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SunShot CSP Tower Targets
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M. Bauer, R. Vijaykumar, M. Lausten, J. Stekli, “Pathways to Cost Competitive Concentrated Solar Power Incorporating Supercritical Carbon 
Dioxide Power Cycles,” presented at the 5th International Symposium on Supercritical CO2 Power Cycles,San Antonio, TX, 2016.



Integration with Sandia Capabilities
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sCO2 Cycle Layout Options

Application Size / MWe Temp / ℃ Pressure / MPa

Nuclear 10-300 350-700 20-35
Fossil (Indirect) 300-600 550-900 15-35
Fossil (Direct) 300-600 1100-1500 35

Solar 10-100 500-1000 20-35
Shipboard <10-10 200-300 15-25

Waste Heat 1-10 <230-650 15-35
Geothermal 1-50 100-300 15
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Adapted from R. Dennis, “DOE Initiative on SCO2 Power Cycles (STEP) -Heat Exchangers: A Performance and Cost 
Challenge -,” presented at the EPRI-NETL Workshop on Heat Exchangers for SCO2 Power Cycles, San Diego, CA, 2015



sCO2 Cycle Cost & Performance
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SCBC RCBC CCBC CBI

Net Power (MWe) 100 100 100 133 100

Efficiency (%) 16 46 46 28 51

ΔT���(C) 540 172 170 518 159

Tmax(C) 700 700 700 600 700

Pmax(MPa) 20 20 20 27.6 15

Pmin(MPa) 6.4 8.0 7.3 8.5 2.6

Tcomp,min(C) 55 55 55 37 35

Heater ($/kWe) 381 212 322 281* 292

Recuperation ($/kWe) 0.00 243 244 122* 259

Cooling ($/kWe) 545 85 154 574* 350

Compression ($/kWe) 423 230 147 80* 74

Expansion ($/kWe) 136 128 135 138* 120

Total ($/kWe) 1,485 898 1,002 914* 1,095

SCBC=Simple Closed Brayton Cycle RCBC=Recompression Closed Brayton Cycle
CCBC=Cascaded Closed Brayton Cycle CBI=Combination Bifurcation with Intercooler

*Corrected from C. K. Ho, M. D. Carlson, P. Garg, and P. Kumar, “Cost and Performance Tradeoffs of Alternative Solar-Driven S-CO2 Brayton Cycle Configurations,” 
in Proceedings of the ASME 2015 Power and Energy Conversion Conference, San Diego, California, 2015, pp. 1–10.
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Cost Scaling with Surface Area
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Heat Exchanger Cost Models
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Exchanger Cost Scaling Behavior
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UA (W/K) 5x103 3x104 1x105 3x105 1x106

Primary Heat Exchanger ($/(W/K)) 1.9 1.3 1.1 1.0 1.0

Recuperator ($/(W/K)) 6.3 1.4 1.3 1.1 1.0

Air Coolers / Condensers ($/(W/K)) 7.6 2.4 1.3 1.1 1.0



Comparison to ESDU Interpolation

Category Model SCBC RCBC CCBC CBI

Recuperation 
($/kWe)

ESDU 0 243 244 122 259

Current 0 250 251 125 267

Change 0% 2.9% 2.9% 2.5% 3.1%

Cooling ($/kWe)

ESDU 545 85 154 574 350

Current 547 86 155 576 351

Change 0.4% 1.2% 0.6% 0.3% 0.3%
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 Errors less than 3% between direct interpolation and 
the proposed fitting method are within the tolerances 
of rough order of magnitude cost analyses



Overview

 Background and Objectives

 Heat Exchanger Costs Models

 Turbomachinery Cost Models

 Baselining and Updated Cycle Comparisons 

 Conclusions

12



Turbomachinery Cost Models

Power-law Cost Scaling

Motor-Driven Compressor ($)* 461.91 �̇/��
�.����

Turbine-Driven Compressor 
($)*

643.15 �̇/��
�.����

Radial Expander ($)** 4001.4 �̇/��
�.����

Axial Gas Turbine ($)** 9923.7 �̇/��
�.����

Centrifugal Pump ($)*** 124427 �̇
��

�
�

�.����
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*Includes factors of 2.5 and 0.2 for stainless steel construction and 
density ratio of air and CO2 at 8 MPa.
**Includes factor of 3 for nickel alloy construction.
***Includes factors of 2.4 for stainless steel construction and 2.8 for 
elevator operating pressure.
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Compressor Cost Baselining

Cost models are collapsed to approximately trend with vendor data.
**Proprietary vendor data not shown**
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Turbine Cost Baselining

Cost models are collapsed to approximately trend with vendor data.
**Proprietary vendor data not shown**
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Baselined Heat Exchanger Costs
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∗ Values Naïve Baselined

Primary Heat Exchanger 3.5 -

Recuperator 1.25 1.1 - 4.0

Air Coolers / Condensers 2.75 ~2.3

UA (W/K) 5x103 3x104 1x105 3x105 1x106

Primary Heat Exchanger C* ($/(W/K)) 1.9 1.3 1.1 1.0 1.0

Recuperator C* ($/(W/K)) 6.3 1.4 1.3 1.1 1.0

Air Coolers / Condensers C* ($/(W/K)) 7.6 2.4 1.3 1.1 1.0
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sCO2 Cycle Cost & Performance
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SCBC=Simple Closed Brayton Cycle RCBC=Recompression Closed Brayton Cycle
CCBC=Cascaded Closed Brayton Cycle CBI=Combination Bifurcation with Intercooler

Category Model SCBC RCBC CCBC CBI

Heater ($/kWe) Naïve 375 209 318 277 288

Recuperation ($/kWe)
Naïve 0 250 251 125 267

Baselined 0 220 221 110 235

Cooling ($/kWe)
Naïve 547 86 155 576 351

Baselined 458 72 130 482 294

Compression ($/kWe)
[6] 243 114 147 80 74

Baselined 625 328 440 233 311

Expansion ($/kWe)
[6] 160 128 135 138 120

Baselined 338 268 283 284 250

Total ($/kWe)
Naïve 1325 787 1006 1196 1100

Baselined 1796 1097 1392 1386 1378
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Conclusions
 Logarithmic interpolation and asymptotic 

extrapolation of heat exchanger cost curves is more 
accurate the previously-suggested power-law fits

 Naïve cost models

 Over-predicted heat exchangers by 10% to 20%

 Under-predicted compressors by 60% to 75%

 Under-predicted turbines by approximately 50%

 The simple recuperated cycle remains the most 
promising configuration to achieve SunShot targets

 More cost data should be used to increase the 
accuracy of turbomachinery cost models 
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Backup Slides
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Simple Closed Brayton Cycle (SCBC)
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Recompression Closed Brayton Cycle 
(RCBC)

23



Cascaded Closed Brayton Cycle
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Combination Bifurcation with 
Intercooler (CBI)
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Technical Challenges
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Path to High Efficiency
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Materials are limited to <700C
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• Advanced  Ultrasupercritical (A-USC) research has advanced 
high temperature materials1

• Alloy 617 and 740 are leading candidates for such systems

• 740 has recently been welded without cracking, more work is 
still needed to vet any materials issues1

• Little industrial experience exists and field testing is sparse.

1. Shingledecker, Development of Advanced Materials for Advanced Ultrasupercritical (A-USC) Boiler Systems, 2014
2. M. Carlson, “Options for SCO2 Brayton Cycle Heat Exchangers,” presented at the The 4th International Symposium on Supercritical CO2 Power Cycles, Pittsburgh, PA, 2014.


