

Targeted Evaluation of Utility-Scale and Distributed Solar Forecasting

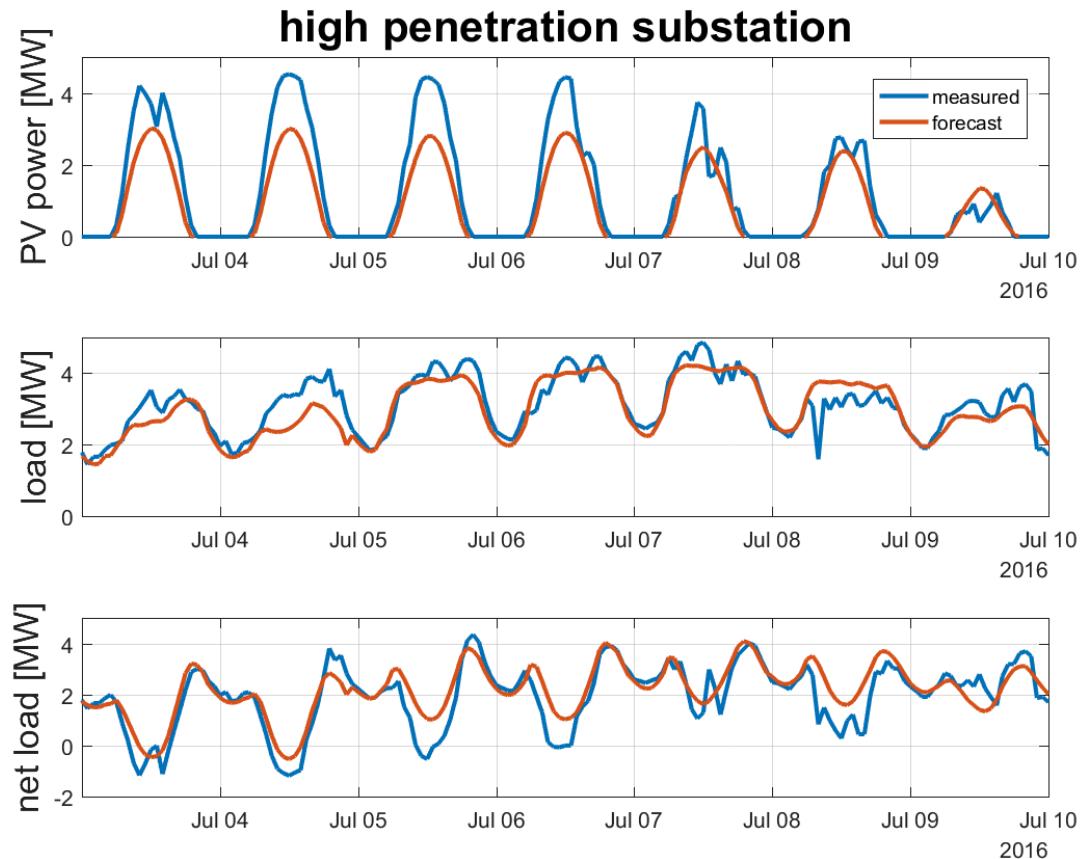
Matthew Lave, Robert J. Broderick, Laurie Burnham
IEEE PVSC 44, Washington, DC
June 27th, 2017

Forecast Data Evaluated

- Commercial forecast – same forecast provided to system operators
- Forecast uses historical training based on machine learning
 - algorithms retrained on a regular basis as the historical database expands
- Three scenarios:
 - Single substation with high PV penetration
 - Aggregate of several substations, representative of a utility's full PV portfolio
 - Utility-scale PV farm
- 1-year of forecasted and measured PV generation, at 1-hour intervals; forecasts published at midnight UTC
- For substations, also forecasted and measured load

