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SunShot CSP Tower Targets .
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M. Bauer, R. Vijaykumar, M. Lausten, J. Stekli, “Pathways to Cost Competitive Concentrated Solar Power Incorporating Supercritical Carbon
Dioxide Power Cycles,” presented at the 5% International Symposium on Supercritical CO2 Power Cycles,San Antonio, TX, 2016.




Integration with Sandia Capabilities ™
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sCO2 Cycle Layout Options m

Application Size/MWe Temp/°C Pressure/ MPa

Nuclear 10-300 350-700 20-35
Fossil (Indirect) 300-600 550-900 15-35
Fossil (Direct) 300-600 1100-1500 35
Solar 10-100 M
Shipboard <10-10 200-300 15-25
Waste Heat 1-10 <230-650 15-35
Geothermal 1-50 100-300 15

Adapted from R. Dennis, “DOE Initiative on SCO2 Power Cycles (STEP) -Heat Exchangers: A Performance and Cost
Challenge -,” presented at the EPRI-NETL Workshop on Heat Exchangers for SCO2 Power Cycles, San Diego, CA, 2015




sCO2 Cycle Cost & Performance m
| scec | RocBC | CCBC | CBI
100 100 100 133 100

Net Power (MWe)

Efficiency (%) 16 46 46 28 51

540 172 170 518 159

M) 700 700 700 600 700

20 20 20 27.6 15

6.4 8.0 7.3 8.5 2.6

Toompmin(C) IEE 55 55 37 35

381 212 322 281* 292

0.00 243 244 122* 259

545 85 154 574* 350

423 230 147 80* 74

136 128 135 138* 120
1,485 898 1,002  914* 1,095

SCBC=Simple Closed Brayton Cycle RCBC=Recompression Closed Brayton Cycle

CCBC=Cascaded Closed Brayton Cycle = CBI=Combination Bifurcation with Intercooler
-

*Corrected from C. K. Ho, M. D. Carlson, P. Garg, and P. Kumar, “Cost and Performance Tradeoffs of Alternative Solar-Driven S-CO2 Brayton Cycle Configurations,” 6

in Proceedings of the ASME 2015 Power and Energy Conversion Conference, San Diego, California, 2015, pp. 1-10.
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Heat Exchanger Cost [k$]

Cost = ¢; + A

Data From All Applications

A o o All Assume Stainless Steel Construction
- ... Based on “Selection and Costing of Heat Exchangers,”
R .. " Engineering Sciences Data Unit, ESDU 92013, Dec. 1994

Cost vs. Surface Area for Various Heat Exchangers

Heat Exchanger Surface Area [m?]




Heat Exchanger Cost Models m

Overall Heat Transfer Coefficient

Heat Transfer Rate
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Requires scaling related to heat
transfer and thermodynamic variables

Cost(U;A,) - ATm2 1

//

Requires scaling only by
thermodynamic variables




Exchanger Cost Scaling Behavior — @i
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Primary Heat Exchanger ($/(W/K)) &e 1.3 1.1
Recuperator ($/(W/K)) BGEE] 1.4 1.3 1 .1 1 .O
Air Coolers / Condensers ($/(W/K)) A& 2.4 1.3 1.1 1.0




Comparison to ESDU Interpolation @&

_____Category| Model | ____SCBC____| RCBC | CCBC | _CBI _

o M Esou 0 243 244 122 259
ec”ﬂ;‘;ﬁﬁ; Current 0 250 251 125 267
Change 0% 2.9% 2.9% 2.5% 3.1%

ESDU 545 85 154 574 350

(of T I e NEILWV[] Current 247 86 155 576 351
Change 0.4% 1.2% 0.6% 0.3% 0.3%

" Errors less than 3% between direct interpolation and
the proposed fitting method are within the tolerances
of rough order of magnitude cost analyses
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Turbomachinery Cost Models

Delivered or recovered power, hp Capacity, gal/min
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Figure 12-34 Purchased cost of diaphragm, centrifugal, and rotary pumps
Purchased cost of turbines and expanders
. |Power-law Cost Scaling
; - . 0.9339
e o Motor-Driven Compressor ($)* [RYIKC{/47374
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1 $ *
% : . 0.6897
6 Radial Expander ($)** [N RIU41374)
o 10
- - - . 0.5886
T [ Reciprocating e engine : Axial Gas Turbine ($)** 9923.7(W /kW)
3 Recii;roc:i\lir;g;x;mtor‘ -
b procating—motor > 0.3895
-F\:" Reciprocating—steam <% 7/ E ~O T = *kk 9 m3
: e 1| N conitgacoay | Centrifugal Pump ($) 124427V /—
——— % Centrifugal—turbine =27 7 : T S
LU - ITITIT Materdal adjustment factor
Centrifugal—motor Carbon steel 1.0 . .
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10 10° 10? 10t **Includes factor of 3 for nickel alloy construction.

