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Abstract—We present a temporal model of individual-scale
social media user behavior, comprising modal activity levels
and mode switching patterns. We show that this model can be
effectively and easily learned from available social media data,
and that our model is sufficiently flexible to capture diverse users’
daily activity patterns. In applications such as electric power
load prediction, computer network traffic analysis, disease spread
modeling, and disease outbreak forecasting, it is useful to have
a model of individual-scale patterns of human behavior. Our
user model is intended to be suitable for integration into such
population models, for future applications of prediction, change
detection, or agent-based simulation.

I. INTRODUCTION

On-line social media contain massive amounts of latent
information of benefit to building user models. When trained
and used to track the conditional likelihood of new content,
user models can be applied in many ways. Herein, we present a
Bayesian model that interprets timestamped events in the con-
text of a hidden user mode. Our work focuses on representing
daily shifts in per-user temporal patterns. A hidden Markov
model tracks the user’s changing mode, which affects the
interval between events; we add to this conventional baseline
a learned function for the user’s shifting daily mode transition
probabilities.

A Bayesian network represents the dependencies between
hidden domain structure and observable data. Once learned,
networks may be used in forecasting and active analysis. As
an example, when using social media for disease forecasting,
we might learn activity probabilities from user data and then
simulate varying disease transmission on a society scale.
When building models for change detection, we might use
similar models to monitor sensor data likelihood under several
competing scenarios of interest. At the heart of Bayesian
analysis are algorithms for approximation of the posterior
hidden-value likelihood distribution supported by the evidence.
In this work we used a Markov chain Monte Carlo (MCMC)
strategy known as “Gibbs sampling” [2] both as a parameter
approximation algorithm and to generate statistics for compar-
ison with training data as a posterior predictive check of the
model.

We use Twitter as the source of our per-user temporal
streams. Twitter is a popular microblogging site where users
regularly generate tweets (very brief and generally public
status updates) that are immediately posted for others to read.

As these tweets require minimal effort to generate and are
posted immediately, we believe their temporal patterns can be
useful for observing changes and patterns in a society’s day-
to-day activities. Twitter provides a public API which allows
access to large volumes of tweets [4] to enable social network
research and development of media-enabled services.

We present a model for an individual user’s temporal
behavior (Section III) and show that it accurately fits real
users’ temporal patterns (Section IV). This model is relatively
straightforward, directly implementable in modern statistical
languages, and runs efficiently when fitting model parameters
to data.

II. PREVIOUS WORK

Many have studied Twitter for its own sake, or as a proxy
for phenomena in real-world (vs. on-line) social networks and
human communication. For example, Lukasik et al. studied
tweet arrival times across users on the same topic/rumor using
inhomogenous Poisson processes [5]. Their model and our
own are Bayesian and use log-normal distributions but model
different phenomena. Additional types of stochastic process
models have been used to study information propagation
through social media [6]-[8], including cases where informa-
tion may pass out of band (through other social networks,
human interaction, advertising, efc.). Yang and Zha [9] present
an example of this using variational Bayes to simultaneously
track spreading memes while estimating the diffusion network
through which the meme was spreading.

Our work was inspired by Watson’s Time Maps [10] — a
visualization of a single user’s temporal Twitter usage patterns.
Figure 1 shows a Time Map for a single user. Others have used
this as a visualization technique to study users (e.g., [11]) but
not as the basis for graphical time series models.

In some ways, our work could be compared with Linderman
et al.’s recurrent switching linear dynamical systems [12]. They
split temporal data into modes based on current mode and
other covariates. However, their work includes linear dynamic
systems (e.g., basketball player trajectories) while ours focuses
purely on temporal dynamics (e.g., when one may be more
likely to tweet more often) and our model is therefore simpler.

There are a number of strategies for forecasting the severity
of outbreaks at a range of scales. Examples include aggre-
gated diffusion models informed by airline traffic networks



[13], regional movement models informed by cell tower data
[14], and detailed agent-based models representing millions
of individuals incorporating subject matter expertise [3]. In
EpiSimS, each individual was assigned a schedule comprised
of eight activities, and each individual’s propensity to iso-
late themselves when ill was prescribed. Bayesian sampling
algorithms are typically computationally demanding, so for
massive simulation applications such as [3] it would be more
appropriate to sample derivative quantities from the model and
produce pregenerated schedules than produce random events
directly from the posterior distribution.