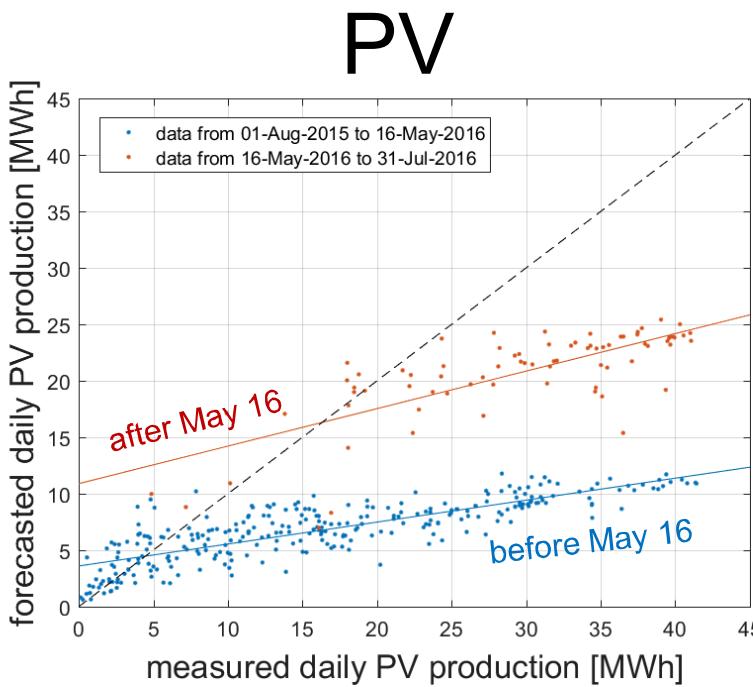
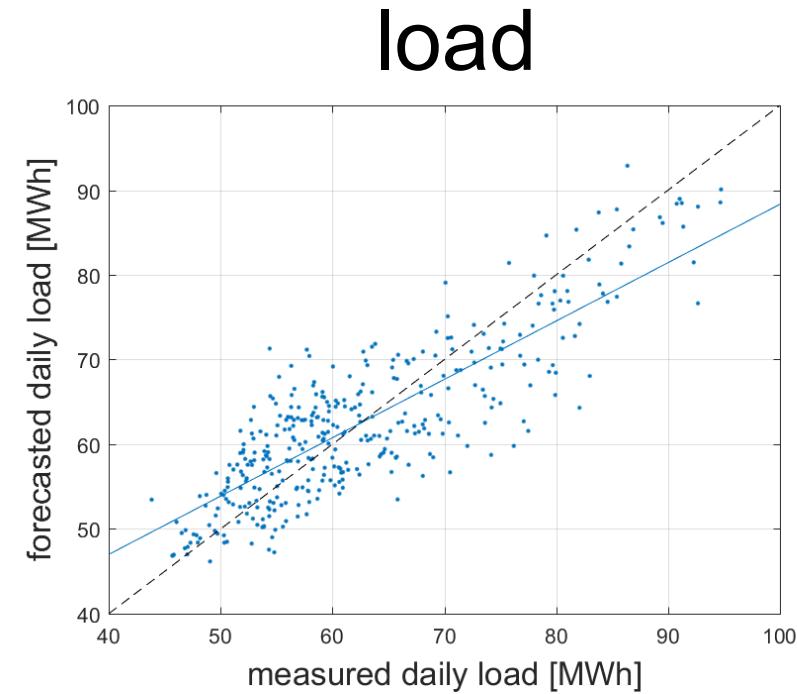
High Penetration Substation

- Maximum PV generation 4.7MW; maximum load of 5.7MW
 - Reverse power flow (PV generation > load) occurs > 10% of the time
- Negative (under-prediction) errors in PV forecast.
- Load forecast under-predicts midday.
- There partially cancel in net load: midday forecasts mostly match measured



