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Motivation – Glass to Metal Seals
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Higher fidelity stress modeling is needed to address 
shrinking performance margin in more complex designs 



Background – Structural Relaxation
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Finite Element (FE) Modeling Predicts 
Residual Stress In Glass-to-Metal Seals
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Current State (2013): Qualitative
stress-based failure analysis      
(i.e., engineering judgment).

Future State (2020): Quantitative
mechanics-based failure & 

reliability prediction.

Stress determination 
considering materials, 
processing & loading

history.

Quantitative brittle failure 
& lifetime reliability prediction

Determine & model 
process-structure-
property relations.

Fracture mechanics 
Crack initiation, 

stability, & growth

6

BrittMAPP – Brittle Materials Assurance 
Predictability Program



Simplified Potential Energy Clock 
(SPEC) Model
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Dynamic Mechanical Analysis
Temperature Sweep
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Dynamic Mechanical Analysis
Frequency Sweep
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Constructing time based master curve
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Model Calibration
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Model Validation –
Complex Thermal History
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Model Validation –
3 – point bending
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3-Pnt Bending Tests at Tg
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Characterizing Low Temp Creep
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Polished Annealed Block
avg. c ≈ 92 um 

Indent on test geometry
glass (not near SS shell)

avg. c ≈ 55 um 
GtoM seal test geometry

c' c

σr =  -( K� - K��ꞌ)
1.12 π c1/2

unstressed 
glass

stressed 
glass

K��ꞌ= χ P/c3/2

Derived from indentation fracture 
mechanics concepts

e.g. Lawn Fracture of Brittle Solids (1993)

Model Validation: stress mapping by 
indentation crack measurements
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Measured data has been used to 
validate analysis
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SPEC vs Purely Elastic Model
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Investigate Complicated Designs

START

END

Cooling Rate: 10C/min
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Aging of Compression Seal
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Residual Stress Due to Complex 
Thermal Histories

Cooling Rate: 10C/min

END

START

3 °C/min thermal cycle: -50 °C  220 ° C 21



Cooling Rate: 10C/min

Residual Stress Due to Complex 
Thermal Histories
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Aging Testing

 10 connectors tested after receiving from supplier
 Approximately 2 days after manufacturing

 10 connectors tested 6 months after receiving 

 10 cycles, then ultrasonic scan through glass thickness
1. -50 °C  150 °C

2. -50 °C  180 °C

3. -50 °C  200 °C

4. -50 °C  220 °C  (oven low/high limits)

 10/10 connectors tested shortly after receiving did not crack 
after all thermal cycles.

 7/10 shells tested 6 months after receiving did not crack after 
the cycles.
 3/10 cracked after the -50 °C  220 °C thermal cycles.
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Ultra Sound after 220 °C cycle

“top”“bottom”“bottom”

“top”

Imaging at Crack Depth #1

crack
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crack crack

crack

crack
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Conclusions

 SPEC model can predict glass response with engineering 
accuracy 

 FEA predictions and data suggest that even short amounts of 
time may be changing the stress state of the hermetic seal.

 More experiments are necessary to validate long term aging 
predictions of the SPEC model. 

 FEA can help determine what experiments will be most useful. 
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