For many diseases, managing them is greatly aided by early
detection. Social media, phone centers, and internet search
records have been used to provide early warning indications
of outbreaks when people begin to seek out information or
help [1], [15]. Our proposed model could be incorporated
into a system that detects subtle behavioral shifts and could
potentially also contribute to such early warning systems for
disaster response [16].

III. PROPOSED MODEL

We present a model that accurately represents much of
Twitter users’ temporal behaviors while being simple enough
to use in agent-based simulations. This model builds upon
the assumption that each user has a discrete set of activity
levels, or temporal “modes”, within which the time between
tweets is predictably distributed. The parameters governing
these activity levels are estimated from the data along with
coefficients that describe the user’s likelihood of switching
between modes based on the time of day.

A simple example will help illustrate our point. Over the
course of a normal day, user Alice tweets every few hours.
Occasionally, however, user Bob invites Alice to join him and a
group of friends to dinner via a targeted message (known as an
“at”-refer or @-refer). Alice responds to Bob’s message, and
during the exchange they send several tweets within minutes
of each other discussing alternatives, and confirming the time,
location, and other details. At the end of most days, Alice
ceases tweeting in the late evening, and is not likely to resume
tweeting until the following morning.

In this example, Alice exhibits three modes of activity —
“engaged” (tweets every few minutes), “casual” (tweets every
few hours), and “sleeping” (many hours until next tweet).
Moreover, Alice’s likelihood to enter the “sleeping” mode
increases throughout the day, and while she is very likely
to leave this mode in the morning, it is left to the model
to estimate her predisposition to begin the day by engaging
in new discussions or tweeting casually. Although it may
seem contrived, patterns such as the one described can be
found in many users’ post time data on Twitter. To illustrate,
Fig. 1 charts the time between tweets for a single individual
whom we refer to as User 28; the distribution of tweets match
this description particularly well. In practice, some users may
exhibit more or less than three modes. To avoid reading too
much into the results of any individual user, we will simply
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Fig. 1. Time map of pronounced modes. This user (User 28) has three

(uncharacteristically) distinct and clear temporal modes: “engaged” in the
lower left corner and “casual” near the center of the plot, with a faint
“sleeping” mode in the upper right corner. The two hot spots above and to
the right of the central casual mode indicate that User 28 generally enters the
“sleeping” mode from the casual mode, and typically returns to the casual
mode. Note that both axes are at logarithmic scale.
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Fig. 2. Plate notation for single-user model. ;, o, m, and 3 are hidden
variables. ¢ and A are observed. When expanding this shorthand description,
nodes in plates M and W are replicated and indexed based on the size of
the corresponding sets, and selectively reconnected based on the conditional
dependencies described. [17]



TABLE I
NOTATION DEFINITIONS.

w Set of user’s tweets

Number of user’s tweets

w Tweet index, w € 1...|W|

tw Time of day of tweet w
Previous interval = ¢, — ty—1
M Set of user’s modes

|M|  Number of user’s modes
My Mode ordinal of tweet w
m Mean of mode m

Om Standard deviation of mode m
B Transition function coefficients

Prior parameters for p

Prior parameters for o

C Categorial parameter for mq

Prior bounds on elements of 8

refer to the modes by their ordinal numbers; modes are sorted
in increasing mean time intervals to avoid aliasing.

We use Bayesian methods to model the different user modes
and transition likelihoods [18], [19]. Figure 2 shows our
proposed model in plate notation, and Table I provides the
meaning of each of the variables. A set of tweets (plate W,
indexed with w) are observed, each at some time of day (¢,
minutes into the day), generated by some unknown activities
we describe as a set of modes (plate M, indexed with m,
and corresponding to the possible values of each random
variable m,,). The mode m,, producing a tweet is selected
based on the time of the previous tweet, the previous mode
mq—1, and a function that models the shifting probabilities
of mode transitions from m,,_1 to m,. This hidden random
function is a categorical-valued function of time of day and
mode, represented with hidden variable coefficients 5. Mode
m.,, determines the distribution for the time interval between
this tweet and the previous, denoted by A,,, which is observed
for all but the first tweet my. Under this model, to make clear
a possible point of confusion, the time of day and mode of
each tweet (t,—1 and m,,_1) along with the learned function
coefficients 5 determine the relative probabilities of the next
mode m,,; so, a user’s casual tweet late in the evening may
make it more likely for the next mode to be ‘“sleeping.”
However, that mode then determines the A,, delay leading
up to the associated tweet; so, a user’s first message of the
morning might be produced by the “sleeping” mode making
a lengthy interval that spanned the night more likely.