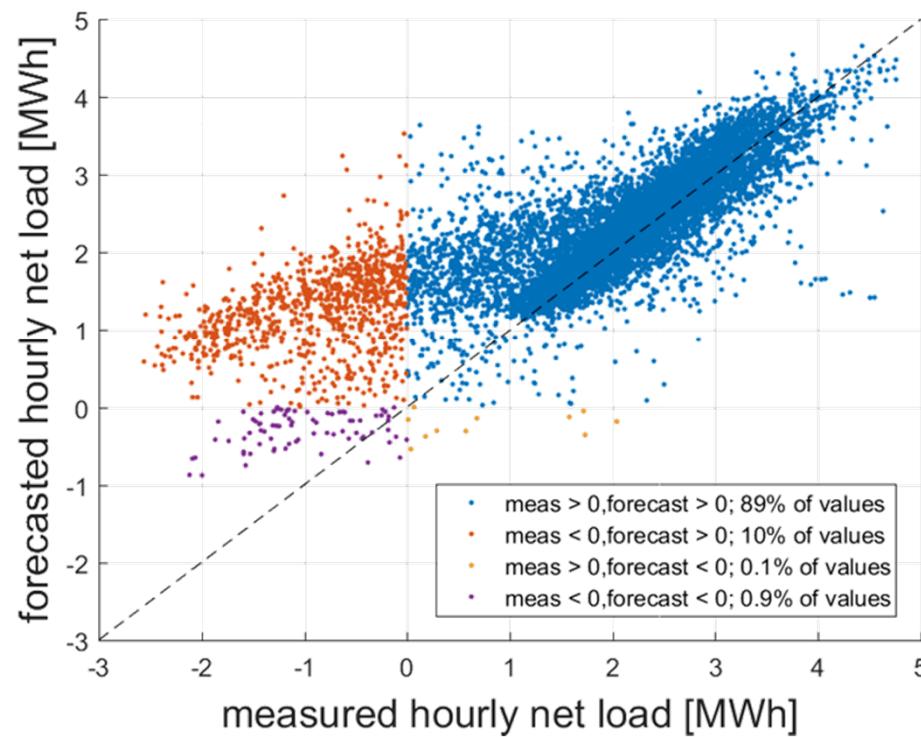
High Penetration Substation

- PV forecast follows linear trends, but not correct magnitude
 - Change in magnitude on May 16th, but forecast still low
- Load forecast matches measured much better



