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Abstract—The integration of solar photovoltaic (PV) systems
onto the existing grid provides a clean source of electrical power.
However, PV systems can only produce power during the day
and is often intermittent. Utility companies must implement
mitigation strategies that account for large ramp rates and high
variability. The strategies include the control of dispatchable
resources that can react quickly to abrupt changes in demand
and generation. For example, electric water heaters (EWH) can
be controlled to help grid operations. This paper reports on a
simulation effort that evaluated the potential for EWH to more
closely follow solar power generation to decrease ramp rates and
smooth PV variability. The experiment implemented an dynamic
setpoint controller that synchronized the charging of EWH with
the sun. The simulation results were coupled with actual feeder
data that support 2,900 residential homes and had a 6MW PV
system. The approach successfully synchronized the EWH with
the PV generation and maintained a comfortable temperature
for the occupants.

Index Terms—electric water heaters, demand response, photo-
voltaic

I. INTRODUCTION

The balance between electrical consumption and production
offers significant challenges for today’s grid. The integration
of renewable energy sources, electro-mobility, and increased
demand requires sophisticated control methods to balance the
overall system in real-time. Demand side management controls
offer a cost effective means to optimize and temporarily
reduce electrical power. For example, energy efficiency can
permanently reduce demand, time of use rates can optimize
schedules to shift demand, demand response (DR) can shed
loads quickly, and spinning reserves can provide frequency
control services [1]. This paper examined the potential for
advanced control of thousands of residential electric water
heaters (EWH) to synchronize demand with solar photovoltaic
(PV) generation.

Advanced control of residential systems, such as EWHs, can
provide significant benefits for the electric grid. The residential
sector has the potential to provide about half of the total peak
demand reduction in the United States [2]]. Existing and past
incentive programs offered by utility companies have enticed
customers to minimize their overall energy consumption and
reduce power draw when needed to improve grid stability.
Existing programs, described by Ericson [3]], have successfully
incentivized customers to allow the utility to control their
EWHs. For example, Xcel Energy paid customers $2 per
month for an entire year if they allowed their EWH to be

disconnected for a 6 hour period during hot summer and cold
winter days. This program included 280,000 EWH and was
able to reduce demand by 330 MW in 2001. An Australian
program was also implemented successfully and reduced de-
mand during peak operations by 389 MW using 355,000
EWH. Current and past incentives programs were typically
designed to shed peak load at the expensive of occupant
comfort. This paper investigates the potential to implement
a program that controls EWHs based on solar PV production
while avoiding occupant discomfort.

Synchronizing the electric power demand of EWHs with the
sun can improve the integration of PV on the grid by leveling
the net power profile. The net power is the difference between
the electrical load and the PV system generation. The net load
profile often has a large valley in the middle of the day caused
by the generation of electricity from PV systems [4]. As a
result, there is a large increase in demand as the sun sets. The
utilities must account for this significant increase in demand
and often rely on expensive generation plants. Instead, utilities
can implement a program that dynamically controls EWH
setpoints. The dynamic setpoint control algorithm uses the
measured irradiance as an independent variable. The algorithm
has the potential to fill the net load profile valley and smooth
intermittent solar PV generation.

This paper describes an experiment that simulated the con-
trol of EWHs using the dynamic setpoint algorithm. The paper
is structured into four main sections: background, methodol-
ogy, results, and conclusions. The methodology provides an
overview of the EWH model and water draw profile. It also
discusses the impact that solar generation has on the grid and
defines the dynamic setpoint control algorithm. The results
section provides a discussion and supporting graphs from the
simulation effort. The conclusions section describes the key
findings and potential next steps.

II. BACKGROUND

Considerable work has been conducted to evaluate the con-
trol of EWHs to support grid services. Research studies have
shown that EWH can be used for demand side management.
Sepulveda et al. successfully implemented a particle swarm
optimization algorithm to control 200 simulated EWHs [5].
The simulation results showed that the EWH control was able
to shift the residential load and reduce morning and evening
peaks by 100kW and 150kW respectively. Another study



evaluated the charging and discharging impacts on exergy [6]
to improve peak shaving control. This study determined what
customers are most likely to be drawing power during the
utility’s peak. This helped the utility company determine
which customers were eligible for the program. Another study
performed by Pourmousavi et al. simulated the control 1,000
residential EWH for demand response (DR) by modulating the
temperature set point [7]]. The research paper defined multiple
control cases, such as set-point control based on time of use
pricing, that can provide peak shaving benefits for the utility.
In addition to peak shaving, research studies have shown that
EWH can provide balancing services for the grid. For example,
Diao et al. [8] modeled 147 residential hot water heaters and
tested centralized and decentralized controllers for frequency
support.