The posterior probability of all model parameters is given
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Fig. 3. Mode transition probability at time ¢,, for a single mode m,, = 1.
An example of how mode transition probability is computed from a set of
coefficients B, 1 ,m.,,i- See Eqs. (2a)—(2d).
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where A, Gamma, and Cat denote the probability density
functions for the standard normal, gamma, and categorial
distributions, respectively. The asterisk subscript (e.g., Ay)
indicates use of the elements of the vector in question. The
A, are observed for w # 1 and the covariates ¢, are fully
observed. These are separated only for convenience, the former
being entirely determined by the latter.

The mode transition  factors p(8|D,E)  and
p(My|My—1,tw—1,06) in Eq. (1) incorporate a variable-



valued function of time of day broken down as:

p(mw|mw717 tw-1, ﬁ) ~ Cat((r:(mu,_l,*)) (2a)
Q« = lerp(ﬂr,iv ﬂr,ja tw) (2b)

p(BID,E) = [[ p(B.:|D, ) (2¢)

p(ﬁr,* ]D),E) ~ U(]D), E)7 (2d)

where U denotes the probability density function for the
uniform distribution, » = (m,,_1,mM,) is a notational con-
venience to designate the appropriate mode pair, and ¢ (or j7)
is a lower (or upper) bound on the time of day messages are
posted. In Eq. (2a), (;—(m,,_,,«) 18 a vector of calculated values
given the previous mode and each possible subsequent mode.
In Eq. (2b), lerp(a,b,c) is the linear interpolation function
between a and b at a distance c¢. More precisely:

_ Z) B’r‘,j - ‘ﬁr,i (3)

lerp(ﬁr,ia ﬁr,ja tw) = 6r,i + (tw ] i

Figure 3 depicts how categorical mode probabilities are
drawn from these equations. During sampling, the generated
coefficients 5 implicitly define ratios which, when normalized,
allow for a certain amount of nonlinear behavior in the shifting
mode transition probabilities throughout the day. The specific
[-derived ratio for the time of the current tweet is used
for likelihood of transitioning into any next mode (Egs. (2a)
and (2b)).

Having defined the posterior likelihood function over the
entire model, the next step was to implement the model in
JAGS [2]. The implementation tells JAGS how to calculate
the total data log likelihood given candidate values of all
hidden variables. The performance of the model was sufficient
to render such mathematical exercises unnecessary.

IV. DATA AND RESULTS

Using the Twitter API, we selected 29 users that included a
mix of organizations, celebrities, automated systems (“bots”),
and conventional individual users,' as well as the time stamps
of their most recent tweets.” For privacy concerns, we do not
provide identifiers and instead refer to all of these entities as
“users”. We sought out several different types of users to test
the model’s flexibility; collecting representative samples that
would enable good population distribution estimates is beyond
the scope of this paper.

We implemented the model defined by Eq. (1) using R [20]
and JAGS (via rjags [2]) to describe the likelihood calcula-
tions. JAGS develops a Gibbs sampler, which produces random
samples from a converging estimate of the posterior joint
probability distribution across all hidden variables. Because

IUsers other than organizations and celebrity personalities were chosen by
selecting a random ID from recent tweets published by the Twitter drip line,
which is a non-uniform random sample from 1% of all tweets. This technique
is biased toward users who tweet more often, and returns both apparent real
users and apparent “bots”.

2Generally 1,000-1,200 tweets per user ID; two users had tweeted fewer
times (245, 690).
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Fig. 4. Three-mode model of User 28. In this case the data is clearly
separable into the three modes (color of raw histograms) and a mixture of
normal distributions is generally a good fit to the raw data, although mode 3
is used to span both one-evening and two-day intervals.