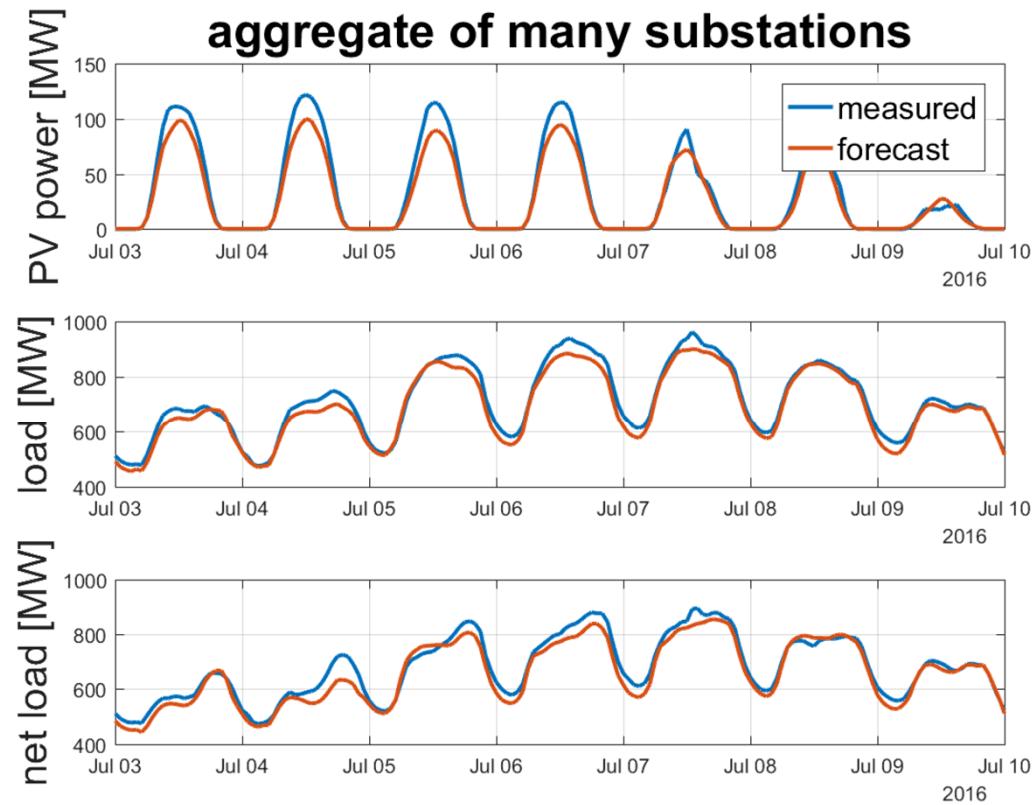
High Penetration Substation

- Net load shows reverse power flow
- For 10% of the values, measured showed reverse power flow but forecast predicted positive flow
 - Mostly caused by under-prediction of PV power



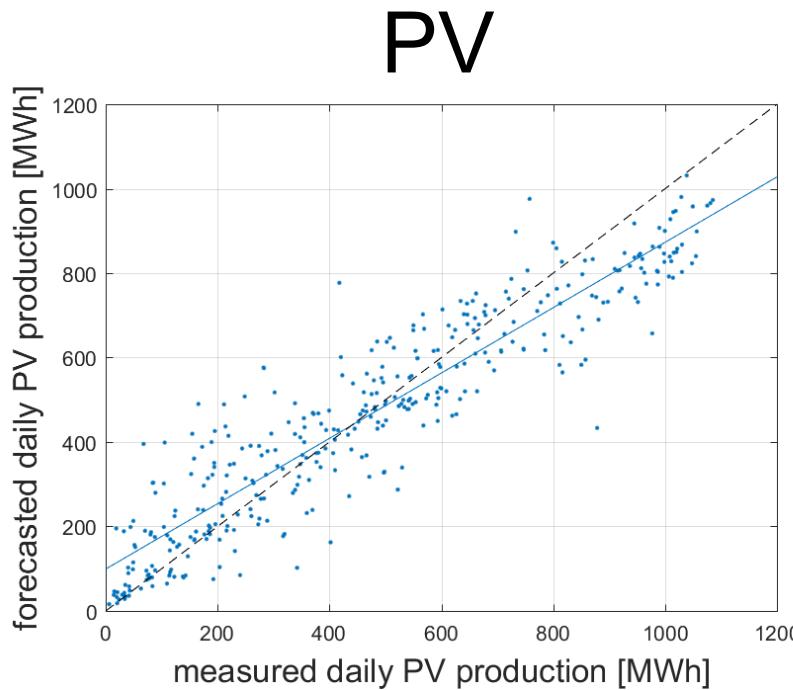
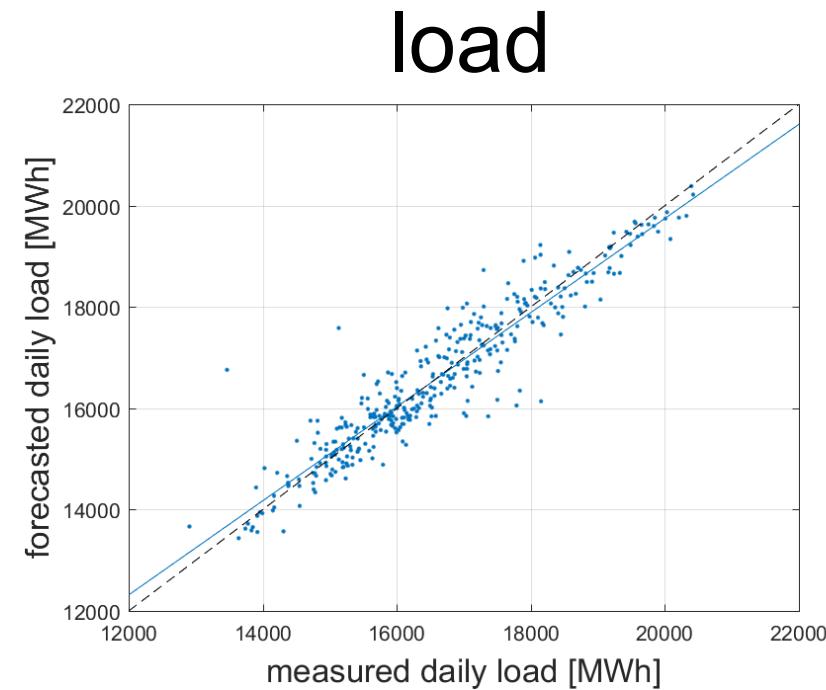
Aggregate of Many Substations

