances of errors
in our solutions was much higher for this class of problems than the general case and the errors were
almost entirely due to flips of entire plaquettes. Conversely, we generated problems where all of the
loops connected more than 8 qubits. By definition all of these spanned multiple plaquettes and as
expected, our algorithm performed much more successfully than in the case of small loops.
Additionally, the errors were fewer and generally due to single spins that were flipped rather than entire
plaquettes.

After establishing the accuracy of the quantum simulator for small systems and understanding its failure
modes for larger ones, we turned to the problem of benchmarking our algorithm against the D-Wave
machine on random instances generated on the Chimera graph. The results of these are detailed in
Section 5. Finally, we have used the generality of our simulator to study interactions on topologies more
complicated and dense than would be allowed by the D-Wave machine. This has allowed work on
community detection algorithms that is also detailed in Section 5.
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Appendix G. Entanglement in the D-Wave quantum annealer

Local quantum entanglement has recently been demonstrated in a D-Wave quantum annealer [70].
Concurrently, there is an ongoing debate [71], [72] as to whether or not a purely classical model is
sufficient to describe the output distribution of the annealer. Certainly, there is some degree of accuracy
beyond which any microscopic time-resolved model of the D-Wave device must include quantum
effects. However, identifiable quantum effects do not automatically guarantee quantum computational
advantages. The semiconductor transistors in modern classical computing devices are small enough to
necessitate a quantum description in accurately simulating their behavior and yet they remain purely
classical computing devices. There is a clear intention in the design of the D-Wave quantum annealer to
leverage quantum effects to enable large but restrictive quantum computations, but these restrictions cast
significant doubts on the theoretical and practical advantages of such a device. Even in an ideal,
universal quantum computer, the relationship between entanglement and quantum speedup is unclear
and under active debate [73].

G.1 Entanglement in the D-Wave device
Quantum entanglement is a very broad and general concept [74]. It refers to partitioning a physical
system into two or more disjoint pieces and identifying correlations between the pieces that are
forbidden in classical physics. Usually this is reduced down to an entanglement measure that assigns a
numerical value to the "amount of entanglement' in a quantum state that is zero when quantum effects
are not necessary to describe the correlations. The most popular entanglement measure in modern
quantum information theory is the entanglement entropy of a pure state 1T) relative to a subsystem A.
When examining the state only on this subsystem, the pure state IT) appears to be a mixed state PA and
its entanglement entropy is defined as the von Neumann entropy of PA,

SaW),A) =- tr(PAlogPA). (1)

Zero entropy means that the state still looks pure when confined to A, which means that 11P) must be in a

simple product state, "A) ® "A), that contains no entanglement between A and the rest of the system
(represented by A). This entanglement measure only applies to pure states, but there are many measures
that are also suitable for mixed states.

The entanglement in the D-Wave device has a simple origin. It evolves a quantum state by continuously
altering the weights (a(t) and b(0) of the two components (Hx and H z) of the device Hamiltonian,

H(t) = a(t)H x + b(t)H z. (2)

The device is initialized at to in the ground state of Hx with a(t0) > 0 and b(t0) = 0. a(t) is decreased and
b(t) is increased monotonically in time until the end of the device evolution at ti with a(t1) = ° and
b(t1) > ° Because of the significant coupling between the device and its thermal environment, the
quantum state of the D-Wave device is not a pure state described by a wavefunction, but rather a mixed
state described by a density matrix at time t, p(t), p(t) is believed [75] to be a diagonal matrix in the
basis of energy eigenstates of H(t) , which means that the system can only be as entangled as its
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instantaneous eigenstates. For example, there is no entanglement at times t = to and t = ti when all the
eigenstates have zero entanglement. The largest amount of entanglement in the D-Wave device is
observed [70] at intermediate times when the energy gap in the device goes through a sequence of
avoided crossings.