TABLE I
MODEL PARAMETERS.

M {4n:n e 1.|M[}
S 5

A1

B 1

c 1/|M]|

D  0.001

E 0999

tweets are not posted with a time zone or the sender’s local
time, the different users live in different time zones and have
varying sleep patterns, a procedure to align the data is needed.
We computed each user’s time-of-day tweeting histogram by
shifting their associated timezone such that midnight in the
shifted data corresponded with the time period they were least
likely to tweet. In a larger study it would be desirable to extend
the model to estimate the time zone of each user or alter the
model transition likelihood function in Eq. (2b) to be periodic
(or both) and avoid this extra step. In simulation, individual
agent time zones could be resampled from a distribution or
initialized deterministically depending on the application.

For each user, we varied the number of modes as |M| €
{2,3,4} for a total of 87 results, running four chains each
with 1000 samples for warm-up and 1000 samples for the
fit, for a total of 4000 samples for each hidden variable in
the posterior joint probability distribution. The predetermined
number of modes |M| used to fit the data had a significant
impact on the run time. Average runtimes were 6, 11, and
17 minutes for increasing |M|. Once complete, we studied all
results and manually assigned each user a value for |M| that
best fit their data.

Table II lists the model parameters, chosen to produce un-
informed or weakly informed priors. The value of parameters
D and E are not significant, and the sampler appeared to find
reasonable posterior ratios which describe the mode transition
probabilities (as shown, for example, in Fig. 5). In the case
of M, the prior mode means, the four values considered
correspond approximately to one minute, one hour, two days,
and 100 days. We set the log-normal standard deviations S
on the prior larger than the difference between the values M.
We will discuss the effect of M on the results in more detail



below.

In Figs. 4 and 5, we further study the tweet pattern of User
28. By Fig. 4, a log-normal distribution provides a good fit
to the data on time between tweets. Specifically, we plot the
sample median (50%) values for pu,, and o,, (we provide
bounds for these fits in later plots). The data is plotted as
probability density functions with the data split and colored
based on the most likely mode given the intervals defined by
Wm and o,,. While User 28 has three clear and separable
modes, not all users do. In Fig. 6, we illustrate the tweet
pattern of User 13, whose second mode intersects the first
and third modes. User 21, illustrated by Fig. 7, exhibits two
modes which intersect.

Figure 5 illustrates the mode-transition fits for User 28. The
horizontal axis is split into |M| pieces with each piece show-
ing transitions from the specified mode into all modes. The
background bars represent the original data binned throughout
the day with stacked bars showing which portion of each bin
transitions into all modes. The black dashed lines show the
50% fit for the § function dividing modes. That is, below the
first line are the transitions into mode 1; between the two lines
are transitions into mode 2; above both lines are transitions
into mode 3. We also show the confidence interval from 5%
to 95% on each of those fits. The top portion of the plot shows
the histogram of how many datapoints are included in each of
the data bins below.’ The model is biased to fit portions of the
day where more data exists. We note that Figs. 6 and 7 are
similar and have this same feature; the confidence intervals
were removed from these figures for clarity.

In Fig. 5, we see that User 28 has a distinct trend toward
leaving mode 3 and entering mode 2 first thing in the morning.
Although User 28 has a low probability of leaving mode 2 to
enter mode 1 at any point in the day, once in mode 1, this
user is very likely to remain there. In all three modes, the
likelihood of entering mode 3 increases throughout the day.*

Figures 8—10 show values for p,, and o, for all users. For
each user, we determined the optimal number of modes |M|
and organized the figures accordingly. In all plots, the boxes
show the 5%, 50%, and 95% likelihoods for the u,, values;
the whiskers show the 50% value for o,,, centered on the 50%
tm- The vertical dotted lines indicate locations for the M prior
value for all p,,. Note that with a prior S of 5 (Table II), the
L values should be rather free to follow the data away from
the prior M. We note that the model often moved quite far from
the priors. Furthermore, with the exceptions of Users 1, 8, 22,
and 25, all modes’ p,,, 90% confidence intervals were very
tight. In around half of the cases, the modes’ o,,, values are
also quite separable — there are often clear divisions between
the separate modes.