- Maximum PV generation only 12.6% of maximum load
 - Reverse power flow never occurs, load forecasts have more impact on net load than PV forecasts
- PV forecasts match better, but still low.
- Load forecasts match well.
- Net load forecasts depend mostly on load forecasts; reverse power flow never occurs.



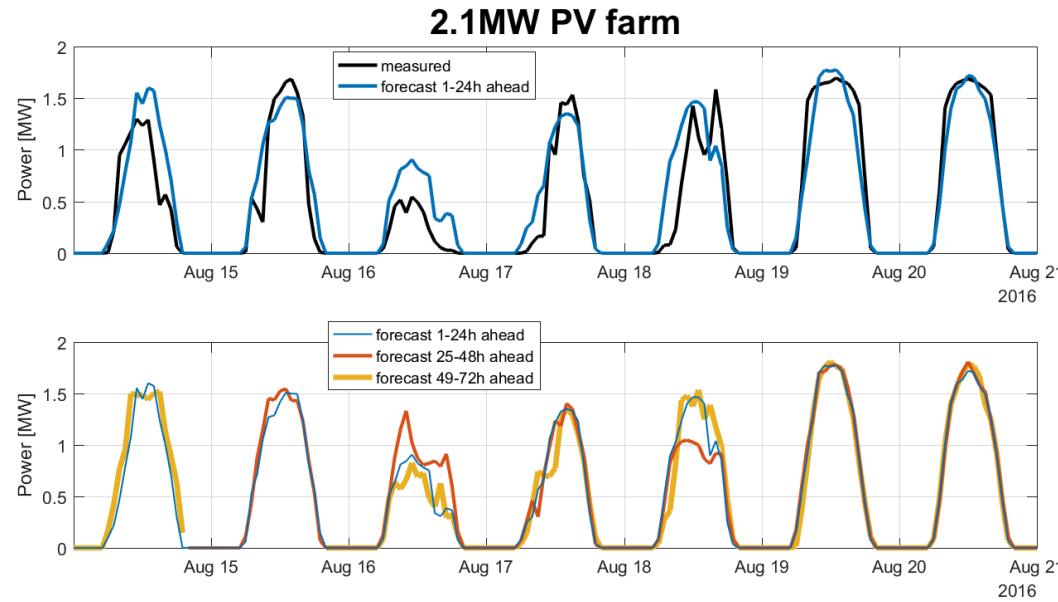
Aggregate of Many Substations

- PV forecast better matches measured
 - Slight over-prediction at low PV production; slight under-prediction at high PV production.
- Load forecast matches measured very well