III. METHODOLOGY

The present work used a model to simulate EWHs and
actual demand and PV data from an electric feeder. The
feeder was comprised of 4 substations that support about
2,900 residential buildings. The feeder was observed to have
a maximum electrical load of about 11MW. It also had 6MW
PV array connected to one of the substations. The PV array
provided about 20% of the energy on an annual basis. The
experiment assumed that each of the homes had a EWH
that could be controlled. The EWHs were simulated inside
a control aggregation model written in Python programming
language. The simulation effort evaluated the potential of
hot water storage charging to occur during peak solar PV
generation and also react to intermittent behavior.

A. Electric Water Heater Model

EWH models have been discussed frequently in past lit-
erature. The tanks have commonly been modeled using a
single node approach where the temperature in the tank was
assumed to be constant. This type of model applied a first order
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Fig. 1. The electric hot water heater was modeled using a state space model.
The variables included tank mass and temperature, inlet temperature, heating
element power, and mass flow rate.

differential equation that solved for the tank temperature [8],
[9]. The present work modeled the dynamic EWH system
using a state space model. Unlike the single node approach, the

state space model considered the thermal stratification. EWH
storage tanks experience stratification, shown in Figure [I]
where the cold water is on the bottom and the hot water is on
the top.

The state space model used in this experiment was created
to simulate model predictive controls by Jin er al. [10]. The
approach divides the tank into vertically stacked isothermal
nodes. The model then calculates the energy balance for the
nodes using:

d;]} = Q”h - Qlossi - erawi (1)
where Q;,, is the heating element thermal power,

Qioss is the thermal loss, and

Qdraw 18 the thermal power lost to the house.

The state space model was used to solve the non iterative
part of Equation [I] State space models represent physical
systems using a first-order differential equation and a set of
inputs, outputs, and state variables. In this case, the equations
were developed using:

#(t) = A(t)z(t) + B(t)u(t) ®)

o

y(t) = Cu(t) 3)

where the state variable x is a vector of the thermal tank node
temperatures T; (x = [Ty,T1,...,T11]) and the control variable
u is a vector that contains the ambient temperature (T,),
inlet temperature (T;,,), and the heating element control signal
represented by Seiement (U = [(Ta,TinsSeiement]). The state
space model, described in Equations 2] and [3] was converted
to a discrete time state space model in order to incorporate
temperatures and flow rate. The simulation effort used a 50
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Fig. 2. The average hot water flow at each hour of the day peaked in the
morning around 7:00. It then decreased during the middle of the day and then
peaked again around hour 19:00.

gallon tank with two 4,500 Watt heating elements for each
of the residential buildings. The model also depended on a
realistic draw profile to simulate the thermal and electrical
performance.



B. Electric Hot Water Draw Profiles

The simulation of the 2,900 EWH used random draw pro-
files based on past statistical analysis of residential use [[L1]. A
generator was used to created unique profiles that represented
actual use at one minute intervals. The mean of all the profiles
for each hour of the day is shown in Figure [2] The average
flow profile was very low in the early morning and quickly
increased to a peak around 07:00. The profile then decreased
during the middle of the day and peaked again around hour
19:00.

C. Electric Grid
The integration of solar PV systems presents many com-

plications. Locations where there is a high penetration of PV
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Fig. 3. The net load is the difference between the load and the PV generation.
The net load has a large rampe rate at the end of the day when the sun sets
and demand increases. The change may require utilities to turn on expensive
generation stations.

requires the utility to react quickly to large changes in the
net load. The net load is the difference between the load
and the PV generation as shown in Figure [3] The increase
in demand coupled with the rapid reduction in solar power
generation as the sun goes down at the end of the day can cause
instability on the electric grid. This situation may require the
deployment of an expensive generation station to rapidly come
online and accommodate the load. EWHs have the potential
to mitigate this issue by synchronizing their charging with the
solar production.