G.2 Computational power of entanglement
While nonzero entanglement is necessary for any sort of quantum computational advantage, it is not
possible to directly infer the latter from the former. There exist highly entangled quantum states such as
stabilizer states that can be efficiently simulated classically, thus entanglement is not sufficient for a
quantum advantage. Conversely, it is possible to systematically reduce the amount of entanglement
within a quantum computer while preserving quantum advantages and only reducing the success rate of
the computation [73]. The present view is that some measure of entanglement integrated over time and
space is necessary to assess the maximum computational power of a quantum device, but such a
performance metric has not yet been established.

It is important to mention the role of classical simulation of quantum states as tools for establishing
boundaries between classical and quantum computation. If a quantum state or computation can be
efficiently simulated by a classical computer, then it does not offer any computational advantage. In the
case of Hamiltonians with local couplings on a linear graph, near-adiabatic time evolution starting from
a ground state can be efficiently classically simulated with matrix product states (MPS) [76]. A linear
graph can be embedded in the Chimera graph of the D-Wave device, and in this mode of operation it is
expected that MPS simulations can efficiently model the behavior of the device. Other graphs, such as a
Chimera graph, require a generalization of MPS called tensor network states [77]. While there have not
yet been any reported attempts to simulate the D-Wave device with tensor network states, certain basic
caveats are expected. The cost of these simulations grows rapidly with the amount of entanglement in a
system, particularly if there is long-range entanglement on the graph. However, the coupling between
the D-Wave device and its thermal environment might suppress long-range entanglement, which would
then reduce the computational cost required to simulate it accurately. Thus it is important to address the
open question of whether or not the D-Wave device is able to produce long-range entanglement, the
absence of which might enable efficient classical simulations of the device.

So far, the most comprehensive efforts to assess the role of entanglement in the D-Wave device have
combined theory, experiment, and simulation. The behavior of the D-Wave device has been
experimentally characterized by a Markovian quantum master equation [77]. Actual devices have
inhomogeneity in the coupling between qubits and with the thermal bath, therefore they do not exactly
implement this master equation. Efficient classical simulations of the device must make approximations
in order to simulate the master equation on many qubits. Thus, both the physical device and classical
simulations are approximate implementations of an underlying reference quantum master equation.
From this point of view, the D-Wave device has intrinsic errors that can only be reduced by better
manufacturing to more accurately implement the underlying master equation or further refining the
master equation to better reflect the actual performance of the physical device. It may be possible for
classical simulations to be more accurate at representing the underlying master equation than the
physical device if simulation methods improve more rapidly than device technology.

For a small number of qubits, the D-Wave device and approximate classical simulations have been
compared with accurate solutions of the quantum master equation on an equal footing [67]. In order to
distinguish between the full master equation and simpler models, this study needed to select a special set
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of problems that enhance quantum effects and study more observables than QUBO success probabilities
(e.g. excited state populations and entanglement measures). Under these conditions it was possible to
distinguish between the D-Wave device and a simple model of its qubits as classical rotors. Otherwise,
the rotor model is able to reproduce QUBO success probabilities for previously studied problem sets
[68], and a simple extension is able to reproduce qualitative trends in the success probabilities even for
the special set of problems [78]. With a simple rotor model devoid of quantum entanglement able to
reproduce QUBO success probabilities of the D-Wave device, it is possible that quantum entanglement
serves no useful computational purpose in this type of quantum device. As a result of these studies,
research activities have begun to focus more on identifying new problems that might somehow benefit
from whatever quantum entanglement exists within the D-Wave device. Once such problems are
identified, it is hoped that some subset of these problems will have solutions that are of practical value.