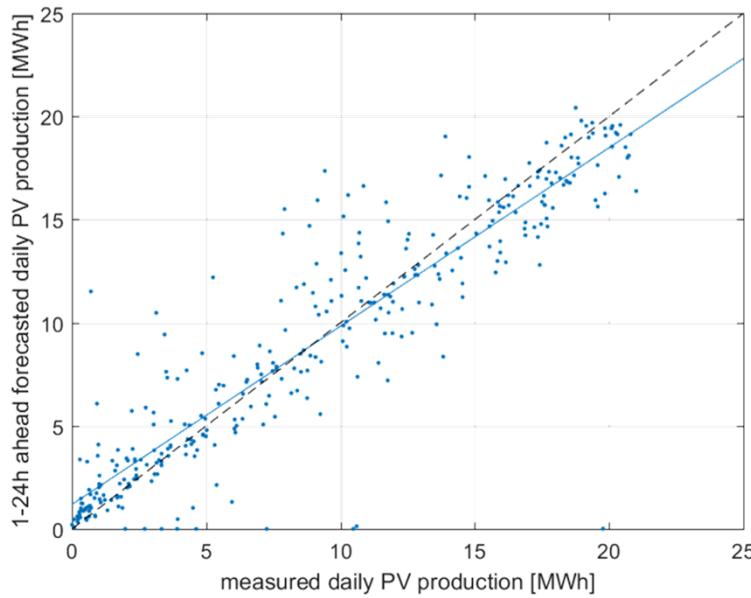
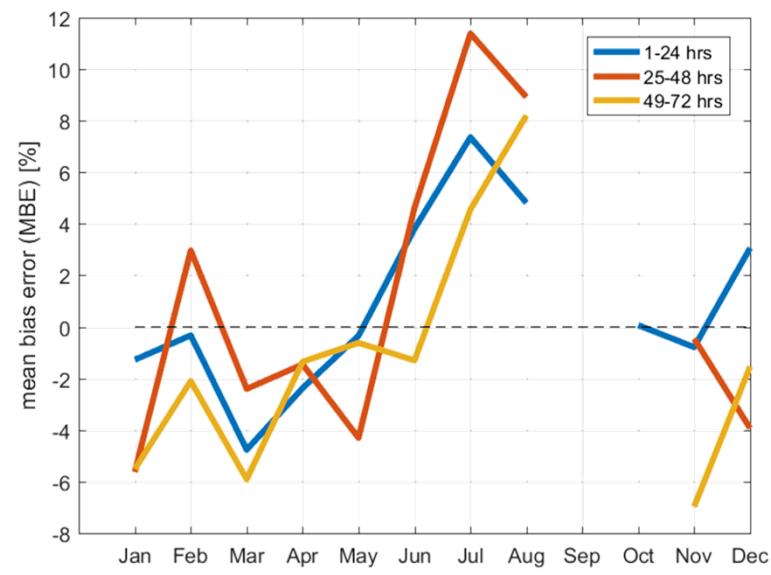
Utility-Scale PV Farm

- 2.1MW PV farm
 - Included forecasts at 3 different time horizons: 1-24 hours ahead, 25-48 hours ahead, and 49-72 hours ahead.
- Clear days (Aug. 19, 20) predicted with reasonable accuracy.
- Cloudy days introduce more uncertainty (e.g., Aug. 16)
- More variability between time horizons on cloudy days
- No clear improvement at shorter forecast horizon.



Utility-Scale PV Farm

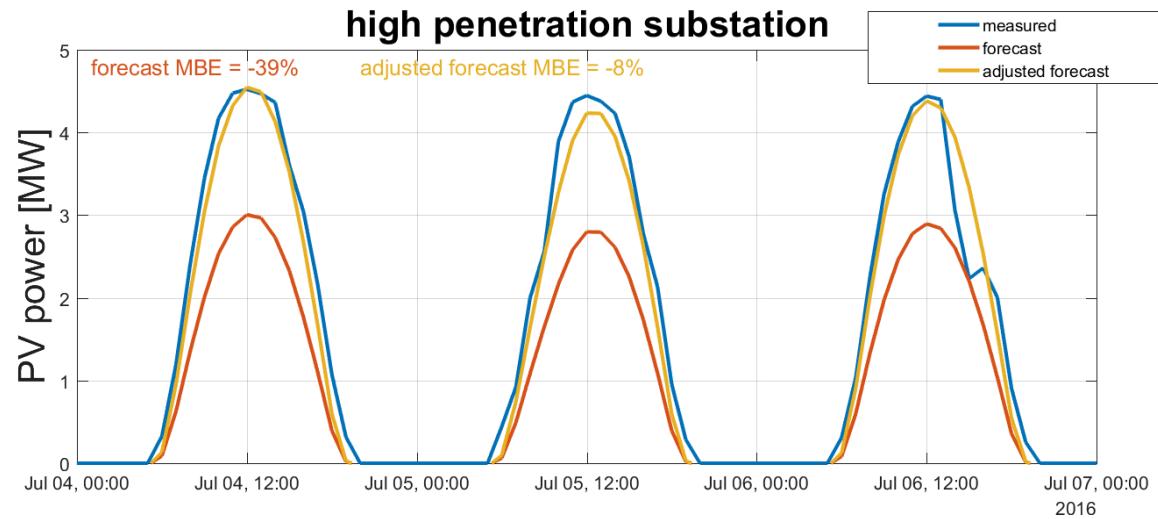
- Close agreement between measured and forecasted
 - Machine learning is more effective for PV farm than for substations – more consistent performance over time
- Slight over-prediction at low PV production; and vice-versa
 - This “centrist” behavior likely an artifact of machine learning
- Seasonal changes in bias: -6% in winter to +7-11% in July