The synchronization of the EWHs with the sun can also help
with the intermittent generation of power caused by clouds.
The variability in solar generation, shown in Figure f] can
cause large fluctuations in the net load. The variability has
been addressed in past literature with batteries [12], hybrid
storage [13[], heating/cooling equipment [[14)], and others. The
different approaches have attempted successfully to smooth
the PV output using various storage devices. The present work
used EWH to match the load with the solar generation. The
approach used a control signal for the hot water tank setpoint
temperature that was dependent on the solar irradiance.
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Fig. 4. The net load, which is the difference between the load and the PV

generation, can have rapid fluctuations caused by solar intermitenacy due to
clouds. The variability can cause instabilities on the grid.

D. Setpoint Control

The control of EWHs can provide services that improve the
viability of solar PV on the grid. Solar energy at the earth’s
surface can change rapidly throughout the day as clouds move
across the sky. The changes can have an impact on the grid in
locations where there is a high penetration of PV. The dynamic
setpoint control of EWH can help synchronize the solar power
with the load and simultaneously maintain occupant comfort.

The control of the simulated EWHs, that typically have a
static setpoint temperature, were altered to have a dynamic
setpoint. The setpoint temperature is the reference tempera-
ture that is compared with the actual water temperature to
determine the control of the heating element inside the EWH.
If the water temperature (T qer) 1S less than the setpoint
temperature (T,,) by more than 2.7°C than the heating element
is turned on as shown in Equation

On,
Off,

if Typater < Top — 2.7°C

Heating Element = .
otherwise

“4)

The dynamic setpoint, used in this experiment, was a nonlinear
function:

T., = 12(E/1300)3 + 45 (5)

where E is the measured irradiance (W/m?2). In this experiment
the static set point temperature was set to be 49°C. The non-
linear function, plotted in Figure [3] is a third-order equation
where the setpoint temperature is set to be 45°C at low solar
irradiance and slowly climbs to 49°C at 700 W/m?. Between
700 and 1200 W/m? the function increases from 49°C to about
54.5°C. The nonlinear set point control is necessary so that the
heating element in the EWH does not turn on at low irradiance
unless it is necessary for occupant comfort. The set point
temperature can exceed 52°C at high irradiance so that the
tank can maintain a comfortable temperature throughout the
night and morning.
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Fig. 5. The control algorithm increases the temperature set point based on a
nonlinear function that increases from 45°C to 54.5°C exponentially.

E. Experiment

The simulation of 2,900 EWHs was conducted in a co-
ordinator manner to compare a typical operations with two
different dynamic setpoint control scenarios (Table [). The
first test was the baseline simulation that modeled all of the
EWHs with a static set point of 49°C. The second test modeled

TABLE I
CONTROL SCENARIO TESTS

Control e
Test Name Static Set Point (49°C) Tylgynamic Set Point
0 Baseline 2,900 0
1 Solar Control A 1,933 967
2 Solar Control B 967 1,933

1,933 EWH with a static set point of 49°C and 967 with the
dynamic nonlinear set point defined by Equation [5] The third
test decreased the number of EWHs controlled using the static
set point of 49°C to 967 and applied the dynamic set point to
1,933 EWHs.

IV. RESULTS

The experiment simulated three different scenarios as de-
scribed in Section [II-El The EWH results from each scenario
was combined with the actual PV and load data from a feeder.
The results include an overview of typical water draw and
electric demand profiles. The typical operations simulation
was performed first to develop a baseline profile that could be
compared with the results from the proposed dynamic setpoint
control algorithm. The dynamic setpoint control algorithm was
simulated in three different scenrios where it was applied to
33%, 66%, and 100% of the EWHs in the 2,900 homes.