The results for User 28 are particularly interesting. This is
the only user to be in more than one of these plots (Figs. 9

3While our plots compare posterior estimates to manually binned data, we
should make clear the Gibbs sampler included randomly resampling individual
message modes and did not use our labels.

4This was a fairly common trend among most non-“bot” users: As the day
progressed, they were more likely to enter their longest between-tweet mode.

and 10). User 28 is also shown in Fig. 4 — where it can be seen
that a possible fourth mode is visible. We show the results of
the 4-mode fit in Fig. 10. The fourth mode is pulled toward
the fourth mode’s data, but there was insufficient data for
the model to completely shift over. Moreover, the standard
deviation on the fourth mode is exceedingly high. Only two
users were reasonably modeled using a 4-mode model — and
in User 28’s case, the fourth mode was insufficiently strong
to lead to a confident fit. This is a standard limitation of
temporal likelihood models; longer intervals produce fewer
samples upon which to base the likelihood estimate of new
data for any application. Even with good population estimates
of rare phenomena, individual deviations from the norm in
social media will remain difficult to evaluate.

We observed that for some users who clearly displayed two
modes, the model did not distinguish the modes as well as
we might hope (Fig. 11). Our initial intent with our prior
parameters was that weakly informed priors would easily be
shifted by sufficient data. However, these results indicate that
some users’ data was insufficient to fully overcome the priors.
As a test, we took these users and tested them with slightly
different priors (M = {4,12} instead of M = {4,8}). In all
cases the resulting fits were improved, and in most cases, the
splits were now as expected. Further, the second mode was far
less common — resulting in far less data — than the first mode.
We show the resulting modes for all of these users in Fig. 12.

Finally, “bots” and otherwise automated accounts can some-
times cause problems for our model. Figure 13 illustrates the
tweet patterns for Users 18 and 19. The top plot illustrates User
18, who nearly always tweets every few seconds, and tweets
every 2-3 hours much less frequently. As the modes were very
disjoint, the model was able to identify the two modes well.
However, the User 19 (bottom panel) tweets at very precise
intervals (approximately 5 minutes, 10 minutes, 15 minutes,
and 30 minutes) with far fewer tweets to fill in around them.
In the two-mode case, neither of the modes was a good fit
to the data. When considering more than two modes, the fit
for at least one of the modes exhibited a variance near zero
(essentially a Dirac delta function) while others were unable
to converge. We assume the near zero value for o, led to
numerical issues for the solver.

V. CONCLUSIONS

We presented a new Bayesian model that effectively fits
shifting temporal patterns as seen in Twitter. This model inte-
grates a user’s different temporal modes (“engaged”, “casual”,
“sleeping”) with time-of-day interactions. Moreover, the model
is relatively straightforward and can be easily implemented.

We demonstrated how well the proposed model fit a variety
of users by analyzing the tweets of 29 different users with sev-
eral model variations; results for a subset of these users were
presented. For some user modes, there was insufficient data to
overwhelm the priors provided. Low energy (lower frequency)
modes will necessarily produce fewer samples; this inherant
lack of data may make other distributions (such as Student-t)
more appropriate for estimating the parameters of such modes,
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Fig. 11. Two-mode model sensitivity to priors. The two modes evident in
User 11’s tweet pattern were not well split by our default priors (top panel),
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and may make uninformative priors preferable to even weakly
informative priors (absent concrete prior knowledge). Zero-
or near-zero variance modes (commonly occurring in posts
by automated systems) may be better modeled with improper
priors and delta function or custom likelihood calculations, to
avoid misleading compromises in posterior variance estimates.
We believe further study is required to determine how choice
of priors and variable distributions affects these results.

While weaker priors could allow less data to lead to
good results for some users, they may cause degradation of
some of our good results. An obvious model extension that
doubles as a potential solution to this problem is to explic-
itly represent structural variations between users within an
overarching population, sampling user-scale parameters from
hidden population distributions. Such a model could go so far
as to automatically identify user classes by clustering users’
temporal patterns in parallel with user parameter estimation
and population parameter estimation.

Based on the results presented here, we are confident that
a successful model should be able to reliably represent orga-
nizations, “bots”, and human users, and potentially identify
subgroups within these broad demographics. It should also be
useful for pregenerating schedules for agent-based simulations
or change detection in early warning applications.
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