Suggested Forecast Improvements

Faster adjustment for changes in PV capacity

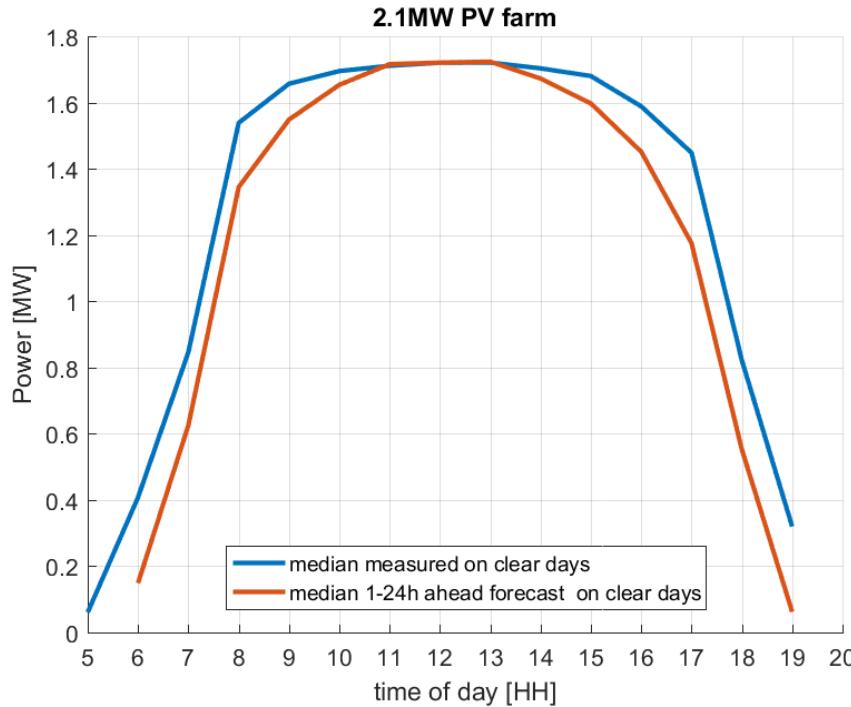
- Residential PV is installed all the time
 - Current forecast updates ~once per 6 months
 - Can lead to significant under prediction of PV production
- One simple solution: scale the forecast by the ratio of maximum measured to maximum forecasted power from the previous week



