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Forecast Data Evaluated ) &,

= Commercial forecast — same forecast provided to system
operators

= Forecast uses historical training based on machine learning

= algorithms retrained on a regular basis as the historical database
expands

= Three scenarios:
= Single substation with high PV penetration

= Aggregate of several substations, representative of a utility's full PV
portfolio

= Utility-scale PV farm

= 1-year of forecasted and measured PV generation, at 1-hour
intervals; forecasts published at midnight UTC

= For substations, also forecasted and measured load
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High Penetration Substation UL

= Maximum PV generation 4. 7MW, maximum load of 5.7MW

= Reverse power flow (PV generation > load) occurs > 10% of the time
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High Penetration Substation UL

= PV forecast follows linear trends, but not correct magnitude

= Change in magnitude on May 16™, but forecast still low

= |Load forecast matches measured much better

PV load
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High Penetration Substation UL

= Net load shows reverse power flow

= For 10% of the values, measured showed reverse power flow
but forecast predicted positive flow

= Mostly caused by under-prediction of PV power
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Aggregate of Many Substations UL

= Maximum PV generation only 12.6% of maximum load

= Reverse power flow never occurs, load forecasts have more impact on
net load than PV forecasts

3 aggregate of many substations
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Aggregate of Many Substations .

= PV forecast better matches measured

= Slight over-prediction at low PV production; slight under-prediction at
high PV production.

" Load forecast matches measured very well
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Utility-Scale PV Farm .

= 2. 1MW PV farm

= |ncluded forecasts at 3 different time horizons: 1-24 hours ahead, 25-
48 hours ahead, and 49-72 hours ahead.

= (Clear days (Aug. 19, 20) predicted with reasonable accuracy.
= Cloudy days introduce more uncertainty (e.g., Aug. 16)

= More variability 2.AMW PV farm
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Utility-Scale PV Farm ) e

= Close agreement between measured and forecasted

= Machine learning is more effective for PV farm than for substations —
more consistent performance over time

= Slight over-prediction at low PV production; and vice-versa

= This “centrist” behavior likely an artifact of machine learning

= Seasonal changes in bias: -6% in winter to +7-11% in July
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Suggested Forecast Improvements @&

Faster adjustment for changes in PV capacity
= Residential PV is installed all the time

= Current forecast updates ~once per 6 months
= Can lead to significant under prediction of PV production

= One simple solution: scale the forecast by the ratio of
maximum measured to maximum forecasted power from the
previous week
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Suggested Forecast Improvements @&

Directly account for tilt and azimuth angles

= Machine learning in the PV farm forecast only accounts for
the tilt angle of the PV modules (not the azimuth)

= Systems deviating from due south result in time-of-day
dependent forecast errors

2.1MW PV farm
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Suggested Forecast Improvements ) =,

aggregate of many substatlons
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Conclusions ) 2=,

= Load forecasts were generally accurate

= PV forecasts most accurate at PV farm; substation forecasts
tended to be low, perhaps due to new PV installations

= Suggested three strategies for forecast improvement

= accurately account for the total amount of distributed solar installed
capacity, including fast updates to account for new installations

= incorporate azimuth in addition to the tilt angle in forecast training

= Segmenting clear from not-clear days for better training and more
accurate forecasts, especially on clear days

= Forecast improvement suggestions have been well-received
by the forecast provider and are already being implemented.
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