G.3 Quantum advantages for the QUBO problem
It is also important to mention the most optimistic plausible outcome of a quantum speedup on the D-
Wave quantum annealer. Strictly speaking, the annealer outputs samples from a distribution of low-

energy eigenstates of H(t1) = Hz that have energies of the form

N N

Ei= i.(01)i+Ezg.i,k(ca(6fc)i,
j=1 j =lk =1

(3)

where 01)i c{- + 1} is the measured spin in the z direction of eigenstate i on qubit i. Ideally, we want
to determine the minimum value of Ei and the configuration of spins that generates it. The annealer will
output this minimizer with a probability equal to the ground state occupation in p(t1), but nothing
guarantees that this probability will be high for a specific problem. In fact, the lower bound on this
probability must either decrease rapidly as N increases or else the performance of this device will have
major unforeseen implications in quantum complexity theory. This is because the minimization of Ei in
Eq. (3) is an NP-hard problem and there are no known or expected quantum algorithms to solve NP-hard
problems efficiently [78]. In the circuit model of quantum computation, only a polynomial speedup,
comparable to that offered by Grover search, is expected over classical algorithms for this problem. A
brute-force classical algorithm would require n(2N) evaluations of Eq. (3) in order to simply test the
energy of each possible state to determine which attain the minimum energy. On the other hand there is

a Grover-inspired quantum algorithm that requires o(V2N) evaluations [79]. In an adiabatic model,
which is more applicable to the D-Wave device, this Grover-like quantum speedup takes the form of a

minimum energy gap in H(t) that would scale as Q(11\12") [80]. This is an asymptotic quadratic
improvement over classical algorithms

Having no direct connection between entanglement and computational power, most recent performance
assessments of the D-Wave quantum annealer have been relative to solvers run on serial classical
computers [14]. The most recent and careful of such assessments, including ours (Sections 5 and 6),
have found no evidence of a speedup, but it is difficult to compare such dissimilar things as a quantum
annealer and algorithms run on classical computers, which are at a later and more advanced stage of
their development. Perhaps the most direct way to assess a quantum annealer is relative to a comparable
classical annealer. For example, if the operation of the D-Wave device was modified such that a(t) =
and p(t0) is the maximum entropy state, then it would perform as a purely classical thermal annealer.
While the device is not setup such that users can do this, it is in principle a matter of simply turning
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couplings off. In both classical and quantum modes of operation, the device should, in principle,
prepare p(t1) that is the Gibbs state of H(tl) if run sufficiently slowly. The quantum advantage here is
expected to occur when the device is run at a speed that balances thermal and non-adiabatic
depopulation of the ground state and maximizes the ground state occupation. The classical mode of
operation would contain no quantum entanglement -- this is a very focused and well-posed experiment
within which one might establish a correlation between the presence of quantum entanglement and a
computational advantage (i.e. an increase in the final occupation of the ground state).

G.4 Tunneling in the D-Wave device
Besides entanglement, the other quantum effect invoked in discussions of the D-Wave machine is
tunneling. Tunneling is the generic term for a transition between two states by a quantum process that
would be impossible for a purely classical process. Whether this is beneficial or detrimental for
quantum annealing depends on the states under consideration. We consider two points of view with
opposite conclusions. First, one might consider the state of the D-Wave device in the computational
basis. In this basis, the device starts as a quantum mechanical superposition of all possible
configurations and the Hx term in Eq. (2) mediates "tunneline between configurations that differ by a
single spin. This process enables the uniformly distributed weight in the density matrix to focus on low-
energy configurations of Hz as the system progresses through the annealing schedule. Tunneling in this
basis is then the primary quantum mechanism by which the quantum annealer functions. Alternatively,
one might consider the state of the D-Wave device in the instantaneous H(t) eigenstate basis. In this
basis, the device starts in the ground state of FIN) and the "tunneline to excited states is an undesirable
non-adiabatic effect that is minimized by reducing the rate of change of the Hamiltonian. Ideally, we
desire no tunneling in this basis. However, while slower evolutions minimize tunneling to excited states,
they allow more time for thermal processes that cause transitions to excited states. Thus, tunneling is a
subjective concept and its effect on quantum annealing can change depending on the point of view that
one takes.

Because of its subjective nature, quantum tunneling is not usually invoked in the technical discussion
and analysis of quantum computing once the hardware has been abstracted away. It is more typically
used as a convenient descriptor in the classical computing device physics literature. However, it persists
as a compelling concept for describing how the state of a quantum annealer spreads out over the
computational basis despite energy barriers and has been demonstrated to provide computational
advantages over thermal annealing in special cases [79].
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