Suggested Forecast Improvements

Directly account for tilt and azimuth angles

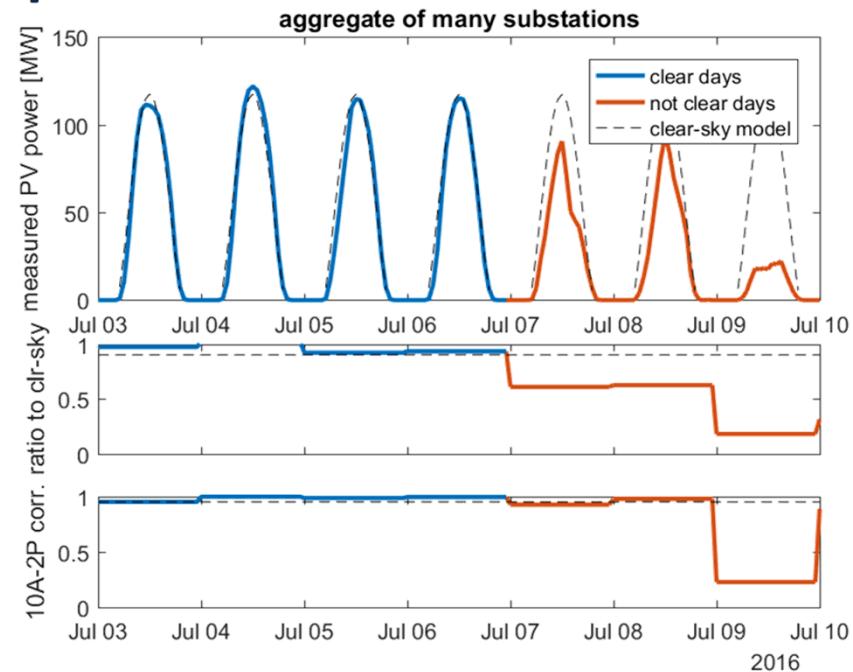
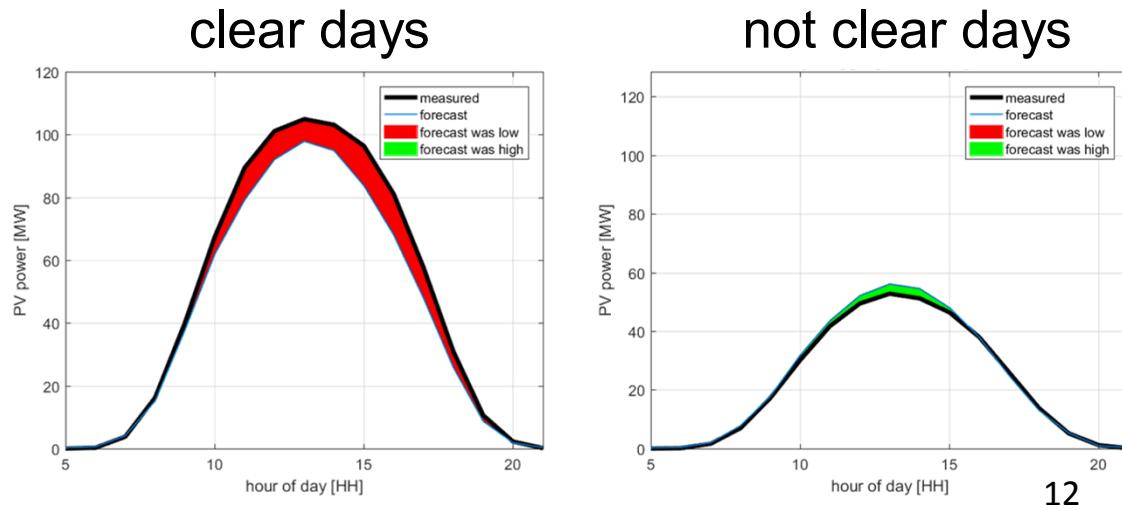
- Machine learning in the PV farm forecast only accounts for the tilt angle of the PV modules (not the azimuth)
- Systems deviating from due south result in time-of-day dependent forecast errors



Suggested Forecast Improvements

Separate Forecast Training for Clear vs. Other Days

- Machine learning trained on all days is “centrist” – over-predicts cloudy and under-predicts clear
- Can use simple clear-sky detection
 - Forecast on clear days can be based on a clear-sky model + historical clear data
 - Forecast on other days can be trained from the remaining historical data



Conclusions

- Load forecasts were generally accurate
- PV forecasts most accurate at PV farm; substation forecasts tended to be low, perhaps due to new PV installations
- Suggested three strategies for forecast improvement
 - accurately account for the total amount of distributed solar installed capacity, including fast updates to account for new installations
 - incorporate azimuth in addition to the tilt angle in forecast training
 - Segmenting clear from not-clear days for better training and more accurate forecasts, especially on clear days
- Forecast improvement suggestions have been well-received by the forecast provider and are already being implemented.