A. Typical Control of Electric Water Heater

The electric feeder had a load profile that peaked to about
10MW in the afternoon and dropped below 4MW in the
early morning, as shown in Figure [6] Over the three day
period the PV generation fell to zero during the night and

reached a maximum of 3.8 MW over the three day period.
The simulation of typical EWH operating conditions had a
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Fig. 6. Under normal operating conditions the load peaked to about IOMW in
the late afternoon and dropped to around 4MW in the early morning. The PV
generation reached a maximum value of 6MW during the day and dropped
to zero at night. The electric water heater simulation had a peak load in the
morning around 07:00 and then a smaller peak around hour 19:00.

profile that peaked to about 2MW around hour 08:00.
The electric power draw from the 2,900 EWHs followed
closely with the hot water draw. The total power for all 2,900
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Fig. 7. The three day period in August had a peak power draw of about
1.9MW. The water flow reached a high of about 15kg/second for the 2,900
simulate EWHs.

EWHs increased and decreased with the water flow, but was
slightly offset as shown in Figure [/| The offset indicated that
time to charge the thermal tank expanded beyond the usage
of the hot water. The tanks were charged right after the water
temperature dropped below the setpoint value.

B. Dynamic Setpoint Control of Electric Water Heater

The control algorithm was able to synchronize the EWH
electrical demand with the solar generation as shown in
Figure [§] that plots a four day period in August. In this case,



6 \

Static & Dynamic Setpoint Controlled Electric Water Heater and PV Power

| - - EWH Dynamic Setpoint -

EWH Static Setpoint

— PV|

Power (MW)

Fig. 8. The uncontrolled electric water heater charging power does not match well with the PV generation profile under normal conditions.
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set point control algorithm applied to 33% of the residential homes synchronizes consumption with PV generation over a four day period.

the simulation controlled about 960 of the 2,900 EWHs using
the dynamic setpoint control algorithm. The power consumed
by the 967 EWHs increased and decreased with the generated
solar power. During the night the overall EWH power draw
was less than the EWHs controlled using a static setpoint. The
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Fig. 9. The solar irradiance dependent set point algorithm was able to fill in
the valley created by the PV production and smooth the variability.

reduced power demand during the night was because the tanks
had been charged to a higher set point than normal during the
day. The EWH power demand was combined with the net load
to evaluate the impact on the variability and end of day ramp
rates.

The control of the 967 EWHs affected the net load by
increasing demand during the day and then decreasing it
during the night. This result was computed by first subtracting
the baseline EWH demand from the measured net load and
then adding the results from test 1. The new load profile,
shown in Figure [0} filled in the valley and decreased the
magnitude of the intermittent spikes. The approach eliminated
the large ramp rate that had occurred at night fall in the
baseline simulation.
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Fig. 10. The dynamically controlled setpoints for 67% of the EWHs allowed

the net load to follow the solar PV generation profile well. It also decreased
the overall load at night by about 1.IMW between hour 16:00 and midnight.

The second test, that controlled 1,933 EWHs with a dynamic
setpoint and 967 with a static setpoint, was able to follow
the PV generation profile well (Figure [I0). The net load was
much higher than the baseline during the day and it followed
the variable output of the PV system well starting at 11:00
in the morning. The control algorithm was not able to follow
the solar generation as much in the morning. However, in the
afternoon the net load increased from a max value of MW in
test 1 to a maximum load of 16MW. The night time demand
differential also increased.

The simulation calculated the average temperature at the
top and bottom of the tank. During the same four day period
between August 4th and 7th that is plotted in Figure [§] the
average temperature at the top of the tank did not drop below
50°C as shown in Figure [T} Additionally, the bottom tem-
perature did not drop below 47.5°C. The average temperature
in the EWHs that were synchronized with the sun remained
within a comfortable range for users.
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Fig. 11. The simulation effort calculated the top and bottom temperatures in the hot water tanks. The temperatures stayed within a range that maintained
occupant comfort through the four day period. The top temperature did not drop below 50°C and the bottom temperature stayed above 47.5°C.

V. CONCLUSION

The experiment simulated 2,900 EWHs using two different
control approaches. The first approach emulated typical oper-
ations of an EWH and used a static setpoint. The second ap-
proach used a dynamic setpoint control algorithm that changed
the setpoint based on the measured irradiance. The simulation
effort found that the dynamic control of EWH setpoints can
be used to synchronize the tank charging with solar PV
generation. The approach mitigated the sudden increase in the
net load that occurs when the sun sets. It also addressed the
need to smooth the variability of PV by matching the electric
power draw of the EWH with the intermittent solar generation.
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