Power required, kW

***Includes factors of 2.4 for stainless steel construction and 2.8 for
Figure 12-28 .
Purchased cost of compressors. Price includes drive, gear mounting, baseplate, elevator operating pressure.

and normal auxiliary equipment; operating pressure to 7000 kPa (1000 psig).
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Compressor Cost Baselining .

Cost models are collapsed to approximately trend with vendor data.
**Proprietary vendor data not shown**
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Turbine Cost Baselining

Cost models are collapsed to approximately trend with vendor data.
**Proprietary vendor data not shown**

Component Cost / S
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Baselined Heat Exchanger Costs @

mmmm

Primary Heat Exchanger C* ($/(W/K)) e 1.3 1.1
Recuperator C* ($/(W/K)) lGHR; 1.4 1.3 1.1 1.0
Air Coolers / Condensers C* ($/(W/K)) &S 2.4 1.3 1.1 1.0

C; UA\]
in (cz) in (UAl)
UA,
in (UAZ)

1 L6 Values Naive Baselined

Prlmary Heat Exchanger

1.25 1.1-4.0
Air Coolers /| Condensers 2.75 ~2.3

Cost = C’ixlO(,C*UA

C* =exp|In(Cy) +

17




sCO2 Cycle Cost & Performance i
| categoryl Model | SCBC | RCBC | CCBC| CBI

SCBC
Heater ($/kWe) I\ ENYE 375 209 318 277 288
Naive 0 250 251 125 267

Baselined 0 220 221 110 235
Naive 547 86 155 576 351
Baselined 458 72 130 482 294

Recuperation ($/kWe)

Cooling ($/kWe)

| 6] 243 114 147 80 74
Compression ($/kWe) [y YV S OV ST P * C O OF
6] 160 128 135 138 120

Expansion ($/kWe)

Baselined 338 268 283 284 250
Naive 1325 787 1006 1196 1100
Baselined 1796 1097 1392 1386 1378

SCBC=Simple Closed Brayton Cycle RCBC=Recompression Closed Brayton Cycle
CCBC=Cascaded Closed Brayton Cycle = CBI=Combination Bifurcation with Intercooler

Total ($/kWe)
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Conclusions @

" Logarithmic interpolation and asymptotic
extrapolation of heat exchanger cost curves is more
accurate the previously-suggested power-law fits

" Naive cost models
= Qver-predicted heat exchangers by 10% to 20%
= Under-predicted compressors by 60% to 75%
= Under-predicted turbines by approximately 50%

" The simple recuperated cycle remains the most
promising configuration to achieve SunShot targets

" More cost data should be used to increase the
accuracy of turbomachinery cost models
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Simple Closed Brayton Cycle (SCBC) @i

=

me,in

-

me,in

/

Shaft Speed
Main .
Comp a Generator Turbine
Buffer
Volume // l\
Ttin

Frimary Heat
Exchanger

A
A/

Recuperator
p




Recompression Closed Brayton Cycle  mgs,
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Cascaded Closed Brayton Cycle m
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Combination Bifurcation with )
Intercooler (CBI)
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Technical Challenges
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Path to High Efficiency .
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* Advanced Ultrasupercritical (A-USC) research has advanced
high temperature materials?

* Alloy 617 and 740 are leading candidates for such systems

* 740 has recently been welded without cracking, more work is
still needed to vet any materials issues?

Little industrial experience exists and field testing is sparse.

1. Shingledecker, Development of Advanced Materials for Advanced Ultrasupercritical (A-USC) Boiler Systems, 2014
2. M. Carlson, “Options for SCO2 Brayton Cycle Heat Exchangers,” presented at the The 4th International Symposium on Supercritical CO2 Power Cycles, Pittsburgh, PA, 2014.



